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Abstract

We study the connection between the rate at which a rumor spreads throughout a graph and
the conductance of the graph—a standard measure of a graph’s expansion properties. We show
that for any n-node graph with conductance φ, the classical PUSH-PULL algorithm distributes
a rumor to all nodes of the graph in O(φ−1 log n) rounds with high probability (w.h.p.). This
bound improves a recent result of Chierichetti, Lattanzi, and Panconesi [6], and it is tight in
the sense that there exist graphs where Ω(φ−1 log n) rounds of the PUSH-PULL algorithm are
required to distribute a rumor w.h.p.

We also explore the PUSH and the PULL algorithms, and derive conditions that are both
necessary and sufficient for the above upper bound to hold for those algorithms as well. An
interesting finding is that every graph contains a node such that the PULL algorithm takes
O(φ−1 log n) rounds w.h.p. to distribute a rumor started at that node. In contrast, there are
graphs where the PUSH algorithm requires significantly more rounds for any start node.

1. Introduction

Gossip-based algorithms have become a prominent paradigm for designing simple, efficient, and
robust protocols for disseminating information in large networks. Perhaps the most basic and
most well-studied example of a gossip-based information-dissemination algorithm is the, so-called,
rumor-spreading model. The algorithm proceeds in a sequence of synchronous rounds. Initially, in
round 0, an arbitrary start node receives a piece of information, called the rumor. This rumor is
then spread iteratively to other nodes: In each round, every informed node (i.e., every node that
received the rumor in a previous round) chooses a random neighbor to which it transmits the rumor.
This is the PUSH version of the rumor-spreading model. The PULL version is symmetric: In each
round, every uninformed node chooses a random neighbor, and if that neighbor knows the rumor
it transmits it to the uniformed node. Finally, the PUSH-PULL algorithm is the combination of
both strategies: In each round, every node chooses a random neighbor to transmit the rumor to, if
the node knows the rumor, or to request the rumor from, otherwise.

The above three rumor-spreading algorithms were proposed in [8], in the context of maintaining
distributed replicated database systems. Subsequently, these algorithms (and variations of them)
have been used in various applications, such as failure detection [27], resource discovery [21], and
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data aggregation [3]. Also, their performance has been studied theoretically for several classes of
networks (see the Related Work Section).

In this paper, we investigate the relationship between the performance of rumor spreading in an
arbitrary connected network (represented by an undirected graph), and the expansion properties of
the network. More precisely, we look at the broadcast time of the above rumor-spreading algorithms,
i.e., the number of rounds until all nodes get informed—a primary measure for rumor spreading.
And we study its connection to the conductance of the network—one of the most studied measures
of graph expansion. Roughly speaking, the conductance of a connected graph is a value φ in the
range 0 < φ ≤ 1, which is large for graphs that are well connected (e.g., the complete graph), and
small for graphs that are not (e.g., graphs with communication bottlenecks).

A connection between broadcast time and conductance has been observed in several works,
e.g., in [1, 10, 23, 25], where upper bounds on the broadcast time were obtained for various graph
topologies based, essentially, on lower bounds on the conductance. In [5], Chierichetti, Lattanzi, and
Panconesi posed the question whether rumor spreading is fast in all graphs with high conductance.
For the PUSH and the PULL algorithms the answer is negative; as observed in [6], a star with
n vertices has constant conductance but the expected broadcast time for a random start node
is Ω(n) rounds. For the PUSH-PULL algorithm, however, the answer to the above question is
positive. In [7], it was shown that for any graph and any start node, the broadcast time of the
PUSH-PULL algorithm is O(φ−6 log4 n) rounds, with high probability (w.h.p.).1 It was also noted
in [7] that this result suggests a justification as to why rumors spread quickly among humans,
since experimental studies have shown that social networks have high conductance. The above
bound was subsequently improved to O

(
(log φ−1)2φ−1 log n

)
rounds w.h.p., in [6]. Further, it was

shown there that this bound is by at most a (log φ−1)2-factor larger than the optimal bound. More
precisely, it was shown that for any φ ≥ 1/n1−ε, there are n-node graphs with conductance at least
φ and diameter Ω(φ−1 log n). Finally, the authors of [6] provided a sufficient condition for their
upper bound to hold for the PUSH and the PULL algorithms as well. This condition states that
for any edge, the ratio of the degrees of its two endpoints is bounded by a constant.

Two other important measures of a graph’s expansion properties are edge and vertex expansion.
The authors of [5] described a graph with constant edge expansion in which the expected broadcast
time of the PUSH-PULL algorithm for a random start node is Ω(

√
n). The question whether high

vertex expansion yields fast rumor spreading (also posed in [5]) is largely open; in a very recent
work [26], it was shown that for regular graphs this is true.

Our Contributions. We saw that an upper bound ofO
(
(log φ−1)2φ−1 log n

)
rounds w.h.p. is known

for the broadcast time of the PUSH-PULL algorithm in any graph; and Ω(φ−1 log n) rounds are
required for some graph with n nodes and conductance φ, for any n and φ ≥ 1/n1−ε. Our first
contribution is the following result, which closes the gap between these two bounds.

Theorem 1.1. For any graph on n vertices and any start vertex, the broadcast time of the PUSH-
PULL algorithm is O(φ−1 log n) rounds w.h.p.

We also show that Theorem 1.1 is tight for φ = Ω(1/n)—not just for φ ≥ 1/n1−ε as it was
previously known. Clearly, the theorem is not tight for φ = o(1/n), since the broadcast time of the
PUSH algorithm is known to be O(n log n) rounds w.h.p. for any graph [16].

The proof of Theorem 1.1 is based on an analysis of the PUSH and the PULL algorithms. We
show that in any graph, the broadcast time of the PULL algorithm is O(φ−1 log n) rounds w.h.p.,
if the start node has degree ∆, the maximum degree of the graph. Also, based on the symmetry

1 By “with high probability” we mean with probability 1−O(n−c), for an arbitrary constant c > 0.
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between the PULL and the PUSH algorithms, we show that for any start node, the PUSH algorithm
takes O(φ−1 log n) rounds w.h.p. to inform a node of degree ∆. Therefore, w.h.p. the PUSH-PULL
algorithm takes O(φ−1 log n) rounds to inform a node of degree ∆, and O(φ−1 log n) additional
rounds to inform the remaining nodes.

Our analysis is different than previous approaches. Specifically, the proof in [7] is based on a
connection between rumor spreading and a spectral sparsification process; and the proof in [6]
analyzes the PUSH-PULL process directly. Still, our analysis uses some ideas from [6].

Recall that high conductance does not always yield short broadcast times for the PUSH and the
PULL algorithms. Our second contribution is that we derive conditions guaranteing a broadcast
time of O(φ−1 log n) rounds w.h.p for those algorithms. As mentioned above, in the proof of
Theorem 1.1 we show that one such condition for the PULL algorithm is that the start node have
degree ∆. We extend this result as follows. Let δ denote the minimum degree of the graph.

Theorem 1.2. (a) For any graph on n vertices and any start vertex with degree Ω(∆(φ + δ−1)),
the broadcast time of the PULL algorithm is O(φ−1 log n) rounds w.h.p. (b) If, in particular,
∆ = O(1/φ) then the above bound on the broadcast time holds for any start vertex.

Further, we show that the conditions specified in Theorem 1.2 are optimal, in the sense that
for any given φ, δ, ∆, d with ∆ = ω(1/φ) and d = o(∆(φ + δ−1)), there is a graph with those φ,
δ, ∆, and with a start node of degree d such that the broadcast time of the PULL algorithm is
ω(φ−1 log n) with non-negligible probability (i.e., with probability n−o(1)).

Note that Theorem 1.2(a) does not hold for the PUSH algorithm: a star on n vertices has
constant conductance, but the broadcast time of the PUSH algorithm is at least n− 1.

From Theorem 1.2(a) it follows that if δ = Ω(∆(φ+ δ−1)) then the broadcast time of the PULL
algorithm is O(φ−1 log n) w.h.p. for all start nodes. This, and Theorem 1.2(b), are also true for
the PUSH algorithm, by the symmetry argument used in the proof of Theorem 1.1.

Finally, we also tighten the result of [6] for the PUSH and the PULL algorithms. We show that
if, for any edge, the ratio of the degrees of its endpoints is bounded, then the broadcast time of
those algorithms is O(φ−1 log n) rounds w.h.p., for any start node.

Related Work. The broadcast time of the PUSH algorithm has been analyzed for various graph
topologies, including the complete graph [19, 24], the hypercube and random graphs [16], star and
Cayley graphs [12, 13], regular graphs [15], and random regular graphs [17].

Besides the broadcast time, another performance measure of interest is the total number of
transmissions of the rumor. Fewer transmissions are typically achieved using the PUSH-PULL
algorithm. The broadcast time and the number of transmissions of the PUSH-PULL algorithm
(and variations of it) have been analyzed for the complete graph [22], random graphs [11, 14], and
random regular graphs [1]. The problem of minimizing the total communication complexity (i.e.,
the total number of bits transmitted) was studied in [18] for the complete graph.

A quasi-random variant of the rumor-spreading model was proposed in [9], as a means to reduce
the amount of randomness. In the quasi-random model, each node has a (cyclic) list of its neighbors
in which it just chooses a random starting position—instead of choosing a new random position in
each round. This model was shown to be at least as efficient as the classical rumor-spreading model
for several families of graphs [9, 10]. The problem of further reducing the amount of randomness
was studied in [20].

The problem of rumor spreading in arbitrary graphs and its connection to the graph’s expan-
sion properties were also studied in [3, 23], in the context of gossip-based data aggregation. In
both papers, the data-aggregation protocols proposed employ generalizations of the PUSH-PULL
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algorithm with non-uniform selection probabilities: in each round, node v chooses its neighbor u
with probability pv,u. Under certain symmetry conditions for the matrix of pv,u, upper bounds on
the broadcast time were established, as a function of certain measures of this matrix that resemble
graph conductance. These results, however, are not directly comparable to our results. In partic-
ular, as observed in [6], there are graphs with high conductance for which the above approaches
yield large bounds for the broadcast time.

The problem of partial rumor spreading, where it suffices that the rumor be spread to a constant
fraction of the nodes, was studied in [4]. There, a refinement of graph conductance, called weak
conductance, was introduced, and it was shown that high weak conductance always implies fast
partial rumor spreading (using the PUSH-PULL algorithm), even if the (standard) conductance is
small.

Paper organization. We begin with some definitions and notations, in Section 2. Section 3, which
constitutes the largest part of the paper, contains the analysis of the PULL algorithm, including
the proof of Theorem 1.2. In Section 4, we provide a result on the symmetry between the PUSH
and PULL algorithms, which allows us to derive the properties of the PUSH algorithm from the
analysis of the PULL algorithm. Finally, in Section 5, we analyze the PUSH-PULL algorithm and
prove Theorem 1.1 using results from Sections 3 and 4.

2. Preliminaries

We consider an arbitrary connected network, represented by an undirected graph G = (V,E).
The degree of a vertex v ∈ V is denoted d(v). By ∆ we denote the maximum degree of G,
∆ = maxv∈V d(v), and by δ we denote the minimum degree. The volume of a subset of vertices
S ⊆ V is the sum of the degrees of the vertices in S, vol(S) =

∑
v∈S d(v). Note that vol(V ) =

2|E|. By cut(S, V − S) we denote the set of edges crossing the partition {S, V − S} of V , i.e.,
cut(S, V − S) = {{v, u} ∈ E : v ∈ S, u ∈ V − S}. The conductance φ of G is defined as

φ = min
S⊆V, vol(S)≤|E|

| cut(S, V − S)|
vol(S)

.

It is easy to see that 0 < φ ≤ 1. (It is φ 6= 0 because graph G is connected.) Also,

Observation 2.1. For any S ⊆ V , | cut(S, V − S)| ≥ dφ ·min{vol(S), vol(V − S)}e.

We will denote by Si the set of informed vertices at the end of round i of the rumor-spreading
algorithm, and by Ui the set of uninformed vertices at that time, Ui = V − Si. S0 and U0 denote
the corresponding sets initially. To simplify notation, we will assume that S0 can be any non-empty
subset of vertices—we do not require that |S0| = 1.

3. PULL Algorithm

In Section 3.1, we establish a general upper bound on the broadcast time of the PULL algorithm,
for any initial set of informed vertices. In Section 3.2, we build upon and refine this result to
derive conditions that guarantee broadcast times of O(φ−1 log n) rounds. More precisely, we prove
Theorem 1.2 and demonstrate its optimality, and we show that a condition proposed in [6] also
achieves the above broadcast time.
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3.1. An Upper Bound on the Broadcast Time

The main result of this section is the following high-probability bound on the broadcast time for
an arbitrary initial set of informed vertices. Recall that ∆ is the maximum degree of G.

Lemma 3.1. For any initial set of informed vertices S0 ⊆ V and any fixed β > 0, all vertices
get informed in at most 50(β + 2) log n

(
φ−1 + ∆/dφ vol(S0)e

)
rounds of the PULL algorithm, with

probability 1−O(n−β).

Note that if ∆/dφ vol(S0)e = O(1/φ) then the broadcast time is O(φ−1 log n) w.h.p.
To prove Lemma 3.1 we divide the execution of the algorithm into three phases: The first phase

lasts until the total volume of informed vertices becomes at least ∆; the second lasts until this
volume exceeds |E|, i.e., it exceeds one half of the total volume of the graph; and the third lasts
until all vertices get informed. We measure progress in the first two phases by the increase in the
volume of informed vertices; and in the third phase by the decrease in the volume of uninformed
vertices. For each phase, the next lemma gives upper bounds on the number of rounds until
“significant” progress is made with constant probability.

Lemma 3.2.

(a) If vol(S0) < ∆ then Pr
(

vol(Si) ≥ ∆
)
≥ 1/2, for i ≥ 4∆/dφ vol(S0)e.

(b) If ∆ ≤ vol(S0) ≤ |E| then Pr
(

vol(Si) ≥ min{2 vol(S0), |E|+ 1}
)
≥ 1/2, for i ≥ 4/φ.

(c) If vol(S0) > |E| then Pr
(

vol(Ui) ≤ vol(U0)/2
)
≥ 1/2, for i ≥ 6/φ.

The proof of Lemma 3.2 proceeds as follows. Consider part (a)—for parts (b) and (c) the rea-
soning is similar. Consider round i. At the beginning of the round there are at least φ vol(Si−1) ≥
φ vol(S0) edges between informed and uninformed vertices. We fix dφ vol(S0)e of these edges ar-
bitrarily before round i is executed, and then count the total volume Li of the vertices that get
informed in round i due to the rumor being transmitted through those edges. Clearly, Li is a lower
bound on the total volume of the vertices informed in round i. Thus, to prove (a) it suffices to
show that

∑
k≤i Lk ≥ ∆− vol(S0) with probability at least 1/2. By employing a martingale argu-

ment we compute the expectation and the variance of
∑

k≤i Lk, and then we bound
∑

k≤i Lk using
Chebyshev’s inequality.

The approach used to prove Lemma 3.2 is at the heart of our analysis, and it is also used to
prove analogous results in Section 3.2.

Proof of Lemma 3.2. (a) Let L1, L2, . . . be a sequence of random variables with Li, for i ≥ 1,
be defined as follows. We distinguish two cases:

• If vol(Si−1) ≤ |E|, then, by Observation 2.1, | cut(Si−1, Ui−1)| ≥ dφ vol(Si−1)e ≥ dφ vol(S0)e.
Let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting of M = dφ vol(S0)e edges. Set Ei
is (arbitrarily) fixed at the beginning of round i—before the round is executed. Then Li is
the total volume of the vertices that get informed in round i as a result of the rumor being
transmitted through edges in Ei. Formally, for each vertex u ∈ Ui−1, let Li,u be the 0/1
random variable with Li,u = 1 if and only if in round i vertex u receives the rumor through
some edge in Ei. Then, Li =

∑
u∈Ui−1

Li,ud(u).

• If vol(Si−1) > |E|, then Li = M .

We will show the following results for the expectation and the variance of the sum of Li.
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Claim 3.3. E[
∑

k≤i Lk] = iM and Var(
∑

k≤i Lk) ≤ iM∆.

Using this claim, the lemma follows by Chebyshev’s inequality: Let µ = E[
∑

k≤i Lk] = iM . Note
that for i ≥ 4∆/M , µ > ∆. So,

Pr
(∑
k≤i

Lk < ∆
)
≤ Pr

(∣∣∣∑
k≤i

Lk − µ
∣∣∣ > µ−∆

)
≤

Var(
∑

k≤i Lk)

(µ−∆)2
≤ iM∆

(iM −∆)2
< 1/2, (3.1)

for i ≥ 4∆/M . Note that if vol(Si) < ∆ then
∑

k≤i Lk < ∆, because
∑

k≤i Lk cannot be larger than
the total volume of all vertices informed since round 1 and thus

∑
k≤i Lk ≤ vol(Si)− vol(S0) < ∆.

Hence, Pr(vol(Si) < ∆) ≤ Pr(
∑

k≤i Lk < ∆) < 1/2, for i ≥ 4∆/M .
To complete the proof of part (a) it remains to show Claim 3.3, which we do next.

Expectation of the Sum of Li: For i ≥ 0, define Li =
∑

k≤i(Lk −M). Let Fi be the σ-algebra
generated by all the choices of the algorithm in the first i rounds. It is easy to see that the sequence
L0,L1, . . . is a martingale with respect to the filter F0 ⊆ F1 ⊆ . . . :

• If vol(Si−1) ≤ |E|,

E[Li − Li−1 | Fi−1] = E[Li −M | Fi−1] = E
[ ∑
u∈Ui−1

Li,ud(u)
∣∣∣Fi−1

]
−M

=
∑

u∈Ui−1

E[Li,u | Fi−1] · d(u)−M,

where the last relation holds because Ui−1 is Fi−1-measurable. For any u ∈ Ui−1,

E[Li,u | Fi−1] = Pr(Li,u = 1 | Fi−1) = gi(u)/d(u), (3.2)

where gi(u) is the number of edges in Ei that are incident to u. Note that∑
u∈Ui−1

gi(u) = |Ei| = M, (3.3)

since each edge in Ei is incident to exactly one u ∈ Ui−1. Combining the above yields
E[Li − Li−1 | Fi−1] =

∑
u∈Ui−1

gi(u)−M = M −M = 0.

• If vol(Si−1) > |E|, then Li − Li−1 = Li −M = M −M = 0.

So, in both cases, E[Li−Li−1 | Fi−1] = 0, which yields E[Li] = E[L0] = 0. Substituting to this the
definition of Li, we obtain the desired formula for the expectation, E[

∑
k≤i Lk] = iM .

Variance of the Sum of Li:

E[L2
i | Fi−1] = E[((Li − Li−1) + Li−1)2 | Fi−1]

= E[(Li − Li−1)2 | Fi−1] + L2
i−1 + 2E[Li − Li−1 | Fi−1] · Li−1

= E[(Li −M)2 | Fi−1] + L2
i−1, (3.4)

since E[Li − Li−1 | Fi−1] = 0. We bound E[(Li −M)2 | Fi−1] as follows:
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• If vol(Si−1) ≤ |E|, then, by the definition of Li and Equation (3.3),

E[(Li −M)2 | Fi−1] = E
[( ∑

u∈Ui−1

(
Li,ud(u)− gi(u)

))2 ∣∣∣Fi−1

]
=

∑
u∈Ui−1

E[(Li,ud(u)− gi(u))2 | Fi−1],

where the last relation holds because E
[
(Li,ud(u)− gi(u))(Li,u′d(u′)− gi(u′))

∣∣Fi−1

]
= 0, for

any u, u′ ∈ Ui−1 with u 6= u′. This last statement is true because, by (3.2), E[Li,ud(u) −
gi(u) | Fi−1] = 0, and because the random variables Li,u, u ∈ Ui−1, are mutually independent
conditionally on Fi−1. Using again (3.2) and (3.3), we get∑

u∈Ui−1

E[(Li,ud(u)− gi(u))2 | Fi−1] =
∑

u∈Ui−1

(
E[L2

i,u(d(u))2 | Fi−1]− (gi(u))2
)

≤
∑

u∈Ui−1

E[L2
i,u(d(u))2 | Fi−1] =

∑
u∈Ui−1

E[Li,u | Fi−1] · (d(u))2

=
∑

u∈Ui−1

gi(u)d(u) ≤
∑

u∈Ui−1

gi(u)∆ = M∆.

Therefore, E[(Li −M)2 | Fi−1] ≤M∆.

• If vol(Si−1) > |E|, the last inequality is still true, since Li = M .

By applying the above to (3.4) yields E[L2
i | Fi−1] ≤M∆+L2

i−1, and recursively we obtain E[L2
i ] ≤

iM∆. The desired bound for Var(
∑

k≤i Lk) then follows by observing that Var(
∑

k≤i Lk) = E[L2
i ].

This completes the proof of Claim 3.3, and of Lemma 3.2(a).

(b) We consider the same sequence of random variables L1, L2, . . . as in part (a). Similarly to (3.1),
by using Claim 3.3 and Chebyshev’s inequality we obtain that

Pr
(∑
k≤i

Lk < vol(S0)
)
≤ iM∆

(iM − vol(S0))2
≤ iM vol(S0)

(iM − vol(S0))2
< 1/2,

for i ≥ 4 vol(S0)/M , and thus, for i ≥ 4/φ. Part (b) then follows by observing that if vol(Si) <
min{2 vol(S0), |E| + 1} then

∑
k≤i Lk ≤ vol(Si) − vol(S0) < vol(S0), and thus, Pr

(
vol(Si) <

min{2 vol(S0), |E|+ 1}
)
≤ Pr

(∑
k≤i Lk < vol(S0)

)
.

(c) Unlike in parts (a) and (b), the set of uninformed vertices has now a smaller volume than
the set of informed vertices. So, by Observation 2.1, | cut(Si, Ui)| ≥ dφ vol(Ui)e. We consider the
sequence L1, L2, . . . of random variables, with Li defined as follows:

• If vol(Ui−1) > vol(U0)/2, we let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting of
M = dφ vol(U0)/2e edges. (Ei is fixed at the beginning of round i.) As before, Li is the total
volume of the vertices that get informed in round i as a result of the rumor being transmitted
through edges in Ei.

• If vol(Ui−1) ≤ vol(U0)/2, then Li = M .

7



Similarly to Claim 3.3, we can show that E[
∑

k≤i Lk] = iM and Var(
∑

k≤i Lk) ≤ iM vol(U0).
For the latter we use the fact that the degree of any uninformed vertex is at most vol(U0). As
before, by Chebyshev’s inequality, we can show that Pr

(∑
k≤i Lk < vol(U0)/2

)
< 1/2, for i ≥ 6/φ.

Part (c) then follows by observing that if vol(Ui) > vol(U0)/2 then
∑

k≤i Lk ≤ vol(U0)− vol(Ui) <
vol(U0)/2.

Using the bounds of Lemma 3.2, Lemma 3.1 follows easily:

Proof of Lemma 3.1. By Lemma 3.2(a), if vol(Si) < ∆ then, with probability 1/2, it takes
at most d4∆/dφ vol(Si)ee ≤ 5∆/dφ vol(Si)e additional rounds until the total volume of informed
vertices becomes at least ∆. Thus, if vol(S0) < ∆, the probability that vol(St) < ∆ for t =
2β lnn · (5∆/dφ vol(S0)e) is at most (1− 1/2)2β lnn ≤ e−2β lnn/2 = n−β.

By Lemma 3.2(b), if ∆ ≤ vol(Si) ≤ |E| then, with probability 1/2, it takes at most d4/φe rounds
until the total volume of informed vertices is increased to at least min{2 vol(Si), |E| + 1}. Now,
divide the execution of the algorithm into phases of d4/φe rounds each, starting from the end of
the first round i with vol(Si) ≥ ∆. A phase is successful if the total volume of informed vertices
at the end of the phase is at least min{2 vol(S), |E| + 1}, where S is the set of informed vertices
at the beginning of the phase. (Note that if vol(S) ≥ |E|+ 1 then the phase is always successful.)
Then, for any k, the probability that the k-th phase is successful is at least 1/2, regardless of the
outcome of the previous k − 1 phases. From this (and a simple coupling argument), the number
of successful phases among the first k phases is (stochastically) greater or equal to the binomial
random variable B(k, 1/2). So, by Chernoff bounds, the probability that fewer than m = log |E| of
the first k = (2β + 4)m phases are successful is at most equal to

Pr(B(k, 1/2) < m) = Pr(k/2−B(k, 1/2) > k/2−m) ≤ e−2(k/2−m)2/k ≤ e−βm = O(n−β),

since |E| ≥ n − 1. And since at most m successful phases are required until the total volume of
informed vertices exceeds |E|, it follows that with probability 1 − O(n−β) the number of rounds
required is at most kd4/φe = (2β + 4) log(|E|)d4/φe ≤ (2β + 4)(2 log n)(5/φ).

Finally, by Lemma 3.2(c), if vol(Si) > |E| then, with probability 1/2, it takes at most d6/φe
rounds until the total volume of uninformed vertices is halved. By similar reasoning as before, we
can show that once the volume of informed vertices has exceeded |E|, then (2β + 4)(2 log n)(7/φ)
rounds suffice to inform all nodes with probability 1−O(nβ).

Combing all the above and applying the union bound, we obtain that with probability 1−O(nβ)
all vertices get informed within 50(β + 2) log n

(
φ−1 + ∆/dφ vol(S0)e

)
rounds.

3.2. Conditions for Rumor Spreading in O(φ−1 logn) Rounds

3.2.1. Derivation of Theorem 1.2

Lemma 3.1 implies that if ∆/dφ vol(S0)e = O(1/φ), the broadcast time is O(φ−1 log n) rounds
w.h.p. Theorem 1.2(b) follows then directly, since ∆/dφ vol(S0)e ≤ ∆, for any S0. Also, the
following weaker version of Theorem 1.2(a) is immediate, because if the degree of the start vertex
is Ω(∆) then vol(S0) = Ω(∆) and ∆/dφ vol(S0)e ≤ ∆/φ vol(S0) = O(1/φ).

Corollary 3.4. For any start vertex of degree Ω(∆), the broadcast time of the PULL algorithm is
O(φ−1 log n) rounds w.h.p.

This result is weaker than Theorem 1.2(a) because φ + δ−1 = O(1). However, it will suffice for
the purposes of proving Theorem 1.1 (in Section 5).
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Next we describe the proof of Theorem 1.2(a). Recall that Lemma 3.1, on which the proof of
Corollary 3.4 was based, assumes that S0 may be any subset of vertices. Under this assumption,
the size of cut(S0, U0) can be as small as dφ vol(S0)e. However, if S0 consists of a single vertex,
then | cut(S0, U0)| = vol(S0), which can be significantly larger than dφ vol(S0)e. This observation
is a key ingredient in our proof.

We begin by observing that if S0 consists of a single vertex, then the size of cut(Si, Ui) remains
Ω(vol(S0)) until vol(Si) increases to at least Ω(δ vol(S0)). More precisely, suppose that S0 = {v};
so, vol(S0) = | cut(S0, U0)| = d(v). Then, | cut(Si, Ui)| ≥ vol(S0)− |Si|+ 1, because all the vol(S0)
edges of the start vertex v are initially incident to uniformed vertices; and each new vertex that
gets informed is incident to at most one of those edges. Also, clearly, vol(Si) ≥ |Si| · δ, thus,
|Si| ≤ vol(Si)/δ. Therefore, | cut(Si, Ui)| ≥ vol(S0)− vol(Si)/δ. So,

Observation 3.5. If |S0| = 1 and vol(Si) ≤ δ vol(S0)/2 then | cut(Si, Ui)| ≥ vol(S0)/2.

We use this result in the proof of the next lemma, which is similar to Lemma 3.2(a).

Lemma 3.6. Let D = min{∆, δ vol(S0)/2}. If |S0| = 1 then Pr
(

vol(Sj+i) ≥ D
∣∣Sj) ≥ 1/2, for

i ≥ 8∆/ vol(S0).

Proof. Fix the set Sj arbitrarily. As in the proof of Lemma 3.2(a), we consider a sequence
L1, L2, . . . of random variables, where Li is as follows:

• If vol(Sj+i−1) ≤ D, let Ei be an arbitrary subset of cut(Sj+i−1, Uj+i−1) of sizeM = dvol(S0)/2e,
fixed before round j + i. (By Observation 3.5, | cut(Sj+i−1, Uj+i−1)| ≥ M .) Then Li is the
total volume of the vertices informed in round j + i through edges in Ei.

• If vol(Sj+i−1) > D, then Li = M .

Similarly to Claim 3.3, E[
∑

k≤i Lk] = iM and Var(
∑

k≤i Lk) ≤ iM∆. And, similarly to (3.1),

Pr
(∑

k≤i Lk < D
)
≤ iM∆/(iM −D)2 < 1/2, for i ≥ 2(∆ + D)/M . Since vol(Sj+i) < D implies∑

k≤i Lk < D, and since 2(∆ +D)/M ≤ 8∆/ vol(S0), the lemma follows.

We can now derive Theorem 1.2(a) similarly to Lemma 3.1.

Proof of Theorem 1.2(a). Let d = vol(S0) be the degree of the start vertex. By Lemma 3.6,
the probability that the total volume of informed vertices is smaller than D = min{∆, δd/2} after
c lnnd8∆/de rounds is at most (1− 1/2)c lnn ≤ n−c/2. The above number of rounds is O(φ−1 lnn),
since d = Ω(∆(φ+δ−1)) = Ω(φ∆). Thus, w.h.p., it takes O(φ−1 lnn) rounds until the total volume
of informed vertices becomes at least D.

Since d = Ω(∆(φ + δ−1)) = Ω(∆/δ), we have D = Ω(∆). Thus, by Lemma 3.1, once the total
volume of informed vertices is at least D, it takes O

(
log n(φ−1+∆/dφDe)

)
= O(φ−1 lnn) additional

rounds until all vertices get informed w.h.p.

The following direct corollary of Theorem 1.2(a) gives a condition for rumor spreading inO(φ−1 log n)
rounds for any start vertex.

Corollary 3.7. If δ = Ω(∆(φ + δ−1)), or, equivalently, δ = Ω(φ∆ +
√

∆) then, for any start
vertex, the broadcast time of the PULL algorithm is O(φ−1 log n) rounds w.h.p.
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3.2.2. Optimality of Theorem 1.2

The conditions described in Theorem 1.2, that the degree of the start vertex be d = Ω(∆(φ+ δ−1))
or the maximum degree be ∆ = O(1/φ), are optimal in the following sense.

Theorem 3.8. For any φ, δ,∆, d with δ ≤ d = o(∆(φ + δ−1)) and ∆ = ω(1/φ), there exists
an infinite sequence of graphs G1, G2, . . . such that Gn has Θ(n) vertices, conductance Θ(φ), and
maximum (minimum) degree Θ(∆) (Θ(δ)), and it contains a start vertex of degree Θ(d) such that
ω(φ−1 log n) rounds of the PULL algorithm are required to inform all vertices w.h.p.

Proof. First we consider the case of d = o(φ∆). Construct the following graph: Take a ∆-regular
graph R∆ on n vertices with edge expansion ξ = Θ(∆). Such a graph exists since the edge expansion
of a random ∆-regular graph is Θ(∆) w.h.p. [2]. The conductance of R∆ is obviously ξ/∆ = Θ(1).
Add a vertex s of degree d and a vertex vmin of degree δ, choosing their neighbors arbitrarily among
the vertices of R∆. Vertex s will be the start vertex, while vmin is added just to have minimum
degree δ. Next we add a component to achieve conductance φ: Take the complete graph on ∆
vertices K∆. Let A be an arbitrary subset of the vertices of R∆ of size |A| = bφ∆c. (It is |A| > 0
since 1 ≤ d = o(φ∆)). Draw edges between each vertex of K∆ and each vertex in A. It is not
hard to see that the resulting graph has the desired number of vertices, maximum and minimum
degrees, and conductance. Also, since d = o(φ∆), the probability that no neighbor of s receives
the rumor from s in k = bφ−1 lnn · (2/3)

√
φ∆/dc = ω(φ−1 lnn) rounds is at least

(1− 1/∆)kd ≥ e−3kd/2∆ ≥ e− lnn
√
d/φ∆ = n−o(1),

where for the first inequality we used the fact that 1 − x ≥ e−3x/2, for 0 ≤ x ≤ 1/2. So, with
probability n−o(1), no vertex learns a rumor started at s in O(φ−1 lnn) rounds.

Next we consider the complementary case, d = Ω(φ∆). Since d = o(∆(φ + δ−1)), we have
φ = o(1/δ) and d = o(∆/δ). Consider the following graph: Take the graph we constructed before
and remove vertex s together with its incident edges. Take also dd/δe copies of Kδ. Add a vertex s′

of degree Θ(d) with neighbors the vertices of the dd/δe δ-cliques, plus the elements of an arbitrary
subset B of the vertices of R∆, with |B| = dφdδe. (It is |B| = O(d) since φ = o(1/δ) as we
saw above.) It is not hard to see that the resulting graph has the desired number of vertices,
maximum and minimum degrees, and conductance. Also, with probability n−o(1), no vertex in
B learns a rumor started at s′ in O(φ−1 lnn) rounds: Since d = o(∆/δ) and ∆ = ω(1/φ), we
have |B| ≤ φdδ + 1 = o(φ∆) + 1 = o(φ∆). Thus, the probability that no neighbor of s′ in B
receives the rumor from s′ in k = bφ−1 lnn · (2/3)

√
φ∆/|B|c = ω(φ−1 lnn) rounds is at least

(1− 1/∆)k|B| ≥ e−3k|B|/2∆ ≥ e− lnn
√
|B|/φ∆ = n−o(1).

3.2.3. Bounded Ratio of the Degrees of Adjacent Vertices

It was shown in [6] that if the ratio of the degrees of any two adjacent vertices is bounded by a
constant, then the broadcast time of the PULL algorithm is O

(
(log φ−1)2φ−1 log n

)
rounds w.h.p.,

for any start vertex. By similar reasoning as in the proofs of Lemma 3.1 and Theorem 1.2(a), we
can show that, in fact, the above condition yields a broadcast time of O(φ−1 log n) rounds. The
proof can be found in the Appendix.

Theorem 3.9. If, for every edge {v, u}, d(v)/d(u) = Θ(1) then, the broadcast time of the PULL
algorithm is O(φ−1 log n) rounds w.h.p., for any start vertex.
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4. PUSH Algorithm

The analysis of the PUSH algorithm can be reduced to that of the PULL algorithm, by exploiting
a symmetry between the two algorithms, described in the following result. This result is similar to
Lemma 3 in [6]. Its proof can be found in the Appendix.

Lemma 4.1. Let EPUSH(v, u, t) denote the event that the PUSH algorithm spreads to vertex u a
rumor started at vertex v in at most t rounds; and let EPULL(v, u, t) be defined similarly. Then,
Pr(EPUSH(v, u, t)) = Pr(EPULL(u, v, t)).

Suppose that for any vertex u, the PULL algorithm distributes a rumor started at u to all vertices
in at most t rounds with probability at least 1 − q. Then, by Lemma 4.1, for any vertex v, the
PUSH algorithm spreads to a given u a rumor started at v in at most t rounds with probability at
least 1−q; and, by the union bound, if q ≤ 1/(n−1), the rumor started at v is spread to all vertices
in at most t rounds with probability at least 1− (n− 1)q. Thus, if the broadcast time of the PULL
algorithm is O(φ−1 log n) rounds w.h.p. for any start vertex, then the same is true for the PUSH
algorithm, as well. Hence, the conditions described in Section 3 guaranteing a broadcast time of
O(φ−1 log n) rounds w.h.p. for any start vertex, apply to the PUSH algorithm as well; specifically,
Theorem 1.2(b), Corollary 3.7, and Theorem 3.9. Finally, Theorem 3.8 is also true for the PUSH
algorithm for d = δ. (For, otherwise, by the same reasoning as above, with the roles of the PUSH
and the PULL algorithms switched, we would contradict Theorem 3.8.)

5. PUSH-PULL Algorithm

We prove Theorem 1.1, which gives a bound of O(φ−1 log n) rounds w.h.p. on the broadcast time
of the PUSH-PULL algorithm, and argue that this bound is tight.

Proof of Theorem 1.1. Fix a vertex v and let vmax be a vertex of maximum degree. By Corol-
lary 3.4, we have that: (A) The PULL algorithm distributes a rumor from vmax to all other vertices
(and thus to v) in O(φ−1 log n) rounds w.h.p. Combining this with Lemma 4.1 yields: (B) The
PUSH algorithm spreads to vmax a rumor started at v in O(φ−1 log n) rounds w.h.p. The theorem
now follows easily: Statement (B) implies (a fortiori) that the PUSH-PULL algorithm spreads to
vmax a rumor started at v in O(φ−1 log n) rounds w.h.p.; and, once vmax is informed, Statement (A)
implies that from vmax the PUSH-PULL algorithm spreads the rumor to all vertices in O(φ−1 log n)
additional rounds w.h.p.

The following result was shown in [6].

Lemma 5.1. For any φ ≥ 1/n1−ε, for a fixed ε > 0, there exists an infinite sequence of graphs
G1, G2, . . . such that Gn has Θ(n) vertices, conductance Θ(φ), and diameter Ω(φ−1 log n).

From this, it is immediate that rumor spreading requires Ω(φ−1 log n) rounds, if φ ≥ 1/n1−ε.
Thus, the bound of Theorem 1.1 is asymptotically tight for φ ≥ 1/n1−ε. The next result shows this
is in fact true for all φ = Ω(1/n).

Lemma 5.2. For any φ with 2/(n + 2) ≤ φ ≤ 1/2, there exists an infinite sequence of graphs
G1, G2, . . . such that Gn has n vertices and conductance Θ(φ), and, for any start vertex, Ω(φ−1 log n)
rounds of the PUSH-PULL algorithm are required to inform all vertices w.h.p.
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Proof. Consider the n-vertex graph obtained by taking two stars, one with dφ−1e vertices and
another with n − dφ−1e vertices, and connecting their centers with an edge. It is easy to see that
the resulting graph has conductance Θ(φ). We now show that for any start vertex and any constant
c > 0, at least c lnn/3φ rounds are required to inform all vertices with probability 1− n−c. Let v
and v′ be the centers of the two stars, where v is the center of the star containing the start vertex.
Let j be the round when v gets informed. (If v is the start vertex then j = 0.) The probability
that v′ is not informed by the end of round j + i, which happens if the rumor is not transmitted
from v to v′ via a PUSH or PULL operation in any of the rounds j + 1, . . . , j + i, is clearly(

1− 1/dφ−1e
)i(

1− 1/(n− dφ−1e)
)i ≥ (1− 1/dφ−1e

)2i ≥ (1− φ)2i ≥ e−3iφ,

where for the first inequality we used the fact that φ ≥ 2/(n + 2), that for the last the fact that
1 − x ≥ e−3x/2, for 0 ≤ x ≤ 1/2. For i < c lnn/3φ, it is e−3iφ > n−c. Thus, at least c lnn/3φ
rounds are required to inform all vertices with probability 1− n−c.
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[2] Béla Bollobás. The isoperimetric number of random regular graphs. Eur. J. Comb., 9(3):241–
244, 1988.

[3] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Gossip algorithms: de-
sign, analysis and applications. In Proc. 24th IEEE INFOCOM, pages 1653–1664, 2005.

[4] Keren Censor-Hillel and Hadas Shachnai. Partial information spreading with application to
distributed maximum coverage. In Proc. 29th ACM Symp. on Principles of Distributed Com-
puting (PODC), pages 161–170, 2010.

[5] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumor spreading in social
networks. In Proc. 36th Intl. Colloq. on Automata, Languages and Programming (ICALP),
pages 375–386, 2009.

[6] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Almost tight bounds for rumour
spreading with conductance. In Proc. 42nd ACM Symp. on Theory of Computing (STOC),
pages 399–408, 2010.

[7] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumour spreading and graph
conductance. In Proc. 21st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1657–
1663, 2010.

[8] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Stur-
gis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance.
In Proc. 6th ACM Symp. on Principles of Distributed Computing (PODC), pages 1–12, 1987.

[9] Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. Quasirandom rumor spreading. In
Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 773–781, 2008.

[10] Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. Quasirandom rumor spreading:
Expanders, push vs. pull, and robustness. In Proc. 36th Intl. Colloq. on Automata, Languages
and Programming (ICALP), pages 366–377, 2009.

12
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A. Appendix

A.1. Proof of Theorem 3.9

We begin by showing the following result, which is similar to Lemmata 3.2(a) and 3.6.

Lemma A.1. Suppose that for any edge {v, u}, d(v)/d(u) ∈ [1/α, α]. If vol(S0) < ∆ then
Pr
(

vol(Si) ≥ min{2 vol(S0), ∆}
)
≥ 1/2, for i ≥ 4α/φ.

Proof. We consider a sequence L1, L2, . . . of random variables, where Li is defined as follows:

1. If vol(Si−1) < ∆, we let Ei be an arbitrary subset of cut(Si−1, Ui−1) consisting of M =
dφ vol(S0)e edges. Then Li is the total volume of the vertices that get informed in round i as
a result of the rumor being transmitted through edges in Ei.

2. If vol(Si−1) ≥ ∆, then Li = M .

Similarly to Claim 3.3, we can show that E[
∑

k≤i Lk] = iM and Var(
∑

k≤i Lk) ≤ iM(α vol(S0)).
To obtain the latter result we use the fact that if vol(Sj) < 2 vol(S0), then every vertex v ∈ Sj has
degree at most vol(S0), and thus, every neighbor of v in Uj has degree at most α vol(S0). Next,
similarly to (3.1), we have

Pr
(∑
k≤i

Lk < vol(S0)
)
≤ iMα vol(S0)

(iM − vol(S0))2
≤ iMα vol(S0)

(iM − α vol(S0))2
< 1/2,

for i ≥ 4α vol(S0)/M , and thus, for i ≥ 4α/φ. Finally, since vol(Si) < min{2 vol(S0), ∆} implies∑
k≤i Lk ≤ vol(Si)− vol(S0) < vol(S0), the lemma follows.

Theorem 3.9 follows now easily: By Lemma A.1 and Chernoff bounds, it takes w.h.p. O(φ−1 log n)
rounds until the total volume of informed vertices becomes at least ∆. And, by Lemma 3.1, it takes
O(φ−1 lnn) additional rounds until all vertices get informed w.h.p.

A.2. Proof of Lemma 4.1

Consider the space of all possible executions of the first t rounds of the PUSH or the PULL
algorithm; each executions specifies the vertex that v calls in round i, for every vertex v and
i = 1, . . . , t. We call these executions t-executions. The probability that a given t-execution occurs
is the same for all t-executions and it is equal to

∏
v∈V (d(v))−t. For A ∈ {PUSH, PULL}, let

ΩA(v, u, t) be the subset of t-executions that constitute the event EA(v, u, t). Then, Pr(EA(v, u, t)) =
|ΩA(v, u, t)| ·

∏
v∈V (d(v))−t. Thus, to complete the proof it suffices to show that |ΩPUSH(v, u, t)| =

|ΩPULL(u, v, t)|.
For a t-execution ω let ω′ be the “inverse” t-execution consisting of the same sequence of rounds

as ω but executed in reverse order; i.e., if vertex v calls vertex u in round i in ω, then v calls
u in round t − i in ω′. We now prove that ω ∈ ΩPUSH(v, u, t) if and only if ω′ ∈ ΩPULL(u, v, t).
From this, and the fact that distinct t-executions have distinct inverse executions, it follows that
|ΩPUSH(v, u, t)| = |ΩPULL(u, v, t)|.

A PUSH-path for a t-execution is a sequence of vertices u0, u1, . . . , ut such that, for any two
consecutive vertices ui−1, ui, either (i) ui−1 = ui, or (ii) ui−1 calls ui in round i. A PULL-path
is defined similarly except that condition (ii) now states that ui calls ui−1 in round i. Clearly,
for a given t-execution, the PUSH (PULL) algorithm spreads a rumor from v to u if and only if
there exists a PUSH-path (PULL-path) from v to u. Also, u0 = v, u1, . . . , ut = u is a PUSH-
path for ω if and only if ut, ut−1, . . . , u0 is a PULL-path for ω′. Combining these two facts yields
ω ∈ ΩPUSH(v, u, t) if and only if ω′ ∈ ΩPULL(u, v, t).
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