
Previously known bounds
PUSH or PULL: 

• In any regular graph it takes O(φ −1 log n)
rounds until all vertices are informed w.h.p. [5].

• There are non-regular graphs with constant φ for 
which Ω(n) rounds are needed (e.g., a star).
So, largeφ does not imply fast PUSH or PULL.

PUSH-PULL:

• In any graph, it takes O((log φ −1)2 φ −1 log n)
rounds until all vertices are informed w.h.p. [2].

• There are graphs for which Ω(φ −1 log n) rounds 
are needed [1].
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Randomized rumor spreading
We assume that the network is modeled by a 
connected and undirected graph G. Initially, an 
arbitrary vertex knows a rumor, and the goal is that 
every vertex learns the rumor. We consider the 
following classic rumor spreading algorithms. 
The algorithms proceed in rounds. 

PUSH algorithm: In each round every informed
vertex (i.e., every vertex that knows the rumor) 
chooses a random neighbor in G and sends the 
rumor to it.

PULL algorithm: In each round every uninformed
vertex chooses a random neighbor, and if that 
neighbor knows the rumor it sends it to the 
uninformed vertex.

PUSH-PULL algorithm: In each round every vertex 
chooses a random neighbor to send the rumor to, 
or to request the rumor from.

Graph conductance
The conductance of a connected graph G = (V, E) is 
a real 0 < φ ≤ 1 defined as

where vol(U) is the volume of U, i.e., the sum of 
the degrees of the vertices in U; and E(U, V \U) is 
the set of crossing edges of the cut { U, V \U} . (See 
also Figure 1.)

* This work was published in [3].
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Our contribution
Our main result is that we close the above gap 
between upper and lower bounds for PUSH-PULL.

Theorem 1.In any graph, PUSH-PULL takes
O(φ −1 log n) rounds w.h.p.

For PUSH and PULL we provide optimal 
sufficient conditions for rumor spreading in 
O(φ −1 log n) rounds in general graphs. By ∆ (δ) we 
denote the max (min) graph degree.

Theorem 2.In any graph, PULL takes O(φ −1 log n)
rounds w.h.p., if some of the next conditions hold:

(a) The rumor starts at a vertex of degree
Ω(∆(φ + δ−1)); or

(b) φ = O(1/∆) (for any start vertex).

Since φ + δ−1 = O(1), we have the following 
interesting corollary.

Corollary 3. Every graph contains a vertex such 
that PULL takes O(φ −1 log n) rounds w.h.p. if the 
rumor starts at that vertex. E.g., a max-degree 
vertex is such a vertex.

Theorem 4.In any graph, PUSH takes O(φ −1 log n)
rounds w.h.p. if δ = Ω(∆(φ + δ−1)) or φ = O(1/∆).

Related problems
• Relationbetween rumor spreading and vertex 

expansion – another standard measure of 
expansion in graphs. Recent results show that 
similar bounds as with conductance hold [6,4]. 

• General lower bounds for rumor spreading time. 
Standard expansion measures are not sufficient, 
as there exist graphs with bad expansion where 
rumor spreading is fast.

Introduction
Epidemic algorithms are a prominent tool for 
scalable and robust information dissemination in 
networks. Randomized rumor spreading is a basic 
and well-studied family of such algorithms: A 
rumor spreads throughout the network by means of 
each node choosing a random neighbor to 
communicate with in every round.

Randomized rumor spreading algorithms have 
proven very efficient for various network 
topologies. Further, abstract graph properties of 
networks that guarantee efficient rumor spreading 
have been investigated. One such property yielding 
fast rumor spreading is high conductance – a 
standard measure of expansion in graphs. 

We present some results on the relation between 
conductance and rumor spreading. Our main result 
is a tight upper bound on the speed of the classic 
PUSH-PULL algorithm. This bound improves a 
recent result by Chierichetti et al [2].

Figure 1. The above graph G = (V, E) has conductance 
φφφφ = 1/5, since  the cut {U, V \U} shown has the smallest 
ratio |E(U, V \U)| / vol(U) = 3/15,over all sets U ⊆⊆⊆⊆ V
with vol(U) ≤≤≤≤ vol(V)/2. Typically, larger values of φφφφ
mean “better-knit” graphs. E.g., a path of length n has 
φφφφ = Θ(1/n); and the clique Kn has φφφφ = Θ(1).
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not true 
for PUSH!

Analysis
Key observation:  It suffices to analyze PULL. The results 
for PUSH follow then by the symmetry between PUSH
and PULL; and the bound for PUSH-PULL follows by 
combining results for PUSH and PULL.

Proof sketch of Theorem 1. By Corollary 3,

PULL spreads a rumor from a max-degree vertex ξ

to all vertices in O(φ −1 log n) rounds w.h.p.

From this and a symmetry argument,

PUSH spreads a rumor from any vertex to ξ in 
O(φ −1 log n) rounds w.h.p.

Thus, PUSH-PULL spreads the rumor to ξ in O(φ −1 log n)
rounds (just by “push” operations), and from ξ to all other 
vertex in O(φ −1 log n) more rounds (by “pull” operations).

Intuition for the analysis of PULL. Let

St : set of informed vertices 
after round t;  

∂St : outer boundary of St; 

γ(u), u∈∂St : number of 
neighbors of u in St.

The expected increase of vol(St) in a single round is

if vol(St) ≤ vol(V)/2. Thus,

E[vol(St+1)] ≥ (1 + φ)·E[vol(St)].

So, if the process behaved as in expectation, it would take 
O(φ −1 log[vol(V)]) = O(φ −1 log n) rounds until 
vol(St) > vol(V)/2. Similarly, once vol(St) > vol(V)/2, it 
would take O(φ −1 log n) more rounds until vol(V \ St) = 0. 

We turn this intuition into a rigorous proof by using a 
martingale argument. 
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