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ABSTRACT
We study the communication complexity of rumor spreading
in the random phone-call model. Suppose n players commu-
nicate in parallel rounds, where in each round every player
calls a randomly selected communication partner. A player
u is allowed to exchange messages during a round only with
the player that u called, and with all the players that u re-
ceived calls from, in that round. In every round, a (possibly
empty) set of rumors to be distributed among all players
is generated, and each of the rumors is initially placed in
a subset of the players. Karp et. al [16] showed that no
rumor-spreading algorithm that spreads a rumor to all play-
ers with constant probability can be both time-optimal, tak-
ing O(lgn) rounds, and message-optimal, using O(n) mes-
sages per rumor. For address-oblivious algorithms, in par-
ticular, they showed that Ω(n lg lg n) messages per rumor
are required, and they described an algorithm that matches
this bound and takes O(lgn) rounds.

We investigate the number of communication bits required
for rumor spreading. On the lower-bound side, we establish
that any address-oblivious algorithm taking O(lgn) rounds
requires Ω(n(b+lg lg n)) communication bits to distribute a
rumor of size b bits. On the upper-bound side, we propose
an address-oblivious algorithm that takes O(lgn) rounds
and uses O(n(b+ lg lg n lg b)) bits. These results show that,
unlike the case for the message complexity, optimality in
terms of both the running time and the bit communication
complexity is attainable, except for very small rumor sizes
b � lg lg n lg lg lg n.

Categories and Subject Descriptors
F.2.2 [Analysis Of Algorithms And Problem Com-
plexity]: Nonnumerical Algorithms and Problems; E.4 [Data]:
Coding And Information Theory—Data compaction and com-
pression
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1. INTRODUCTION
We study the problem of information spreading in a dis-

tributed environment where information is exchanged using
randomized communication. Suppose n players communi-
cate in parallel rounds, where in each round every player
calls a randomly selected communication partner. Each
player u is allowed to exchange messages during a round
only with the player that u called, and with all the (zero or
more) players that called u, in that round. This communi-
cation model is often referred to as the random phone-call
model [16]. In every round, zero or more pieces of informa-
tion, called rumors, are generated, and each rumor is placed
to one or more players, the sources of the rumor. The goal
is that each rumor be distributed among all players within a
small number of rounds from the round that the rumor was
generated, and by using a small amount of communication
between players.1

A motivating example for this problem is the maintenance
of replicated databases, for instance, on name servers in a
large corporate network [4]. In such a system, updates are
injected at various nodes and at various times, and these
updates must be propagated to all nodes in the network.
It is desirable that all databases converge to the same con-
tent quickly, and with little communication overhead. The
motivation for using a randomized communication model is
that such a scheme is simple, scalable, and naturally fault
tolerant [4, 11].

A simple rumor-spreading algorithm for the random phone-
call model is the so-called push algorithm. A rumor r is
spread as follows. In each round, starting from the round
in which r is generated, every informed player u (i.e., every
player who knows r) forwards r to the player v that u calls in
that round; we say that u pushes r to v. The distribution of

1A variant of this problem that is often considered in the
literature is when each rumor has exactly one source. As
we discuss later, with one source per rumor the number of
rumors generated per round is essentially bounded by n,
since all rumors generated at the same round by the same
source can be grouped into a single large rumor; this trick
does not work when a rumor can have more than one sources.



r is terminated after Θ(lgn) rounds, at which time all play-
ers know r with high probability [13, 17]. The runtime of
the push algorithm is asymptotically optimal for the random
phone-call model, as we will see later. However, the algo-
rithm suffers from high communication overhead, perform-
ing Θ(n lgn) transmissions of the rumor. Intuitively, the
number of informed players roughly doubles in each round,
until a constant fraction of the players is informed; and in
each subsequent round, the number of non-informed players
halves. Thus, in the last Θ(lgn) rounds Θ(n) players push
the rumor in each round.

The push-pull rumor-spreading algorithm, proposed in [16],
has asymptotically optimal runtime as well, but it has a
smaller communication overhead than the push algorithm.
A rumor r is distributed as follows. In each round from the
round when r is generated, every informed player u pushes
r to the player that u calls in this round, as in the push
algorithm, and, in addition, u forwards r to every player v
that calls u in this round; we say that r is pulled from u
to v. In the basic version of this algorithm, where a rumor
is assumed to have a single source, the distribution of r is
terminated after lg3 n + Θ(lg lgn) rounds. By that time,
with high probability, all players know r, and r has been
transmitted Θ(n lg lg n) times. The intuition is that the
push and pull transmissions roughly triple the number of in-
formed player in each round until a constant fraction of the
players is informed, and, from this point on, the pull trans-
missions shrink the fraction of non-informed players from
st−1 to st = s2t−1, in each round t. Thus, only Θ(lg lg n)
additional rounds are required after a constant fraction of
players is informed. Note that when a rumor may have more
than one sources, the message complexity per rumor can be
as bad as Θ(n lgn)—e.g., when the rumor has Θ(n) sources.
A variant of the basic push-pull algorithm, also proposed
in [16], uses a more robust termination criterion that de-
tects when a large fraction of players is informed. This al-
gorithm takes O(lgn) rounds and uses Θ(n lg lgn) messages
per rumor, regardless of the number of sources per rumor.

On the lower-bound side, it is known that no decentralized
rumor-spreading algorithm for the random phone-call model
taking O(lgn) rounds and using O(n) messages per rumor
can guarantee that a rumor is spread to all players with con-
stant probability [16]. In other words, it is not possible to
achieve simultaneously optimality both in terms of the run-
ning time and the message complexity in the random phone-
call model.2 Moreover, for the case of address-oblivious al-
gorithm, such as the push and push-pull algorithms above,
Ω(n lg lg n) messages are required, regardless of the number
of rounds [16]. So, the push-pull protocol is asymptotically
optimal among the address-oblivious algorithm in terms of
time and message complexity.

In this paper, we investigate the communication complex-
ity of rumor spreading in the random phone-call model, mea-
sured in terms of the number of bits exchanged between
players. The standard approach to measuring the commu-
nication complexity has been in terms of messages, counting

2Note that if the players knew the complete communication
graph and the set of informed players in each round then
Θ(lg n) rounds and n − 1 messages would be required to
distribute a rumor started by a single source. The Ω(lg n)
time bound follows by a simple reachability argument based
on the fact that node degrees in the communication graphs
are sharply concentrated around their mean value 2.

one message for every quadruplet 〈r, t, u, v〉 such that infor-
mation regarding rumor r is exchanged in round t between
players u and v. In the rumor-spreading algorithms that
have been proposed each such exchange of information typ-
ically involves the actual rumor r, plus the values of some
small counters, such as the age of the rumor. Arguably, for
some applications the volume of information exchanged is
at least as relevant as the number of messages, and trying
to minimize the number of bits exchanged, in addition to
the number of messages, is desirable. This is especially true
when a large number of rumors are spread simultaneously,
or when rumors are large.

1.1 Our results
As we saw above, no rumor-spreading algorithm in the

random phone-call model can be both time-optimal, taking
O(lgn) rounds, and message-optimal, using O(n) messages
per rumor. We show that the situation is different when bit
communication complexity is considered in place of message
complexity. Specifically, we describe an address-oblivious
algorithm that uses O(lg n) rounds and O(n(b+ lg lgn lg b))
bits of communication to distribute a b-bit rumor among
all players with high probability. Also, O(n lg lg n) mes-
sages per rumor are exchanged. These guarantees hold even
when the rumors are generated by an adversary. On the
lower-bound side, we establish that any address-oblivious
algorithm taking O(lgn) rounds requires Ω(n(b + lg lg n))
communication bits to spread a b-bits rumor to all players
with constant probability. These two results imply that,
unlike the case for the message complexity, optimality in
terms of both the running time and the bit communication
complexity is attainable, except for very small rumor sizes
b � lg lg n lg lg lg n.

Discussion
Our rumor-spreading algorithm can be described as a push-
pull algorithm with “concise” feedback. Note that the origi-
nal push-pull algorithms proposed in [16] require O(nb lg lg n)
communication bits per b-bit rumor.3 So, our algorithm
saves a lg lgn factor for large b, and a b/ lg lg b factor for
small b.

Informally, the algorithm works as follows. When a player
learns a new rumor r, she pushes r in all subsequent rounds,
until the 3rd time she pushes the rumor to some player who
already knows it (when a rumor is pushed, the recipient
informs the sender whether she knew the rumor). These
push transmissions guarantee that a constant fraction of the
players is informed within roughly lgn rounds, and that r
is pushed no more than 4n times. Pull transmissions take
place only every lg n/ lg lgn rounds—there are Θ(lg lgn) pull
rounds during the lifetime of r. Say u calls v in such a round.
Ideally, we would like the set of rumors pulled from v to u to
consist of exactly those rumors that v knows and u does not
know; and this should be achieved without communicating
more than roughly nb/ lg lgn additional bits per b-bit rumor,
per pull round. This is a non trivial task, since players do not
know the number or size of the rumors currently circulating;
an unbounded number of rumors can be generated in each
round, and any b-bit string can be a valid rumor, for any b.
Also, the fact that a rumor may have more than one sources

3More precisely, for the basic version this complexity holds
for one source per rumor, and for the other version the exact
complexity is O(n(b+ lg lg lg n) lg lg n) bits.



precludes “grouping” into a big rumor all the rumors started
at the same time by the same player, which would effectively
bound by n the number of rumors generated per round. For
these reasons simple solutions such as the use of fingerprints
to uniquely describe a rumor with fewer bits do not work. At
the core of our rumor-spreading algorithm is a simple data
structure for approximate set membership, used to encode
the set of rumors that a player knows using roughly lg b bits
per b-bit rumor. This data structure is deterministic, and
allows for some false positives. When u calls v in a pull
round, u sends to v this data structure of the recent rumors
that u knows; and based on that, v decides which rumors to
transmit to u.

For the lower bound, note that an Ω(n lg lg n) bound on
the number of bits communicated per rumor is immediate
from the same bound of [16] on the number of messages. So,
we just have to show an Ω(nb) bound, which seems like a
trivial information-theory result. However, a more careful
look reveals that this is not the case: Information may be
conveyed not just by the content of the messages exchanged,
but also by the round in which they are exchanged. Even
sending no messages through an established connection also
conveys information. In fact, the Ω(nb) bound no longer
holds if we can have more than O(lgn) rounds. The follow-
ing (impractical) protocol spreads a b-bit rumor using only
O(n lg n lg b) bits, within O(2b lg n) rounds. We modify the
push algorithm such that for each rumor r, the size b of r is
pushed instead of r, and also transmissions take place only
in rounds t that are equal to r modulo 2b (where r is viewed
as a binary number). So, within O(2b lgn) rounds, every
player learns b and, thus, r, which is the last b bits of the
round in which the player was informed.

We prove the Ω(nb) bound in two steps. We first estab-
lish the bound for large rumors, using essentially a count-
ing argument. Then we reduce the case of smaller rumors
into the previous case, by showing that given an algorithm
that spreads small rumors using o(nb) bits, we can devise
an algorithm that spreads large rumors using o(nb) bits as
well. Error-correcting codes are used in this construction.
We note that the Ω(nb) bound holds also for non address-
oblivious algorithms.

1.2 Related work
There is a large literature on deterministic rumor spread-

ing and related information dissemination problems in vari-
ous communication models. For an overview of this volume
of work see [12, 14, 15]. The problem of randomized rumor
spreading was introduced in [13], where the runtime of the
push algorithm in the random phone-call model was ana-
lyzed. This result was later refined in [17]. Randomized
rumor spreading in the setting where players correspond to
nodes in a graph (other than the complete graph), and in
each round a player chooses its communication partner at
random among its graph neighbors, was first studied in [11].
There, bounds on the runtime of the push algorithm in ar-
bitrary graphs were derived, and the runtime of the same
algorithm in the hypercube and in random graphs was an-
alyzed. The runtime and message complexity of random-
ized rumor spreading in random graphs were also studied
in [9, 10], where a push-pull algorithm was analyzed, as well
as two variations of it where players can remember their re-
cent connections, or they initiate multiple calls per round.
Push-pull algorithms have also been proposed and analyzed

for random d-regular graphs [1], and for scale-free graphs [8].
In [5], a quasirandom analogue to the random phone-call
model was introduced. In this model, each player has a
cyclic list of all the players (or of all its neighbors, in case
of rumor spreading in a graph). A player initially calls a
player at a random position in her list, but from then on
she calls her neighbors in the order of the list. It was shown
that the push algorithm in the quasirandom model performs
asymptotically at least as well as in the random model, for
all the cases of graphs studied in [11], even when the lists
are determined by an adversary. Rumor spreading in the
quasirandom model was further explored in [6].

2. MODEL
In the random phone-call model [16], n players commu-

nicate in parallel rounds, in each of which every player u
chooses a player v independently and uniformly at random,
and u calls v. In a given round, u can only communicate
with the player that u called, and with the players that
called u, in that round. Communication inside each round
is assumed to proceed in parallel, that is, any information
received in a round cannot be forwarded to another player
in the same round. In each call, communication between
the caller and the receiver proceeds sequentially: one player
sends a message, then the other sends a message back, and
so on. No restrictions are imposed on the type or the size of
information exchanged.

In each round, an adversary generates a (possibly empty)
set of rumors, and places each rumor r to a non-empty sub-
set of players, the sources of r. A rumor is just a binary
string, and any binary string of any size represents a possi-
ble rumor; so, there are exactly 2b distinct rumors of size b.
No limit is imposed on the number of rumors generated in
a round. However, we assume that rumors generated in two
different rounds t1, t2 with |t1 − t2| = O(lgn) are distinct
(this assumption is made to simplify the exposition of our
algorithm, and can be relaxed). If player u calls player v and
rumor r is transmitted from u to v we say that r is pushed,
while if r is transmitted from v to u we say that r is pulled.

We measure the bit communication complexity of rumor
spreading, that is, the total number of bits exchanged be-
tween players. Specifically, in our rumor-spreading algo-
rithm, each message exchanged is either related to a single
rumor, or to a set of rumors of the same size. In the latter
case, to count the bits communicated per rumor we divide
the size of the message by the size of the set of rumors. For
the lower bound, we assume that a set of b-bit rumors are
started by a single source at a round t, and that no other
rumors are generated. To count the bits communicated per
rumor, we count the total number of bits exchanged be-
tween players, from round t until the distribution of rumors
finishes, and then divide by the number of rumors.

We focus on the class of address-oblivious algorithms, that
is, when player u calls player v, u and v do not know the id
of each other. Of course, they can communicate their ids,
but this exchange of information is also counted in the bit
communication complexity.

3. UPPER BOUND AND OUR RUMOR-
SPREADING ALGORITHM

We establish the following upper bound on the perfor-
mance of rumor spreading in the random phone-call model.



Theorem 3.1. There is some address-oblivious algorithm
guaranteeing that, with high probability, any rumor is dis-
tributed to all players within O(lgn) rounds using O(nb +
n lg lg n lg b) bits of communication, where b is the rumor’s
size.

In Section 3.1, we present a rumor-spreading algorithm,
and in Section 3.2, we prove that this algorithm meets the
performance guarantees of Theorem 3.1.

3.1 Algorithm description
In this algorithm, the distribution of a rumor is not af-

fected by rumors of different size. So, in our description we
focus only on rumors of the same size b. Also, very small
rumors are treated slightly differently, as we explain at the
end of this section.

The algorithm is a push-pull algorithm with feedback.
Consider a b-bit rumor r starting from a set of players S
in round tstart. The distribution of r continues until round
tend = tstart + 6 lgn − 1, after which the rumor is consid-
ered cold. Whenever r is pushed or pulled, its age, that is,
the difference between the current round and tstart, is also
communicated—O(lg lgn) bits are required for that. Sup-
pose that a player u learns r in round t; if u ∈ S we say
that u learns r in round t = tstart − 1. From the next round
t+1 on, u pushes r in every round until the 3rd time that u
has pushed r to a player who already knows the rumor from
a previous round, or until the round tend is reached. After
that time, u does not push r again. A player can tell if in
some round she pushed a rumor to someone who already
knew the rumor, because in every push transmission the re-
cipient sends back a (constant-size) feedback containing that
information.4

Pull transmissions occur only every lg n/ lg lg n rounds,
on rounds that are multiples of lgn/ lg lg n; these rounds
are called pull rounds. (During pull rounds, push transmis-
sions take place normally, as in regular rounds.) Suppose
that player u calls player v in pull round t. Player u then
sends to v a digest of the rumors that u has learned recently,
and, based on this digest, v decides which rumors should be
pulled to u. Next we describe the details of how the digest
is created, and which rumors are pulled.

Digest
The digest of u in round t is built from all the non-cold
rumors that u knows at the beginning of round t. Let Rb,i

be the subset of these rumors consisting of the rumors of
size b that were generated during the i-th previous epoch,
where an epoch is the time interval from the beginning of a
pull round until the beginning of the next pull round. The
digest of u consists of one component Db,i for each non-
empty set Rb,i. Suppose that Rb,i = {r1, . . . , rκ}, for some
i, κ ≥ 1. The elements of Rb,i are indexed such that if the
rk are interpreted as a binary numbers then r1 < · · · < rκ.
The digest Db,i for Rb,i consists of two parts:

4The idea that a player stops pushing a rumor after a fixed
number of unnecessary push transmissions was also sug-
gested in [4]. An alternative stopping criterion that would
also work is that a player stops pushing a rumor after a
constant number of push transmissions (regardless of their
outcome). The analysis for this approach is similar to that
of Theorem 4.1.3 (Stage A) in [11].

1. the list 〈b, i, p1, p2, . . . , pκ−1〉, where pk, for 1 ≤ k < κ,
is the position of the leftmost bit (most significant bit)
where rk and rk+1 differ; and

2. the subset {rj� : j = 1, . . . , 	κ/�
} of Rb,i containing
every �-th rumor, where � = lgn.

Note that the size of Db,i is O(lg lg lgn+ κ lg b+ κb/�) bits.
If Rb,i = ∅, i.e., if u does not know any non-cold rumor of
size b generated in the i-th previous epoch, we will write
Db,i = ∅.

We now explain how from digest Db,i �= ∅ we obtain in-
formation about whether a given b-bit rumor r is a member
of Rb,i. Let x[j] denote the j-th leftmost bit of bit-string
x. From the definition of the pk and the assumption that
rk < rk+1, we have that for 1 ≤ j < pk, rk[j] = rk+1[j], and

rk[pk] = 0 �= 1 = rk+1[pk].

Based on this observation, we describe a simple algorithm
that for any given r, computes an index k with 1 ≤ k ≤ κ
such that

r /∈ Rb,i \ {rk}
The algorithm does not tell whether r = rk. We denote
this index by ind(r,Db,i), and we compute it as follows. We
start with the list 1, . . . , κ of all indices, and in each step we
eliminate one of the first two indices remaining, until there is
only one index left; this last index is ind(r,Db,i). For each
index k < κ in the current list, we maintain the leftmost
bit position at which rk and rk′ differ, where k′ is the index
following k in the current list; so, for the initial list of indices
we have the positions p1, p2, . . . , pκ−1 described in the first
component of Db,i. Maintaining these positions does not
require knowledge of the actual rumors. Let k1, k2 be the
first two of the indices remaining at the beginning of a step,
and let q1, q2 be the bit positions currently associated with
them. If r[q1] = 1 then r �= rk1 , and, so, k1 is removed from
the list of indices in this step. The bit positions associated
with the indices remaining do not change. If r[q1] = 0,
instead, then r �= rk2 , and, so, k2 is removed from the list.
Also the bit position associated with k1 is updated to the
leftmost of the positions q1 and q2.

Note that the second componentD2 = {rj� : 1 ≤ j ≤ κ/�}
of Db,i is not used in computing ind(r,Db,i). The set D2 is
non-empty only when |Rb,i| ≥ �, and it can sometimes be
used together with ind(r,Db,i) to infer that r /∈ Rb,i. Let
range(r,Db,i) denote the set {k1 + 1, . . . , k2}, where rk1 is
the largest element of D2 such that rk1 < r, or k1 = 0 if
no such element exits; and rk2 is the smallest element of
D2 such that r ≤ rk2 , or k2 = κ if no such element exits.
Clearly, if ind(r,Db,i) = k /∈ range(r,Db,i) then r �= rk, and,
thus, r /∈ Rb,i.

Based on u’s digest, player v determines which rumors
should be pulled from v to u as follows. Let R′

b,i be the set
of non-cold b-bit rumors that v knows, generated in the i-th
previous epoch. If Db,i = ∅ then all the rumors in R′

b,i are
pulled. Otherwise, for each r ∈ R′

b,i, v computes ind(r,Db,i)
and range(r,Db,i), as described above, and r is pulled iff at
least one of the following two conditions is satisfied:

(1) ind(r,Db,i) /∈ range(r,Db,i);

(2) ind(r,Db,i) = ind(r′, Db,i), for some r′ ∈ R′
b,i \ {r}.

Note that if (1) holds then u does not know r; and if (2) holds
then u knows at most one of r and r′, thus, the bits transmit-
ted are at most twice the bits necessary. Note, however, that



the following bad scenario is possible: u does not know r, but
ind(r,Db,i) ∈ range(r,Db,i) and ind(r′, Db,i) �= ind(r,Db,i),
for all r′ ∈ R′

b,i \ {r}; thus, r is not pulled. Nevertheless,
we show that condition (2) ensures that the desired perfor-
mance guarantees for the distribution of r are still met.

The digest structure employed by our algorithm can be
viewed as essentially a data structure for approximate set
membership. This problem is traditionally addressed using
Bloom filters [2] (see also the survey [3]). Similarly to Bloom
filters, our approach allows for false positives, but, unlike
them, it is deterministic; and in addition to the information
whether an element is a member of the set, it also gives the
order of the element in that set. This feature is exploited by
our algorithm to tackle the problem of false positives.

The case of very small rumors

In the algorithm above, if b = (lg lgn)o(1) then all but a
o(1) fraction of the bits used to distribute a single b-bit ru-
mor are used to transmit the age information contained in
the digest. We handle this issue by making the following
two changes to the algorithm. For every rumor r of size
b = (lg lg n)o(1), the beginning of the distribution of r is de-
layed until the next round that is a multiple of 6 lgn; i.e.,
if r is generated in round t, its distribution starts in round
tstart = 
t/6 lgn�·6 lg n. (Recall that tend = tstart+6 lg n−1.)
Because of this modification, the epoch information for these
rumors contained in the digest is no longer useful and is
omitted. Apart from these two changes, the protocol re-
mains the same. Note that these changes could also be
applied to the other rumor sizes, but the resulting delays
and bursty traffic may be undesirable; thus, we use these
modifications only for very small rumors.

3.2 Analysis of algorithm
For the analysis, we distinguish two phases in the distri-

bution of a rumor. Roughly speaking, in the first phase the
rumor is pushed to at least a 1

2
+ ε fraction of the players,

and in the second phase the rumor is pulled to the remain-
ing players. Below, we bound the duration of each phase,
and then we bound the total number of bits communicated
in the two phases. We only consider the case of rumor sizes
b = (lg lgn)Ω(1); for smaller rumors, the analysis is essen-
tially the same.

3.2.1 Phase I: Pushing the rumor to a 1
2
+ ε fraction

of the players
For the analysis of this phase, we focus on a single rumor r

of size b. To simplify notation we assume that r is generated
in round tstart = 1. We prove the following lemma.

Lemma 3.1. With probability 1−n−3+o(1), at least a 3/4
fraction of the players knows r at the end of round τ =
lg n+ 3 lg lgn.

We start by introducing some notation. St denotes the
number of players who know r at the end of round t. A
push transmission is called bad if the recipient already knows
the rumor from a previous round. The number of bad push
transmissions of r during the first t rounds is denoted Bt.

Claim 3.2. Let τ1 = inf{t : St ≥ (lg n)4}. With probabil-

ity 1− n−3+o(1), Bτ1 ≤ 2 and τ1 ≤ 4 lg lgn+O(1).

Proof. Fix some ordering of the set of players, and call
a push transmission of r from u to v good if it is not bad

(i.e., v has not learn r in a previous round), and no player
u′ < u pushes r to v in this round. The number of good
push transmissions of r in the first τ1 rounds is at most
2(lg n)4 − 3 (at most (lg n)4 − 2 in the first τ1 − 1 rounds,
and at most (lg n)4 − 1 in round τ1). Also, the probability
that a given push transmission of r in some of the first τ1

rounds is good is at least 1 − 2(lg n)4−3
n

, regardless of the
other transmissions in the same round. This is because if
we ignore the outcome of this transmission and of the pull
transmissions in this round (if it is a pull round) then at
most 2(lg n)4 − 3 players know r at the end of the round.
So, the probability that 3 or more of the push transmissions
of r in the first τ1 rounds are not good is at most(

2(lg n)4

3

)(
2(lg n)4 − 3

n

)3

≤ (2(lgn)4)3

3!

(
2(lg n)4 − 1

n

)3

= n−3+o(1),

From this, it is immediate that the probability that Bτ1 ≥ 3
is at most n−3+o(1). Also, if there are at most 2 non-good
transmissions of r then no player stops pushing r in the
first τ1 rounds, and it is easy to verify that τ1 ≤ 4 lg lgn +
O(1).

Let Ht ⊆ St be the number of players who know r at the
end of round t, and they have not performed more than 2
bad push transmissions of r by that time. Clearly,

St − 	Bt/3
 ≤ Ht ≤ St.

The players in Ht are precisely the players who push r in
round t+ 1, if t < tend.

Claim 3.3. For any round t < tend, if Ht ≥ (lgn)4 and

St ≤ 3
4
n then, with probability 1− n−ω(1),

St+1 ≥ St +Ht

(
1− St

n

)(
1− St

2n

)(
1− 1

lg n

)
, (3.1)

and

Bt+1 ≤ Bt +
HtSt

n

(
1 +

1

lgn

)
+ (lg n)3. (3.2)

Proof. The expected number of players who learn r in
round t+ 1 is at least

(n− St)
(
1−

(
1− 1

n

)Ht
)
≥ (n− St)

(Ht

n
− H2

t

2n2

)
= Ht

(
1− St

n

)(
1− Ht

2n

)
,

which is in Ω((lg n)4). Since the events: “player u learns
r in round t + 1,” for players u who do not know r at
the end of round t, are negatively dependent [7], we can
apply Chernoff bounds to obtain that the probability that
fewer than Ht

(
1 − St

n

)(
1 − Ht

2n

)(
1 − 1

lg n

)
players learn r is

e−Ω((lgn)2) = n−Ω(lg n). For Bt+1, we have that the expected
number of bad push transmissions in round t + 1 is HtSt

n
,

and, by Chernoff bounds, we can show that the probabil-
ity there are more than HtSt

n
(1 + 1

lg n
) + (lg n)3 bad push

transmissions is also e−Ω((lgn)2).



Let E denote the event: “Bτ1 ≤ 2 and τ1 ≤ 4 lg lg n+O(1)
and, for all t with τ1 ≤ t < tend such that Ht ≥ (lg n)4 and
St ≤ 3

4
n, inequalities (3.1) and (3.2) hold.” By Claims 3.2

and 3.3,

��[E ] = 1− n−3+o(1). (3.3)

We prove Lemma 3.1 by showing that E implies Sτ ≥ 3n/4.
The claims we describe below assume that n is greater

than some appropriate constant.

Claim 3.4. Let τ2 = inf{t : St ≥ n/ lgn}. If E occurs
then Bτ2 ≤ 4n/(lg n)2 and τ2 ≤ lg n+O(1).

Proof. We show by induction on t = τ1 + 1, . . . , τ2 that
Bt ≤ 4St−1/ lgn and St ≥ St−1(2 − 4

lgn
). From this, it

follows that Bτ2 ≤ 4Sτ2−1/ lgn < 4n/(lg n)2, and τ2 ≤
lg n

lg(2−4/ lg n)
= lg n+O(1), as desired. The induction is as fol-

lows. For the base case t = τ1+1, by (3.2), we have Bτ1+1 ≤
2+

S2
τ1
n

(1+ 1
lgn

)+ (lgn)3 ≤ 2+
Sτ1
lg n

(1 + 1
lgn

)+
Sτ1
lg n

≤ 3Sτ1
lg n

.

Also, by (3.1), Sτ1+1 ≥ Sτ1 + Sτ1(1 − Sτ1
n

− Sτ1
2n

− 1
lgn

) ≥
Sτ1(2− 5

2 lgn
). Similarly, for the induction step we have that

if t ≥ τ1 + 1 then

Bt+1 ≤ Bt +
HtSt

n

(
1 +

1

lg n

)
+ (lgn)3

≤ 4St−1

lg n
+

St

lgn

(
1 +

1

lgn

)
+

St−1

lgn

≤ 5St

(2− 4
lg n

) lgn
+

St

lg n

(
1 +

1

lg n

)
= (3.5 + o(1))St/lg n,

where the second and third inequalities were obtained using
the induction hypothesis. Also,

St+1 ≥ St +
(
St − Bt

3

)(
1− St

n
− St

2n
− 1

lgn

)
≥ St +

(
St − 4St

3(2− 4
lg n

) lgn

)(
1− 1

lg n
− 1

2 lg n
− 1

lg n

)

= St

(
2− 19 + o(1)

6 lgn

)
.

Claim 3.5. Let τ3 = inf{t : St ≥ n/8}. If E occurs then
Bτ3 ≤ n/16 and τ3 ≤ τ2 + 2 lg lg n.

Proof. It is similar to the proof of Claim 3.4. We show
by induction on t = τ2 + 1, . . . , τ3 that Bt ≤ St−1/2 and
St ≥ 3St−1/2. From this, it follows that Bτ3 ≤ Sτ3−1/2 <
n/16, and τ3 − τ2 ≤ lg lgn

lg(3/2)
≤ 2 lg lgn, as desired. For the

base case t = τ2 +1 of the induction, we have that Bτ2+1 ≤
4n

(lg n)2
+

Sτ2
8

(1+ 1
lgn

)+(lgn)3 = Sτ2(
1
8
+o(1)). Also, Sτ2+1 ≥

Sτ2 +(Sτ2 − Bτ2
3

)(1− 1
8
− 1

16
− 1

lgn
) = Sτ2(2− 3

16
−o(1)). For

the induction step, we have that if t ≥ τ2 + 1 then Bt+1 ≤
St−1

2
+ St

8
(1 + 1

lg n
) + (lg n)3 ≤ St

3
+ St

8
(1 + 1

lgn
) + (lgn)3 =

St(
11
24

+o(1)), and St+1 ≥ St+(St− St
6
)(1− 1

8
− 1

16
− 1

lg n
) ≥

St(2− 17
46

− o(1)).

Claim 3.6. If E occurs then Sτ3+5 ≥ 3n/4.

Proof. We compute St, for t = τ3 + 1, τ3 + 2, . . . , under
the worst-case assumptions that Sτ3 = n/8 and Bτ3 = n/16,
and also that inequalities (3.1) and (3.2) hold as equalities,
and Ht = St − 	Bt/3
. We obtain that Sτ3+5 ≥ 3n/4, for
all n greater than a sufficiently large constant.

Combining now Equation (3.3) and Claims 3.4–3.6 yields
Lemma 3.1.

3.2.2 Phase II: Pulling the rumor to the rest of the
players

For this phase, we consider the distribution of all the b-
bit rumors generated in the same epoch as r; we denote by
R the set of these rumors. To ease comprehension we first
study the case of |R| = O(n), separately. In the analysis of
this case, only the first component of the digests for rumors
in R is used.

The case of |R| = O(n)

We prove the following result.

Lemma 3.7. If at the end of round τ ′ ≤ 4 lg n every ru-
mor in R is known to at least a 3/4 fraction of the players

then, with probability 1− |R| · n−3+o(1), all players know all
the rumors in R at the end of round τ ′ + 2 lg n.

Intuitively, the proof proceeds by lower-bounding the speed
at which the slowest-spreading rumor in R is distributed. A
key observation is that if a player u does not know a given
rumor r ∈ R, but the digest D for the rumors in R that
u knows is non-empty and ind(r,D) = k, then for r to be
pulled to u it suffices that u call a player who knows both r
and the k-th rumor described in D.

Below, r denotes an arbitrary rumor in R. For i ≥ 1,
ti is the i-th pull round from round τ ′ + 1, and Ui,r is the
number of players who do not know r at the end of round
ti. Also U0,r is the same quantity for round τ ′. Finally,
Ui = maxr∈R Ui,r.

Claim 3.8. For any i ≥ 0 such that ti+1 ≤ tend, if Ui ≥
(lg n)2

√
n then, with probability 1− n−ω(1),

Ui+1,r ≤ 2

n
U2

i

(
1 +

1

lg n

)
.

Proof. Consider a player u who does not know r at the
beginning of round ti+1, and let D be the digest of u for this
round, for the rumors in R that u knows. We distinguish
two cases:

If D = ∅ then r is not pulled to u in round ti+1 iff u calls a
player who does not know r, which happens with probability
at most Ui,r/n.

Otherwise, if ind(r,D) = k then for r to be pulled to u it
suffices that u calls a player who knows both r and rk, the
k-th rumor in D; thus, the probability that r is not pulled
to u is at most (Ui,r + Ui,rk )/n.

So, in both cases, the probability that r is not pulled to
u in round ti+1 is at most 2

n
Ui. (This bound holds inde-

pendently of pull transmissions performed by other players
in this round.) Therefore, the expected number of players
who do not know r at the beginning of round ti+1, and r
is not pulled to them in this round is at most 2

n
UiUi,r ≤

2
n
U2

i . And, since Ui ≥ (lg n)2
√
n, by applying Chernoff

bounds, we obtain that the number of these players is at

most 2
n
U2

i (1 + 1
lg n

) with probability 1 − e−Ω(lg2 n). Hence,
the same upper bound applies also to Ui+1,r.

Claim 3.9. For any i ≥ 0 such that ti+7 ≤ tend, if Ui ≤
(lg n)2

√
n then, with probability 1 − n−3+o(1), all players

know r at the end of round ti+7.



Proof. If player u does not know r at the end of round
ti then u does not learn r by the end of round ti+7 only if
r is not pushed to u in any of the 7 pull rounds following

ti, which happens with probability at most
(
2Ui
n

)7
—by the

same reasoning as in the proof of Claim 3.8. Thus, the
probability that all players know r at the end of round ti+7

is at least 1− Ui,r

(
2Ui
n

)7
= 1− n−3+o(1).

Lemma 3.7 can now be obtained as follows. If for all i ≥ 0
such that Ui ≥ (lg n)2

√
n,

Ui+1,r ≤ 2

n
U2

i (1 +
1

lg n
) =

aU2
i

n
,

where a = 2(1 + 1
lgn

), then, for those i,

Ui ≤ n

a

(aU0

n

)2i
≤ n(a/4)2

i

a
.

From this and Claim 3.8, it follows that Ulg lgn < (lg n)2
√
n

with probability 1− |R| · n−ω(1). And if Ulg lgn < (lg n)2
√
n

then, by Claim 3.9, it is Ulg lgn+7 = 0 with probability 1 −
|R| ·n−3+o(1). Therefore, with probability 1− |R| ·n−3+o(1),
we have Ulg lgn+7 = 0, which implies that all players know all
the rumors in R at the end of round τ ′+lgn+7 lg n/ lg lgn.

Now, combining Lemmata 3.1 and 3.7 (the former applied
for all r ∈ R, and the latter for τ ′ = τ ) yields the desired
bound on the number of rounds of our algorithm.

The case of |R| = ω(n)

For large sets R the previous approach does not work—
note the dependence on |R| of the probabilistic bound of
Lemma 3.7. We remove this dependence by utilizing the
second component of the digests. This component is used
to decouple the progress of the distribution of a rumor r
from that of rumors that are further than O(� lg lgn) from
r in the ordered list of the rumors in R.

For the analysis, we consider an extra pull phase, before
the pull phase we described in the previous case. During this
phase every player learns sufficiently many of the rumors in
R that are close to r. More specifically, suppose that R =
{r1, . . . , rκ}, where r1 < · · · < rκ. Fix a rumor r = rρ ∈ R,
and, for i = 0,±1, . . . ,± lgn, define

Ri = {rk : (i− 1
2
)� lg n < k−ρ ≤ (i+ 1

2
)� lgn and 1 ≤ k ≤ κ}.

The extra pull phase in the distribution of r is completed
when every player knows at least a 1/3 fraction of the rumors
in each of the sets Ri. The next lemma is used to bound
the length of this phase. We say that a set R′ ⊆ R is a
contiguous subset of R if R′ = {rk : k1 ≤ k ≤ k2}, for some
k1 ≥ 1 and k2 ≤ κ.

Lemma 3.10. Let R′ be a contiguous subset of R with
|R′| = ω(� lg lgn). If at the end of round τ ′ ≤ 4 lg n every
rumor in R′ is known to at least a 3/4 fraction of the play-

ers then, with probability 1−n−3+o(1), every player knows at
least a 1/3 fraction of the rumors in R′ at the end of round
τ ′ + 2 lg n.

Proof. We start by showing that initially, i.e., at the
end of round τ ′, one out of two players already knows half
of the rumors in R′. Let f be the fraction of players who
each knows half or more of the rumors at the end of round
τ ′. The average number of rumors a player knows at that

time is bounded from below by 3|R′|
4

, and from above by

f |R′|+ (1− f) |R
′|

2
. Combining the two yields f ≥ 1

2
.

Next we show that if in a pull round player u calls a player
v who knows m = ω(�) of the rumors in R′ then at the end of
the round u knows at least m−O(�) of the rumors in R′. Let
R′

v be the subset of R′ that v knows, and let Du be the digest
of u for rumors in R. Let also I =

⋃
r∈R′

v
range(r,Du), and

Ru,I be the subset of R∩ I that u knows. If |Ru,I | < |R′
v| =

m, then it is easy to see that at least m−|Ru,I | rumors from
R′

v \ Ru,I will be pulled to u. Note that Ru,I contains at
most 2� rumors that are not in R′, those that correspond to
the leftmost and the rightmost of the intervals range(r,Du),
for r ∈ R′

v. Therefore, at the end of the round, u knows at
least m− 2� of the rumors in R′.

The lemma now follows similarly to the bound on the
number of pull rounds required for the standard push-pull
algorithm. The fraction of players who at the end of the i-th

pull round from round τ ′ do not know at least |R′|
2

−O(i�) of
the rumors in R′ is roughly the square of the corresponding
fraction for the (i− 1)-th pull round; and lg lg n+O(1) pull

rounds suffice for all players to learn |R′|
2

−O(� lg lg n) > |R′|
3

of the rumors in R′, with high probability.

The next lemma is the analogue of Lemma 3.7.

Lemma 3.11. If at the end of round τ ′ ≤ 4 lgn every
player knows at least a 1/3 fraction of the rumors in each
of the sets Ri, for i = 0,±1, . . . , lg n, then, with probability
1−n−3+o(1), all players know r at the end of round τ ′+2 lg n.

Proof. It is similar to the proof of Lemma 3.7. The key
difference is that now we do not focus on the progress of the
distribution of all the rumors in R. Instead, in the i-th pull
round from round τ ′, we focus on the progress of the ru-
mors in

⋃
|j|≤lg n−i Rj . We drop the two outermost Rj , i.e.,

R±(lg n−i), after the i-th pull round, because, in the next
pull round, the progress of rumors in these sets may be im-
peded by external rumors, i.e., rumors not in

⋃
|j|≤lgn−i Rj .

However, since each player knows at least 1
3
� lgn � � of

the rumors in each Rj , rumors in the remaining Rj are not
affected by external rumors in the next pull round.

Combining Lemmata 3.1, 3.10, and 3.11 (the first lemma
applied for all rumors in

⋃
|j|≤lg n Rj ; the second applied for

τ ′ = τ and R′ = Ri, for i = 0,±1, . . . , lg n; and the third
applied for τ ′ = τ + 2 lgn) yields the desired bound on the
number of rounds of our algorithm.

3.2.3 Number of bits communicated
We now establish an upper bound on the number of com-

munication bits used to distribute rumor r ∈ R. Specifically,
we show the following lemma.

Lemma 3.12. With probability 1−n−3+o(1), the total num-
ber of bits communicated for the distribution of r is at most
(6 + o(1))nb + 6n lg lgn

(
lg b+ lg lg lgn

|R| +O(1)
)
.

First we count the overhead induced by unnecessary push
transmissions. A push transmission of r from player u to
player v in round t is unnecessary if one of the following two
conditions applies:

• v already knows r at the beginning of round t; such a
push transmission is called bad.



• v does not know r, but in round t, r is pulled to v from
some player or r is pushed to v form a player u′ such
that u′ < u, with respect to some fixed ordering of the
players; such a push transmission is called unlucky.

Clearly, bad push transmissions of r result in a communica-
tion overhead of at most 3nb′ bits, where

b′ = b+Θ(lg lgn)

is the size of the rumor plus the age counter. The next result
bounds the overhead due to unlucky push transmissions.

Claim 3.13. With probability 1−nω(1), unlucky push trans-
missions of r result in a communication overhead of at most
(1 + o(1))nb′ bits.

Proof. Let St be the set of players who know r at the
end of round t, and let St = |St|; S0 is the set of sources
of r. Fix the sequence {St : t ≥ 0}. All the probabilistic
statements described below will be implicitly conditioned on
this sequence. For any round t and any player u ∈ St, let
Xu,t be the indicator random variable that is 1 iff u performs
an unlucky push transmission of r in round t. The expected

value of Xu,t is at most
St+1−St

St+1
: this expected value is a

non-decreasing value of u, for u ∈ St; and if u is the largest
player that pushes r in round t and this transmission is bad
or unlucky then the recipient is equally likely to be any of the
players in St+1. So, the expected value of the total number∑

t

∑
u∈St

Xu,t of unlucky push transmissions of r is at most
n− S0. The upper bound above on the expectation of each
Xu,t holds independently of the values of the other indicator
variables, so, we can apply Chernoff bounds to obtain that
at most (1 + o(1))n unlucky push transmissions of r occur,

with probability 1− nω(1).

Next we count the overhead induced by pull transmissions.
The size of the digest for the rumors in R that a player knows

is at most (lg lg lg n + |R| lg b) + |R|b
�

+ O(|R|). Since there
are at most 6 lg lg n pull rounds during which the rumors in
R are not cold, the total overhead per rumor because of the
digests is at most 6n lg lg n( lg lg lgn

|R| + lg b + b
�
+ O(1)). Fi-

nally, there are at most n|R| redundant pull transmissions
of rumors in R. This is because for every redundant pull
transmission of a rumor in R there is at least one useful
transmission of another rumor in R (see the second-to-last
paragraph in Section 3.1). Note that, because of the way
unlucky push transmissions were defined, there are no “un-
lucky” pull transmissions.

Combining the above we obtain that, with probability 1−
n−3+o(1), the total number of bits communicated for the
distribution of r is at most nb′ + 3nb′ + (1 + o(1))nb′ +
6n(lg lgn)

(
lg lg lg n

|R| + lg b+O(1)
)
+ nb′, where the first term

nb′ accounts for the useful transmissions of r. The above
expression is equal to the expression in the statement of
Lemma 3.12.

4. LOWER BOUND
In this section, we prove the following lower bound on the

performance of rumor-spreading algorithms in the random
phone-call model.

Theorem 4.1. For any b ≥ 1, no address-oblivious algo-
rithm can guarantee that for any rumor of size b, this rumor

is distributed to all players within O(lgn) rounds, with con-
stant probability, and o(nb+n lg lg n) bits of communication
are used, in expectation.

Karp et. al established a lower bound of Ω(n lg lg n) on
the expected number of messages, for any address-oblivious
algorithm guaranteeing that any one-bit rumor is distributed
to all players with constant probability (Theorem 4.1 in [16]).
From this result, it is immediate that Ω(n lg lgn) bits of com-
munication are required in expectation, for any b. Hence, it
remains to prove that the theorem holds for rumor sizes
b = ω(lg lg n). We first consider the case b = ω(lgn), in Sec-
tion 4.1, and then we reduce to this case the case of smaller
b, in Section 4.2.

4.1 The case of large rumors
Suppose that b = ω(lgn). Consider the following setting,

which we will refer to as the single b-bit rumor scenario:
There is only one rumor, which is drawn uniformly at ran-
dom among all the b-bit rumors. The rumor starts from
player s in round 0. The size b, the source s, and the start
round of the rumor are known to all players. Also, in each
phone call, the two participants know the id of one another;
so, the rumor-spreading algorithm can be non address obliv-
ious. Suppose now that an algorithm guarantees that in the
above scenario, the rumor is spread to all players within
ρ = O(lgn) rounds, with at least some constant probability
p > 0. We show that the algorithm uses an expected number
of Ω(nb) communication bits. The theorem then follows.

We bound the expected number of bits exchanged by a
single player. Consider a player u �= s, and let Bu be the
total number of bits u exchanges (sends or receives) in the
first ρ rounds, i.e., in rounds 0, . . . , ρ− 1. Define the events:

E : all players know the rumor at the end of round ρ− 1;

Eu: u knows the rumor at the end of round ρ− 1;

C: u receives at most 2ρ+ lg n calls in the first ρ rounds;

Bk: u exchanges at most k bits with other players in the
first ρ rounds, i.e., Bu ≤ k.

We have that for any k,

�[Bu] ≥ k��[Bu ≥ k] ≥ k��[E ] ·��[Bu ≥ k | E ]
≥ kp(1−��[Bk | E ]),

since ��[E ] ≥ p. Also,

��[Bk | E ] = ��[Bk ∧ E ]/��[E ] ≤ p−1
��[Bk ∧ Eu]

≤ p−1
(
��[Bk ∧ Eu | C] +��[C̄]) .

Since the expected number of calls that u receives in the
first ρ rounds is ρ, using Chernoff bounds we can show that

��[C̄] ≤ e−(ρ+lgn)/3 ≤ e− lgn/3.

Also, a counting argument yields the following claim.

Claim 4.1. ��[Bk ∧ Eu | C] ≤ 63ρ+lgn+k/2b.

Proof. We start with two definitions. An i-call-history
of u specifies the player that u calls, and the set of players
that u receives calls from in each of the first i rounds. An
i-history of u specifies an i-call-history of u, and also the
sequence of messages exchanged between u and each of the
players that u communicates with in the first i rounds.



For any ρ-call-history of u in which u receives no more
than 2ρ + lgn calls, there are at most 6ρ+(2ρ+lgn)+k dis-
tinct ρ-histories of u with that ρ-call-history, in which at
most k bits are exchanged between u and the rest of the
players. This follows from the observation that any such
ρ-history can be represented by a string of length at most
ρ+(2ρ+lgn)+k over the alphabet {end-round, begin-call,
send-0, send-1, recv-0, recv-1}: the messages that u ex-
changes during round i are described by the substring be-
tween the i-th and the (i+ 1)-th end-round symbols of the
string; the begin-call symbols separate the communication
streams of u with different players in the same round; and
the sending (receipt) of bit x = 0, 1 by u is represented by
the symbol send-x (recv-x).

So, for any ρ-call-history of u in which u receives no more
than 2ρ + lgn calls, there are at most 6ρ+(2ρ+lgn)+k ru-
mors that u can distinguish in ρ rounds exchanging at most
k bits.5 Therefore, conditioned on any such ρ-call-history
of u, the probability that in the first ρ rounds, u learns
the rumor and it exchanges no more than k bits is at most
6ρ+(2ρ+lgn)+k/2b. (Recall that the rumor is chosen at ran-
dom among the 2b b-bit tumors.) This implies the claim.

Combining all the above yields

�[Bu] ≥ kp
(
1− p−163ρ+lg n+k2−b − p−1e− lg n/3

)
,

and setting k = 	(b − 1 + lg p)/ lg 6− 3ρ− lgn
 = Θ(b), we

obtain �[Bu] ≥ kp
(
1/2 − p−1e− lgn/3) = Θ(b). Thus, the

expected value of the total number of bits exchanged is at
least

∑
u �=s�[Bu]/2 = Ω(nb).

4.2 The case of smaller rumors
Suppose now that ω(lg lg n) ≤ b ≤ O(lgn). We show

that given an algorithm A that provides the guarantees de-
scribed in Theorem 4.1 for that b, we can devise an algo-
rithm A′ that contradicts the result of Section 4.1. That is,
for some b′ = ω(lgn), A′ guarantees that in the single b′-bit
rumor scenario, the rumor is distributed to all players within
O(lg n) rounds, with constant probability, and o(nb′) com-
munication bits are used, in expectation. Roughly speaking,
A′ encodes the b′-bit rumor as a collection of b-bit rumors,
which are then spread using A.

Suppose that A ensures that with probability p any b-
bit rumor is distributed to all players within ρ rounds. To
ease comprehension we consider the case p = 1 separately,
first. If p = 1 then A′ is the following simple algorithm.
Let b′ = 2b/2−1b (to simplify exposition we assume that b

is even). The b′-bit rumor is divided into 2b/2 substrings
w0, . . . , w2b/2−1 of size b/2 each. For each wi, a b-bit rumor

is build consisting of wi and its index i. All these 2b/2 b-bit
rumors are then spread in parallel (starting at round 0) as in
algorithm A. With probability p = 1, every player learns all
the rumors within ρ rounds, and can easily reconstruct the
initial b′-bit rumor. Note that b′ = ω(lgn) and the expected

total number of bits communicated is 2b/2 · o(nb) = o(nb′),
as desired.

When p < 1 the above scheme does not work, because
A does not guarantee that, with constant probability, every

5Different executions of the algorithm that have the same
ρ-history of u are indistinguishable to u until at least the
beginning of round ρ. So, in all these executions, within the
first ρ rounds, u learns the same rumor, if any.

player learns all the 2b/2 rumors. (E.g., it may be that with
probability 1/2 all players learn the first of these rumors
and they do not learn the second, and with probability 1/2
they all learn the second and not the first.) We tackle this
problem by employing an error-correction scheme which fa-
cilitates reconstruction of the b′ bit rumor by just a fraction
of the b-bit rumors (such schemes are often called erasure
codes). Recall from code theory that a q-ary (�,M, d)-code
is a set of M codewords, where each codeword is a string
of length � over an alphabet of size q, and the minimum
distance between codewords is d, i.e., any two codewords
differ in at least d positions. We employ a q-ary (�,M, d)-

code C with q = � = 2b/2, M = q�/4, and d = �/2. By
the Gilbert–Varshamov bound (see, e.g., [18]), such a code

C exists, because M < q�/
∑d−1

i=0

(
�
i

)
(q − 1)i. Algorithm A′

is then as follows. The rumor size is b′ = 2b/2−3b. Each
b′-bit rumor is mapped to a distinct codewords of C, and
this codeword is distributed instead of the actual rumor.
Similarly to the case p = 1, for each q-ary symbol of the
codeword, a b-bit rumor is built consisting of that symbol
and its order in the codeword, and the resulting � rumors
are spread as in algorithm A. Now, for a player to be able
to reconstruct the codeword it suffices to learn � − d + 1
different b-bit rumors, since any two codewords differ in at
least d positions. We can lower-bound the probability that
this happens as follows. We assume without loss of general-
ity that p ≥ 1− 1/e—if this is not the case, we can achieve
that by re-sending the b-bit rumors in the rounds iρ, for
i = 1, . . . , 1/p. Let Xi be an indicator random variable that
is 1 iff all players learn the i-th b-bit rumor by round ρ, and
let X =

∑
i Xi. It is �[Xi] ≥ p, and, thus,

�[X] ≥ p�.

Also, if p′ is the probability that every player learns at least
�− d+ 1 of the � b-bit rumors by round ρ then

�[X] ≤ p′�+ (1− p′)(�− d) ≤ p′�+ �− d.

Therefore, p� ≤ p′�+ �− d, which yields

p′ ≥ p− 1 + d/� ≥ 1/2− 1/e,

since p ≥ 1− 1/e. We have thus shown that, with constant
probability, all players learn enough b-bit rumors in the first
ρ rounds to reconstruct the codeword, and learn the b′-bit
rumor. As in case p = 1, b′ = ω(lgn) and the total number
of bits communicated in expectation is � · o(nb) = o(nb′).
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