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Abstract

A Coalescing-Branching Random Walk (CoBra) is a natu-

ral extension to the standard random walk on a graph. The

process starts with one pebble at an arbitrary node. In each

round of the process every pebble splits into k pebbles, which

are sent to k random neighbors. At the end of the round all

pebbles at the same node coalesce into a single pebble. The

process is also similar to randomized rumor spreading, with

each informed node pushing the rumor to k random neigh-

bors each time it receives a copy of the rumor. Besides its

mathematical interest, this process is relevant as an infor-

mation dissemination primitive and a basic model for the

spread of epidemics.

We study the cover time of CoBra walks, which is

the time until each node has seen at least one pebble. Our

main result is a bound of O
(
φ−1 logn

)
rounds with high

probability on the cover time of a CoBra walk with k = 2

on any regular graph with n nodes and conductance φ. This

bound improves upon all previous bounds in terms of graph

expansion parameters (Dutta et al. [13], Mitzenmacher et al.

[27], Cooper et al. [8, 9]). Moreover, we show that for

any connected regular graph the cover time is O(n logn)

with high probability, independently of the expansion. Both

bounds are asymptotically tight.

Since our bounds coincide with the worst-case time

bounds for Push rumor spreading on regular graphs until

all nodes are informed, this raises the question whether

CoBra walks and Push rumor spreading perform similarly

in general. We answer this negatively by separating the cover

time of CoBra walks and the rumor spreading time of Push

by a super-polylogarithmic factor on a family of tree-like

regular graphs.

1 Introduction

A Coalescing-Branching Random Walk with branching
factor k, also called k-CoBra walk, is a generalization
of the simple random walk on a graph and was intro-
duced by Dutta et al. [12, 13]. The process starts with
one particle on an arbitrary node of a connected graph.
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At the beginning of each round, every particle splits
into k parts which move independently to a randomly
chosen neighbor (branching). Particles that arrive at
a node during the same round merge into one particle,
such that there is at most one particle on each node after
that round (coalescing). Note that a branching factor
of k = 1 gives the standard random walk on graphs.

Random walks and their variants are a natural
choice for processes that spread information in networks
in a simple and robust manner. In particular, random
walk particles are stateless and spread information with-
out knowledge about the global network topology. A
standard random walk takes polynomial time to dissem-
inate information from one to all nodes (cover time).
In particular, on any connected graph of n nodes it
needs at least Ω (n log n) rounds in expectation. In the
worst case, this number can become quadratic on reg-
ular graphs [24] and cubic on non-regular graphs [17].
One way to speed up the cover time is the use of parallel
random walks, where multiple particles start from the
same source and perform independent random walks.
On many graphs, this leads to a speedup that equals
the number of particles [15]. CoBra walks represent
another natural idea to speed up the cover time. In
contrast to parallel random walks, the number of ac-
tive particles in CoBra walks changes during the pro-
cess. This allows CoBra walks to �adapt� to the graph
topology and limits the number of neighbors contacted
by any one node during a round. However, complex de-
pendencies arise between the particles' positions, which
complicates their analysis.

Another process that is closely related to CoBra
walks is randomized rumor spreading [19, 25]. Here, a
rumor is planted on an arbitrary node of the graph.
In the simplest protocol, the so-called Push rumor
spreading, every node that has learned the rumor
pushes the rumor to a randomly chosen neighbor in
each round. Notice the similarity to k-CoBra walks,
which can be seen as pushing the rumor to k randomly
chosen neighbors instead of one. However, unlike in
rumor spreading, where a node pushes the rumor in
every round after it gets informed, in CoBra walks
a node pushes the rumor only if it received (a copy
of) the rumor by one of its neighbors in the previous
round. It is immediate that the rumor spreading time



of Push, i.e., the number of rounds before all nodes are
informed, is at most k times larger than the cover time of
CoBra walks. In particular, for constant k, the rumor
spreading time of Push is asymptotically a lower bound
on the cover time of CoBra walks. However, CoBra
walks require potentially fewer messages.

CoBra walks are also relevant to modeling the
spread of epidemic diseases. In particular, the dual pro-
cess of a k-CoBra walk, called the biased infection with
persistent source process, or k-Bips, was introduced by
Cooper et al. [8]. It is a discrete epidemic process of
the susceptible infected susceptible (SIS) type. In the
k-Bips process, there is a persistent source of the virus,
which remains infected at all times. In each round, ev-
ery node (infected or not) samples k random neighbors.
If some of these neighbors are infected, u becomes in-
fected at the end of the round. Any node (except for
the persistent source) which did not sample an infected
node will become uninfected at the end of the round. As
noted in [8], a similar process has been used to model
the spread of the BVDV (Bovine Viral Diarrhea Virus)
in animals [23]. It was shown in [8] that the time to
infect the whole graph in the k-Bips process is of the
same order as the cover time of the k-CoBra walk.

Several recent papers have been devoted to the
analysis of the cover time of 2-CoBra walks. Dutta
et al. [12, 13] showed an O

(
log2 n

)
bound that holds

w.h.p. (with high probability1) for regular constant-
degree graphs with su�ciently high expansion parame-
ters. They also provided tight bounds for the complete
graph, trees, and the d-dimensional grid. Mitzenmacher
et al. [27] gave a w.h.p. bound of O

(
d4 · φ−2 · log2 n

)
for d-regular graphs with conductance φ, and gen-
eral bounds of O

(
n2−1/d · log n

)
for d-regular graphs

and O
(
n11/4 · log n

)
for non-regular graphs. The last

two bounds show that CoBra walks beat the cor-
responding Θ

(
n2
)
and Θ

(
n3
)
worst-case cover time

of random walks [17, 24]. Cooper et al. [8] showed
that the cover time on d-regular graphs is bounded by
O
(
(1− λ)

−3 · log n
)
w.h.p., where 1− λ is the absolute

spectral gap of the graph's random walk matrix. Very
recently, Cooper et al. [9] complemented this result by a
bound of O

((
d2 + d/(1− λ)

)
· log n

)
. They also proved

a bound of O
(
m+∆2 · log n

)
w.h.p. for arbitrary graphs

with m edges and maximum degree ∆. Both [8, 9] base
their analysis on the duality between the k-CoBra pro-
cess and the k-Bips process, while earlier papers use
techniques from the analysis of parallel random walks.

Despite the intense research on the problem, no
general tight bounds are known so far for the cover

1The expression with high probability refers to a probability of
1− n−Ω(1).

time of CoBra walks. This is in contrast to the rumor
spreading process, for which tight upper bounds are
known in terms of various expansion measures [20, 21],
and a tight upper bound of O (n log n) is known to hold
for all graphs [19].

Contribution. In this paper, we provide the �rst tight
bounds for the cover time of CoBra walks on general
regular graphs. Our �rst main result is the following:

Theorem 1.1. For any connected regular graph G with
n nodes and conductance φ, the cover time of a 2-
CoBra walk on G is O

(
φ−1 · log n

)
w.h.p.

This result improves all previous bounds on regular
graphs in terms of expansion: the O

(
d4 · φ−2 · log2 n

)
bound in [27], the O

(
(1− λ)

−3 · log n
)
bound in [8],

and the O
((
d2 + d/(1− λ)

)
· log n

)
bound in [9]. Note

that φ is an upper bound on 1 − λ, but the latter can
be much smaller than φ. It is λ := max {λ2, |λd| },
where λi is the ith largest eigenvalue of the random
walk transition matrix on G. The well-known Cheeger's
inequality states that (1−λ2)/2 ≤ φ ≤

√
2(1− λ2), thus

1 − λ2 can be up to quadratic in φ. However, 1 − |λd|
can be even smaller than that. For example, in regular
bipartite expanders, φ is lower bounded by a positive
constant, while λd = −1 and, thus, 1− λ = 0.

The bound of Theorem 1.1 is tight since there are d-
regular graphs with diameter Ω

(
φ−1 · log n

)
for a wide

range of parameters d and φ [6]. We note that it is not
possible to show an O

(
φ−1 · log n

)
upper bound for 2-

CoBra walks for non-regular graphs; the n-node star
graph has conductance φ = 1, but the expected cover
time is Θ (n log n).

Our second result is a general upper bound that
applies to all n-node regular graphs, independently of
their expansion.

Theorem 1.2. For any connected regular graph G with
n nodes, the cover time of a 2-CoBra walk on G is
O (n log n) w.h.p.

This result improves the previous bounds of
O
(
n2−1/d log n

)
for d-regular graphs [27], and the re-

cent O
(
n2 log n

)
bound which however applies also to

non-regular graphs [9]. Our bound is tight, as demon-
strated by the example of an n-node graph obtained by
two cliques of size n/2, by removing one of the edges
in each clique, and adding two new edges between the
cliques such that the graph remains regular. It is an
intriguing open problem whether the O (n log n) bound
holds also for non-regular graphs.

Our bounds in Theorems 1.1 and 1.2 coincide with
the worst-case time bounds for Push rumor spreading



on regular graphs until all nodes are informed. This
raises the question whether CoBra walks and Push
rumor spreading perform similarly in general. We
answer this question negatively, by showing that the
rumor spreading time of Push is smaller by a super-
polylogarithmic factor than the cover time of a CoBra
walk on a family of tree-like regular graphs.

Theorem 1.3. There is a d-regular graph G with n
nodes and d := 2

√
logn·log logn, such that the rumor

spreading time of Push on G is O (d log n) w.h.p., while
the expected cover time of a 2-CoBra walk on G is
d · 2Ω(

√
logn/log logn).

Techniques. We summarize our main techniques for
the proof of Theorems 1.1 and 1.2. Our analysis
exploits the duality betweenCoBra walks and the Bips
process [8], which allows us to analyze the infection time
of Bips instead of the cover time of CoBra walks.

The proof of Theorem 1.1 is conceptually similar
to the analysis for the O

(
φ−1 log n

)
bound for rumor

spreading [20], but with some important di�erences.
Both the analysis of rumor spreading and the analysis
of Bips look at the expected per round change in
the number of informed nodes and infected nodes,
respectively. This expectation is then bounded in terms
of the conductance. However, for rumor spreading
it is straightforward to see that the expected number
of informed nodes increases by a factor of 1 + φ(S)
(until informing half of the graph), where φ(S) is the
conductance of the set S of currently informed nodes.
For Bips this is not the case: We show that the expected
number of informed nodes increases by a factor of 1+φ,
where φ is the minimum graph conductance. To show
this bound we relate the conductance φ(I) of the current
set I of infected nodes to that of a di�erent set, I ′.
The set I ′ is obtained by an iterative process of adding
to I nodes from V \ I with many neighbors in I. A
second di�erence is that the above mentioned increase
by a factor of 1 + φ is not maintained until half of the
graph is infected; the expected increase starts dropping
from around the point when n/3 nodes are infected
until n/2 are infected (see Figure 1). Another di�erence
compared to the rumor spreading analysis is thatBips is
a non-progressive process, such that it is naturally more
di�cult to bound its evolution. To cope with this we
prove our own set of Cherno�-like bounds for stochastic
processes.

To prove Theorem 1.2, roughly speaking, we show
the following: If the size of the cut between infected and
uninfected nodes is Ω (d), then the expected increase
in the number of infected nodes in a round of Bips is
Ω (1) (under certain assumptions). If there are fewer,
say αd edges (for a small, possibly sub-constant α > 0),

we show that in expectation it takes at least 1/α2

rounds before some of the nodes in I become uninfected,
while within 1/α rounds the number of infected nodes
increases by Ω (1/α). It follows that we have an increase
of Ω (1) on the number of infected nodes on average
per round. Theorem 1.2 then follows by a version of
Wald's theorem. In the formal proof, we need to address
also the case in which the cut between infected and
uninfected nodes is large but the expected increase is
o (1). This happens if the endpoints of the edges in the
cut form an almost bipartite graph. We show that this
case can be reduced to the case of a small cut.

2 Other Related Work

In the following we survey some related work from the
random walk and rumor spreading literature.

Random walks provide a fundamental mathematical
model for many processes in networks. For example,
they are used to analyze di�usion load balancing in
networks [30], to analyze rumor spreading [19], and as
a model to spread infections in social networks [29].
It is known that the cover time of a random walk on
any graph lies between Ω (n log n) and O

(
n3
)
[17, 18].

Other works have studied how to speed up random
walks by using information about node degrees [10, 22],
by using neighborhood exploration [3], or by avoiding
already visited edges [4]. Parallel random walks were
�rst studied in [1]. Tight bounds on the cover time
for parallel random walks on several graph classes were
given in [7, 15]. Biased random walks were considered
in [2], where the authors studied the e�ect of a non-
uniform choice between neighbors.

Randomized rumor spreading protocols are simple
and e�cient protocols for information dissemination in
networks. The three standard rumor spreading strate-
gies are Push, Pull, and Push-Pull [11]. As already
mentioned, CoBra walks share some similarities with
the Push protocol. In [19], it was proven that the worst-
case Push rumor spreading time is Θ (n log n) w.h.p.
In [20], it was shown that the worst-case Push-Pull
rumor spreading time is Θ

(
φ−1 log n

)
w.h.p. The same

bound holds for both Push-only and Pull-only ru-
mor spreading on regular graphs. In [21], a bound of
O
(
log n · log

(
∆
)
/α
)
was proven for Push-Pull rumor

spreading in arbitrary graphs with vertex expansion α
and maximum degree ∆. In another line of research, [5]
and [14] tried to minimize the number of message trans-
missions for rumor spreading. These protocols tend to
restrict communication: nodes are only allowed to com-
municate a couple of times after receiving the rumor for
the �rst time. In [16], a close relation was established
between the cover time of random walks and the broad-
cast time in the phone-call model. It was shown that,



for any graph withm edges and maximum degree ∆, the
cover time of random walks (and, hence, the cover time
of CoBra walks) is at most O (m/∆ · log n) times the
broadcast time. The authors also showed that this fac-
tor is a lower bounded by Ω

(
d2/(n · log n)

)
for d-regular

graphs.

3 Preliminaries

Consider an undirected graph G = (V,E). For a node
u ∈ V , let N(u) denote the set of u's neighbors in G, and
let deg(u) := |N(u)| be u's degree. Given a set A ⊆ V ,
we de�ne NA(u) := N(u) ∩ A, degA(u) := |NA(u)|,
and γu,A := degA(u)/d. For a pair of sets A,B ⊆ V ,
let E(A,B) :=

∑
u∈A degB(u). Note that E(A,B) =

E(B,A) and that, if A ∩ B = ∅, then E(A,B) equals
the number of edges connecting A and B. De�ne the
volume of A ⊆ V as vol(A) := E(A, V ) =

∑
u∈A deg(u).

The conductance φ of graph G is

φ := min
A⊆V

0<vol(A)≤vol(V )/2

E(A, V \A)

vol(A)
.

k-CoBra Walk: Assume we are given a connected
graph G = (V,E), a number k ∈ N, and a set A0 ⊆ V of
initially active nodes. The k-CoBra walk is a random
process (At)t∈N0

over the state space P(V ). The set At
is the set of active nodes at the end of round t. In round
t+ 1, each node u ∈ At samples k nodes independently
and uniformly at random from N(u) (with replacement).
The set of all chosen nodes forms the set At+1 of active
nodes at the end of round t+ 1.

The cover time of the k-CoBra walk is the mini-
mum number of rounds after which each node has been
active at least once (i.e., min { t :

⋃t
i=0Ai = V }).

k-Bips Process: Assume we are given a connected
graph G = (V,E), a number k ∈ N, and a set I0 ⊆ V of
initially (and persistently) infected nodes. The k-Bips
process is a random process (It)t∈N0

over the state space
P(V ). The set It is the set of infected nodes at the end
of round t. In round t+1, each node u ∈ V \ I0 samples
k nodes independently and uniformly at random from
N(u) (with replacement). The union of I0 and the set of
all nodes that sampled at least one node from It forms
the set It+1 of infected nodes at the end of round t+ 1.

The infection time of the k-Bips process is the
minimum number of rounds after which all nodes are
infected, i.e., min { t : It = V }.

The following result from [8] allows us to analyze the
infection time of the Bips process instead of analyzing
the cover time of a CoBra walk directly.

Theorem 3.1. ([8]) For any graph G = (V,E) and
any nodes u, v ∈ V , the time for a k-CoBra walk
starting from u until v is active for the �rst time is
distributed identically to the time for the k-Bips process
with source v until node u is infected for the �rst time.

From Theorem 3.1, and a union bound over all
n possible nodes v, it follows that a high probability
bound on the infection time of k-Bips implies a high
probability bound on the cover time of k-CoBra walk.

4 Probability Tools

In this section we provide some probability results that
we will use in our analysis in the following sections.

The next lemma is a variant of Wald's equation.
The more familiar version of this result is obtained by
letting Xi = 1 below.

Lemma 4.1. Consider a �ltration F = (Fi)i∈N and two
sequences (Xi)i∈N and (Yi)i∈N of random variables that
are adapted to F . Suppose that Xi and Yi are bounded
for all i ∈ N, that Xi is Fi−1 measurable, and that
E [Yi | Fi−1] ≥ α · Xi for some constant α > 0. Let
τ be a stopping time with respect to F and suppose that
τ has bounded expectation. Then

E

[
τ∑
i=1

Yi

]
≥ α · E

[
τ∑
i=1

Xi

]
.

Proof. For i ∈ N, let Zi := Yi − αXi. Observe that
(Zi)i∈N is a submartingale di�erence sequence with
respect to F and that Zi is bounded for all i ∈ N.
Since, additionally, E [τ ] < ∞, we can apply the
optional stopping theorem to obtain E [

∑τ
1=1 Zi] ≥ 0.

Substituting the de�nition of Zi and using linearity
of expectation yields the desired statement. Note
that we can apply the linearity of expectation because
E [
∑τ
i=1Xi] < ∞ and E [

∑τ
1=1 Yi] < ∞, since Xi and

Yi are bounded and E [τ ] <∞.

The next Cherno�-like bound gives concentration
guarantees for the di�erence between two sums of
(possibly not independent) binary random variables.
It follows from a simple generalization of standard
Cherno� bounds to the dependent setting. Its proof
can be found in Appendix A.

Lemma 4.2. Let n ∈ N. Consider a �ltration F =
(Fi)ni=1 and two sequences (Xi)

n
i=1 and (Yi)

n
i=1 of binary

random variables that are adapted to F . For i ∈
{ 1, . . . , n }, de�ne the random variables

X[1,i] :=
∑

1≤j≤i

Xj , P[1,i] :=
∑

1≤j≤i

E [Xi | Fi−1] ,

Y[1,i] :=
∑

1≤j≤i

Yj , Q[1,i] :=
∑

1≤j≤i

E [Yi | Fi−1] .



Let I ⊆ { 1, . . . , n } and suppose there exists a constant
α > 0 such that P[1,i] ≥ (1 + α) · Q[1,i] for all i ∈ I.
Then for any 0 < ε < 1 and 0 < δ < 1,

Pr
[
∀ i ∈ I : X[1,i] − Y[1,i]

≥ (1− δ) · (P[1,i] −Q[1,i] − log ε−1)
]

= 1−O

(
δ−2 · ε

δ2·(1−δ)
6·(1+2/α)2

)
.

5 Bound with Conductance

Our �rst main result, Theorem 1.1, follows from the
following bound on the infection time of the 2-Bips
process.

Theorem 5.1. For any connected regular graph G =
(V,E) with n nodes and conductance φ, the infection
time of the 2-Bips process on G is O

(
φ−1 · log n

)
w.h.p.

Theorem 1.1 follows by combining Theorem 5.1
with Theorem 3.1 on the duality between CoBra walks
and the Bips process. The rest of this section is devoted
to the proof of Theorem 5.1.

5.1 Expectation Bounds forBips. In this section,
we derive lower bounds on the expected change in the
number of infected nodes, during a single round of the
2-Bips process on graph G.

In the following, we assume G = (V,E) is a con-
nected d-regular graph, I0 ⊆ V is the set of persistently
infected nodes, and It is the set of infected nodes after
the �rst t rounds of the 2-Bips process on G.

Lemma 5.1. Let t ∈ N and S ⊆ V . Then

E [|It+1| − |It| | It = S]

=
∑
u∈V

γu,S(1− γu,S) +
∑
u∈I0

(1− γu,S)
2
.

Proof. Suppose It = S. Recall γu,S := degS(u)/d. A
node u ∈ S \ I0 becomes uninfected in round t+ 1 with

probability (1− γu,S)
2
. Similarly, a node u ∈ V \ S

becomes infected with probability 1−(1− γu,S)
2
. Using

that, we calculate

E [|It+1| − |It| | It = S]

=
∑

u∈V \S

(1− (1− γu,S)
2
)−

∑
u∈S\I0

(1− γu,S)
2

=
∑

u∈V \S

(2γu,S − γ2
u,S)−

∑
u∈S

(1− γu,S)
2

+
∑
u∈I0

(1− γu,S)
2

=
∑

u∈V \S

γu,S +
∑

u∈V \S

γu,S · (1− γu,S)

−
∑
u∈S

(1− γu,S)
2

+
∑
u∈I0

(1− γu,S)
2

=
1

d
· E(V \ S, S) +

∑
u∈V \S

γu,S(1− γu,S)−
∑
u∈S

(1− γu,S)

+
∑
u∈S

γu,S · (1− γu,S) +
∑
u∈I0

(1− γu,S)
2

=
1

d
· E(V \ S, S)− 1

d
· E(S, V \ S)

+
∑
u∈V

γu,S · (1− γu,S) +
∑
u∈I0

(1− γu,S)
2

=
∑
u∈V

γu,S · (1− γu,S) +
∑
u∈I0

(1− γu,S)
2
.

This �nishes the proof.

The next result is an immediate corollary of
Lemma 5.1.

Lemma 5.2. Let t ∈ N and S ⊂ V . Then

E [|It+1| − |It| | It = S] ≥ 1/(2d).

Moreover, if (S, V \ S,E) is a bipartite graph, then
E [|It+1| − |It| | It = S] ≥ 1.

Proof. Suppose that It = S ⊂ V . If (S, V \ S,E) is a
bipartite graph, then γu,s = 0 if u ∈ S, and γu,s = 1 if
u ∈ V \ S. Then Lemma 5.1 implies

E [|It+1| − |It| | It = S] = 0 +
∑
u∈I0

1 ≥ 1.

If (S, V \ S,E) is not a bipartite graph, then there is a
node u ∈ V \S that has at least one neighbor in each of
the sets S and V \ S. By Lemma 5.1, the contribution
of this node to E [|It+1| − |It| | It = S] is

γu,S · (1− γu,S) ≥ 1

d
·
(

1− 1

d

)
≥ 1

2d
,

�nishing the proof.

The next key claim provides lower bounds on the
�rst of the two sums in Lemma 5.1, in terms of the
conductance φ.

Lemma 5.3. Let S ⊆ V .

(a)
∑
u∈V

γu,S · (1− γu,S) ≥ φ

4
·min { |S|, n− 2|S| }.

(b) If |S| = n/2 and there is a u ∈ S with γu,S ≥ 1
2 ,

then
∑
u∈V

γu,S · (1− γu,S) ≥ φ

2
.



Proof. (a) Let B := {u ∈ V \ S : γu,S ≥ 1/2 }, and let

b := min { |S|, |B| }. De�ne set Ŝ as the union of S with
an arbitrary b-subset of B. We have

E(Ŝ, V \ Ŝ) = E(S, V \ Ŝ) + E(Ŝ \ S, V \ Ŝ)(5.1)

≤ E(S, V \ Ŝ) + E(Ŝ \ S, V \ S),

where the inequality holds because, by construction of
Ŝ, V \ Ŝ ⊆ V \ S. On the other hand, by de�nition of
the conductance and since b ≤ |S|, we have

E(Ŝ, V \ Ŝ) ≥ φ · d ·min { |Ŝ|, |V | − |Ŝ| }(5.2)

= φ · d ·min { |S|+ b, n− |S| − b }
≥ φ · d ·min { |S|, n− 2|S| } .

From (5.1) and (5.2), E(S, V \ Ŝ) + E(Ŝ \ S, V \ S) ≥
φ · d ·min { |S|, n− 2|S| } . Hence, to prove the claim it
su�ces to show that E(S, V \ Ŝ) + E(Ŝ \ S, V \ S) ≤
4d ·

∑
u∈V γu,S(1 − γu,S). We do so by distinguishing

two cases.

Case 1: b < s.
In this case, we have γu,S ≤ 1/2 for all u ∈ V \ Ŝ.
Moreover, by construction we have γu,S ≥ 1/2 for all

u ∈ Ŝ \ S. Using that, we obtain

E(S, V \ Ŝ) + E(Ŝ \ S, V \ S)

=
∑

u∈V \Ŝ

γu,S · d+
∑
u∈Ŝ\S

(1− γu,S) · d

≤ 2d

 ∑
u∈V \Ŝ

γu,S(1− γu,S) +
∑
u∈Ŝ\S

γu,S(1− γu,S)


≤ 2d ·

∑
u∈V

γu,S · (1− γu,S).

Case 2: b = s.
By construction of Ŝ, we have E(Ŝ \ S, V ) = b · d.
Together with the case assumption this implies that
E(S, V \ S) ≤ E(S, V ) = s · d = b · d = E(Ŝ \ S, V ).
With this, we calculate

E(S, V \ Ŝ) = E(S, V \ S)− E(S, Ŝ \ S)

≤ E(Ŝ \ S, V )− E(S, Ŝ \ S)

= E(Ŝ \ S, V )− E(Ŝ \ S, S)

= E(Ŝ \ S, V \ S).

Then the desired inequality follows:

E(S, V \ Ŝ) + E(Ŝ \ S, V \ S) ≤ 2 · E(Ŝ \ S, V \ S)

= 2 ·
∑
u∈Ŝ\S

d · (1− γu,S)

≤ 4d ·
∑
u∈Ŝ\S

γu,S · (1− γu,S)

≤ 4d ·
∑
u∈V

γu,S · (1− γu,S).

(b) Let B := {u ∈ S : γu,S ≥ 1/2 } ⊆ S. By the
lemma's assumptions, 1 ≤ |B| ≤ n/2. Together with
vol(B) = d · |B| and the de�nition of conductance, this
gives

E(B, V \B) ≥ φ · d · |B| ≥ d · φ.

We can also bound E(B, V \B) from above as follows:

E(B, V \B) = E(B, V \ S) + E(B,S \B)

≤ E(B, V \ S) + E(S, S \B)

=
∑
u∈B

d · (1− γu,S) +
∑

u∈S\B

d · γu,S

≤ 2
∑
u∈B

d · γu,S(1− γu,S) + 2
∑

u∈S\B

d · γu,S(1− γu,S)

= 2d
∑
u∈S

γu,S · (1− γu,S)

≤ 2d
∑
u∈V

γu,S · (1− γu,S).

Here, the �rst inequality uses B ⊆ S and the second
inequality uses γu,S ≥ 1/2 for u ∈ B and 1−γu,S ≥ 1/2
for u ∈ S \ B. Combining the above lower and upper
bounds for E(B, V \B) proves the claim.

Combining Lemmas 5.1 and 5.3, we obtain the
following lower bounds on the expected increase in the
number of infected nodes in a round (see also Figure 1).

Lemma 5.4. Let S ⊆ V and s := |S|.

(a) E [|It+1| − |It| | It = S]

≥ φ

4
·min { s, |n− 2s|, n− s } .

(b) If s = n/2, then E [|It+1| − |It| | It = S] ≥ φ

4
.

Proof. (a) We have two cases: If s ≤ n/2, then
Lemma 5.3(a) implies that

∑
u∈V γu,S · (1 − γu,S) ≥

φ
4 · min { s, n− 2s }. If s > n/2, then Lemma 5.3(a)
applied to the set V \ S instead of the set S implies∑
u∈V

γu,V \S(1−γu,V \S) ≥ φ

4
·min {n− s, n− 2(n− s) } ,



and this is equivalent to∑
u∈V

γu,S(1− γu,S) ≥ φ

4
·min {n− s, 2s− n } .

Combining both cases with Lemma 5.1 proves (a).

(b) We have two cases: If there is a u ∈ S with γu,S ≥
1/2, Lemma 5.3(b) gives

∑
u∈V γu,S(1 − γu,S) ≥ φ/2.

Otherwise, we have γu,S ≤ 1/2 for all u ∈ I0 ⊆ S. This
implies

∑
u∈I0 (1− γu,S)

2 ≥ 1/4 ≥ φ/4, where we used
|I0| ≥ 1 and φ ≤ 1. Therefore in both cases,∑

u∈V
γu,S · (1− γu,S) +

∑
u∈I0

(1− γu,S)
2 ≥ φ

4
.

Combining that with Lemma 5.1 proves (b).

5.2 Tail Bounds for Bips. In this section, we
derive high probability lower bounds on the increase in
the number of infected nodes, over the course of several
rounds of the 2-Bips process on graph G.

The next result is obtained by using Lemma 4.2.

Lemma 5.5. For t1, t2 ∈ N0, let

∆(t1,t2] :=

t2∑
t=t1+1

E [|It| − |It−1| | It−1] .

For any t0 ∈ N0, S ⊆ V , 0 < ε < 1, and 0 < δ < 1,

Pr
[
∀ t > t0 : |It| − |It0 |

≥ (1− δ)
(
∆(t0,t] − log ε−1

) ∣∣ It0 = S
]

= 1−O
(
δ−2 · εδ

2·(1−δ)/150
)
.

Proof. As already mentioned, we will apply Lemma 4.2
to derive the above tail bound. For that, we must
decompose the change |It| − |It−1| in the number of
infected nodes during a round t, into a di�erence∑
iX

(t)
i −

∑
i Y

(t)
i for suitable binary random variables.

The natural choice would be to let X
(t)
u = 1 if u is

uninfected and becomes infected during round t (such
that it contributes positively to |It| − |It−1|) and, sim-

ilarly, Y
(t)
u = 1 if u is infected and becomes uninfected

during round t (such that it contributes negatively to
|It| − |It−1|). Unfortunately, this might yield situations

where no suitable α exists, in particular, if both
∑
uX

(t)
u

and
∑
u Y

(t)
u are large but their di�erence is small. To

deal with this problem, we choose more carefully which
nodes are seen as contributing positively or negatively
to |It| − |It−1|. The idea is that a node u with large
γu,It−1

is very likely to be infected at the end of round
t, so we will consider it as a negative contribution if u

is not infected, while if γu,It−1
is small, we will consider

it as a positive contribution if u is infected at the end
of the round.

We formalize this idea as follows. For any set
S ⊆ V , let >(S) be the set of the |S| (�top�) nodes u ∈ V
with the largest value γu,S , breaking ties arbitrarily (but
deterministically). For any t ∈ N and u ∈ V , de�ne the
random variables X

(t)
u and Y

(t)
u as follows.

• If u /∈ >(It−1): X
(t)
u = 1 if u ∈ It; X

(t)
u = 0 if

u /∈ It; and Y (t)
u = 0.

• If u ∈ >(It−1): Y
(t)
u = 1 if u /∈ It; Y

(t)
u = 0 if

u ∈ It; and X(t)
u = 0.

We can now express |It| as

|It| =
∑

u/∈>(It−1)

X(t)
u +

∑
u∈>(It−1)

(
1− Y (t)

u

)
=
∑
u∈V

X(t)
u −

∑
u∈V

Y (t)
u + |>(It−1)|

=
∑
u∈V

(
X(t)
u − Y (t)

u

)
+ |It−1|.

Thus

(5.3) |It| − |It−1| =
∑
u∈V

(
X(t)
u − Y (t)

u

)
.

Next we show

(5.4)
∑
u∈V

E
[
X(t)
u

∣∣∣ It−1

]
≥ 3

2
·
∑
u∈V

E
[
Y (t)
u

∣∣∣ It−1

]
.

Taking the expectation in (5.3) while conditioning on
It−1 = S ⊆ V yields∑

u∈V
E
[
X(t)
u − Y (t)

u

∣∣∣ It−1 = S
]

(5.5)

= E [|It| − |It−1| | It−1 = S]

≥
∑
u∈V

γu,S · (1− γu,S),

where the last inequality follows from Lemma 5.1. We
also have∑

u∈V
E[Y (t)

u | It−1 = S] =
∑

u∈>(S)

(1− γu,S)
2
.

We bound the right side of this identity by distinguish-
ing two cases: If γu,S ≥ 1/2 for all u ∈ >(S), then the
right side is at most

∑
u∈>(S) γu,S(1−γu,S). Otherwise,

we must have γu,S < 1/2 for all u ∈ V \>(S), and thus,∑
u∈>(S)

(1− γu,S)
2 ≤

∑
u∈>(S)

(1− γu,S) = |>(S)| −
∑

u∈>(S)

γu,S

=
∑

u∈V \>(S)

γu,S ≤ 2
∑

u∈V \>(S)

γu,S · (1− γu,S),



where in the penultimate step we used
∑
u∈V γu,S =

|S| = |>(S)|, and in the last step we used 1−γu,S ≥ 1/2.
We conclude that in both cases, we have∑

u∈V
E[Y (t)

u | It−1 = S] ≤ 2
∑
u∈V

γu,S · (1− γu,S).

Substituting that to (5.5) and rearranging, gives (5.4).
We now specify the random variable sequences on

which we apply Lemma 4.2, and show that they satisfy
the necessary conditions. Suppose It0 = S and assume,
without loss of generality, that V = { 1, . . . , n }. For
each round t ≥ t0 and node u ∈ V we de�ne the
single subscript variables Xi := X

(t)
u and Yi := X

(t)
u ,

where i = (t − t0 − 1) · n + u. Note that the nodes'
random choices generate a �ltration F = (Fi)i∈N such
that (Xi)i∈N and (Yi)i∈N are adapted to F . Using
this notation in (5.3) and summing over all rounds
t0 < t ≤ t0 + k for k ∈ N, we get

(5.6) |It0+k| − |It0 | =
k·n∑
i=1

(Xi − Yi).

Moreover, since for any k ∈ N0 and k ·n < i ≤ (k+1) ·n
the random set It0+k is fully determined by Fk·n ⊆
Fi−1 and, given It0+k, the random variables Xi and
Yi are independent of Fi−1, we have E [Xi | It0+k] =
E [Xi | Fi−1] and E [Yi | It0+k] = E [Yi | Fi−1]. Combin-
ing this with (5.3) and (5.4) we get respectively

k·n∑
i=1

E [Xi − Yi | Fi−1](5.7)

=

t+k∑
t=t0+1

E [|It| − |It−1| | It−1] = ∆(t0,t0+k],

and

k·n∑
i=1

E [Xi | Fi−1] ≥ 3

2
·
k·n∑
i=1

E [Yi | Fi−1] .(5.8)

We now apply Lemma 4.2 to the random variable
sequences (Xi)

λn
i=1 and (Yi)

λn
i=1 for an arbitrary large λ

(the results will not depend on λ, so we can let λ→∞).
Using the notation of Lemma 4.2, we can restate (5.6),
(5.7), and (5.8), respectively, as

X[1,k·n] − Y[1,k·n] = |It0+k| − |It0 |,
P[1,k·n] −Q[1,k·n] = ∆(t0,t0+k],

P[1,k·n] ≥
(

1 +
1

2

)
·Q[1,k·n],

for k ∈ N. Thus, for any 0 < ε < 1 and 0 < δ < 1

Lemma 4.2 yields

Pr
[
∀ k : |It0+k| − |It0 |

≥ (1− δ) ·
(
∆(t0,t0+k] − log ε−1

) ∣∣ It = S
]

= 1−O

(
δ−2 · ε

δ2·(1−δ)
150

)
,

�nishing the proof.

The next lemma uses Lemmas 5.4 and 5.5 to show
high-probability lower bounds on the spread of infection
in various di�erent �regimes,� depending on the number
of currently infected nodes.

Lemma 5.6. Assume It0 = S, and let s := |S|. Let
σ := c · log n for a su�ciently large constant c.

(a) min { k : |It0+k| ≥ min{s+ σ, n} } = O
(
φ−1 log n

)
w.h.p.

(b) If s ∈ [σ, n3 ] then w.h.p.
min { k : |It0+k| ≥ min { 2s, n3 } } = O

(
φ−1

)
.

(c) If s ∈ [n3 ,
n
2 − σ] then w.h.p.

min { k : n
2 − |It0+k| ≤ n/2−s

2 } = O
(
φ−1

)
.

(d) If s ∈ [n2 + σ, 2n
3 ] then w.h.p.

min{k : |It0+k|− n
2 ≥ min{2(s− n

2 ), n6 }} = O
(
φ−1

)
.

(e) If s ∈ [ 2n
3 , n− σ] then w.h.p.

min { k : n− |It0+k| ≤ n−s
2 } = O

(
φ−1

)
.

Proof. Let ∆(t0,t] :=
∑t
i=t0+1 E [|Ii| − |Ii−1| | Ii−1], as

in Lemma 5.5. By applying Lemma 5.5 with ε = n−c

and δ = 1/2, we obtain

Pr

[
∀ t ≥ t0 : |It| − s ≥

1

2
· (∆(t0,t] − σ)

]
(5.9)

= 1−O
(
n−c/1200

)
.

We will use this probability bound to prove the lemma's
statements.

(a) Let T := min { t ≥ 0: |It| = n }, i.e., T is the total
number of rounds before all nodes are infected. If i ≤ T ,
Lemma 5.4 implies E [|Ii| − |Ii−1| | Ii−1] ≥ φ/4. Thus,
∆(t0,t] ≥ (t − t0) · φ/4, for t0 ≤ t ≤ T . Combined with
(5.9) this yields

Pr

[
∀ t ∈ { t0, . . . , T } :(5.10)

|It| − s ≥
1

2

(
(t− t0)

φ

4
− σ

)]
= 1−O

(
n−c/1200

)
.

For t = t0 + 12σ · φ−1 = t0 + O
(
φ−1 · log n

)
, (5.10)

implies that with probability 1−O
(
n−c/1200

)
, we have

|It| − s ≥ σ or t ≥ T . This implies (a).



(b) Let T1 := min { t ≥ t0 : |It| ≥ n
3 or |It| < s− σ

2 },
i.e., T1 is the �rst round after t0 in which either at least
n/3 nodes are infected or the number of infected nodes
dropped by more than σ/2 compared to S. If t0 <
i ≤ T1, Lemma 5.4(a) implies E [|Ii| − |Ii−1| | Ii−1] ≥
|Ii−1| · φ/4 ≥ (s − σ/2) · φ/4. Thus, ∆(t0,t] ≥ (t − t0) ·
(s − σ/2) · φ/4, for t0 ≤ t ≤ T1. Combined with (5.9)
this yields

Pr

[
∀ t ∈ { t0, . . . , T1 } :(5.11)

|It| − s ≥
1

2

(
(t− t0)

(
s− σ

2

) φ
4
− σ

)]
= 1−O

(
n−c/1200

)
.

For t = t0 + 24φ−1, (5.11) implies that with probability
1 − O

(
n−c/1200

)
, we have |It| − s ≥ 3s − 2σ ≥ s

or t > T1 However, t > T1 implies |It| ≥ n/3 or
|It| < s − σ/2. But since ∆(t0,t] ≥ 0 for all t ≥ t0
(which follows from Lemma 5.1), (5.9) implies that with
probability 1−O

(
n−c/1200

)
, we have |It| ≥ s− σ/2 for

all t ≥ t0. Together with a union bound, we obtain
that with probability 1 − O

(
n−c/1200

)
, |It| − s ≥ s or

|It| ≥ n/3. This implies (b).

(c) Let T2 := min{t ≥ t0 : n
2 − |It| ≤

n/2−s
2 or |It| <

s − σ
2 }. If t0 < i ≤ T2, Lemma 5.4(a) implies

E [|Ii| − |Ii−1| | Ii−1] ≥ min { |Ii−1|, n− 2|Ii−1| } · φ/4.
By our de�nition of T2, the right side of this inequality
is at most min { s− σ/2, n/2− s }·φ/4 = (n/2−s)·φ/4,
where we used the assumption n/3 ≤ s ≤ n/2 − σ.
Thus, ∆(t0,t] ≥ (t− t0) · (n/2− s) · φ/4 for t0 ≤ t ≤ T1.
Combined with (5.9) this yields

Pr

[
∀ t ∈ { t0, . . . , T2 } :(5.12)

|It| − s ≥
1

2

(
(t− t0)

(n
2
− s
) φ

4
− σ

)]
= 1−O

(
n−c/1200

)
.

For t = t0 + 8φ−1, (5.12) implies that with probability

1 − O
(
n−c/1200

)
, we have n/2 − |It| ≤ n/2−s

2 or |It| <
s − σ/2. Since with probability 1 − O

(
n−c/1200

)
, we

have |It| ≥ s − σ/2 for all t ≥ t0 (as argued earlier
in (b)), it follows that with probability 1−O

(
n−c/1200

)
,

n/2− |It| ≤ n/2−s
2 . This implies (c).

(d) Let T3 := min{t ≥ t0 : |It| ≥ 2n
3 or |It| < s − σ

2 }.
If t0 < i ≤ T3, Lemma 5.4(a) implies that, since
n/2 < s− σ/2 ≤ |Ii−1| ≤ 2n/3, E [|Ii| − |Ii−1| | Ii−1] ≥
(2|Ii−1| − n) · φ/4 ≥ (2s− σ − n) · φ/4. Thus, ∆(t0,t] ≥
(t − t0) · (2s − σ − n) · φ/4 for t0 ≤ t ≤ T3. Combined

with (5.9) this yields

Pr

[
∀ t ∈ { t0, . . . , T3 } :(5.13)

|It| − s ≥
1

2

(
(t− t0)(2s− σ − n)

φ

4
− σ

)]
= 1−O

(
n−c/1200

)
.

For t = t0 + 12φ−1, (5.13) implies that with probability
1 − O

(
n−c/1200

)
, we have |It| − n/2 ≥ 2(s − n/2) or

|It| ≥ 2n/3 or |It| < s − σ/2. Since with probability
1 − O

(
n−c/1200

)
, we have |It| ≥ s − σ/2 for all t ≥ t0

(as argued in (b)), it follows that with probability
1−O

(
n−c/1200

)
, |It| −n/2 ≥ 2(s−n/2) or |It| ≥ 2n/3.

This implies (d).

(e) Let T4 := min{t ≥ t0 : n − |It| ≤ n−s
2 or |It| <

s − σ
2 }. If t < i ≤ T4, Lemma 5.4(a) im-

plies that, since s − σ/2 ≤ |Ii−1| ≤ n − n−s
2 ,

E [|Ii| − |Ii−1| | Ii−1] ≥ min { 2|Ii−1| − n, n− |Ii−1| } ·
φ/4 ≥ min { 2s− σ − n, n−s2 } · φ/4 ≥

n−s
2 · φ/4, since

we assume 2n/3 ≤ s ≤ n − σ. Thus, ∆(t0,t] ≥
(t − t0) · n−s2 · φ/4 for t0 ≤ t ≤ T1. Combined with
(5.9) this yields

Pr

[
∀ t ∈ { t0, . . . , T4 } :(5.14)

|It| − s ≥
1

2

(
(t− t0)

n− s
2
· φ

4
− σ

)]
= 1−O

(
n−c/1200

)
.

For r = t0 + 16φ−1, (5.14) implies that with probability
1−O

(
n−c/1200

)
, we have n−|It| ≤ n−s

2 or |It| < s−σ/2.
Since with probability 1−O

(
n−c/1200

)
, we have |It| ≥

s− σ/2 for all t ≥ t0 (as argued in (b)), it follows that
with probability 1−O

(
n−c/1200

)
, n− |It| ≤ n−s

2 . This
implies (e).

5.3 Proof of Theorem 5.1. We divide the process
into phases, as illustrated in Figure 1. The theorem then
follows by combining the bounds we get from Lemma 5.6
for the length of the di�erent phases.

Formally, let σ = Ω (log n) as de�ned in Lemma 5.6,
and let τ(i) := min { t : |It| ≥ i }. We consider the
following phases.

Phase 1: 0→ τ(σ)
Applying Lemma 5.6(a) with t0 = 0 yields that, w.h.p.,
τ(σ) = O

(
φ−1 · log n

)
. Thus, the total time spend in

this phase is O
(
φ−1 · log n

)
w.h.p.

Phase 2: τ(σ)→ τ(n/3)
Applying Lemma 5.6(b) with t0 = τ(2j ·σ), for each j ∈
{ 0, . . . , blog n

3σ c } yields that τ(min { 2j+1 · σ, n/3 }) −
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Figure 1: Illustration of the seven phases used to
bound the infection time of 2-Bips, in the proof of
Theorem 5.1. The x-axis shows the number of infected
nodes, and the y-axis shows the lower bound on the
expected change in the number of infected nodes per
round given by Lemma 5.4. We show that each phase
last for O

(
φ−1 · log n

)
rounds w.h.p.

τ(2j · σ) = O
(
φ−1

)
w.h.p. Thus, the total time spend

in this phase is dlog n
3σ e ·O

(
φ−1

)
w.h.p.

Phase 3: τ(n/3)→ τ(n/2− σ)
Applying Lemma 5.6(c) with t0 = τ(n/2−2−j ·n/6), for
each j ∈ { 0, . . . , blog n

6σ c } yields that τ(n/2 − 2−j−1 ·
n/6) − τ(n/2 − 2−j · n/6) = O

(
φ−1

)
w.h.p. Thus, the

total time spend in this phase is dlog n
6σ e·O

(
φ−1

)
w.h.p.

Phase 4: τ(n/2− σ)→ τ(n/2 + σ)
Applying Lemma 5.6(a) with t0 = n/2−σ and t0 = n/2
yields that τ(n/2 + σ) − τ(n/2 − σ) = O

(
φ−1 · log n

)
w.h.p. Thus, the total time spend in this phase is
O
(
φ−1 · log n

)
w.h.p.

Phase 5: τ(n/2 + σ)→ τ(2n/3)
Applying Lemma 5.6(d) with t0 = τ(n/2 + 2j ·
σ), for each j ∈ { 0, . . . , blog n

6σ c } yields that
τ(min {n/2 + 2j+1 · σ, 2n/3 })−τ(n/2+2j ·σ) = O

(
φ−1

)
w.h.p. Thus, the total time spend in this phase is
dlog n

6σ e ·O
(
φ−1

)
w.h.p.

Phase 6: τ(2n/3)→ τ(n− σ)
Applying Lemma 5.6(e) with t0 = τ(n − 2−j · n/3),
for each j ∈ { 0, . . . , blog n

3σ c } yields that τ(n− 2−j−1 ·
n/3)−τ(n−2−j ·n/3) = O

(
φ−1

)
w.h.p. Thus, the total

time spend in this phase is dlog n
3σ e ·O

(
φ−1

)
w.h.p.

Phase 7: τ(n− σ)→ τ(n)
Applying Lemma 5.6(a) with t0 = n − σ yields that
τ(n)− τ(n−σ) = O

(
φ−1 · log n

)
w.h.p.. Thus, the total

time spend in this phase is O
(
φ−1 · log n

)
w.h.p.

Combining all the above and using a union bound,
we obtain that, w.h.p.,

τ(n) = 3 ·O
(
φ−1 · log n

)
+
(

2
⌈
log

n

3σ

⌉
+ 2
⌈
log

n

6σ

⌉)
·O
(
φ−1

)
= O

(
φ−1 · log n

)
.

This completes the proof.

6 General Bound

Our second main result, Theorem 1.2, follows from the
next bound on the infection time of the 2-Bips process.

Theorem 6.1. For any connected d-regular graph G =
(V,E) with n nodes, the infection time of the 2-Bips
process is O (n) in expectation and O (n log n) w.h.p.

Theorem 1.2 is obtained by combining the above
result with Theorem 3.1. The rest of this section is thus
devoted to the proof of Theorem 6.1.

We describe a partition of the 2-Bips process into
phases, such that, roughly speaking, the expected in-
crease in the number of infected nodes in a phase is at
least proportional to the length of the phase. We then
show that an expected number of O (n) rounds su�ce to
infect all nodes, by using the variant of Wald's theorem
we showed in Lemma 4.1. This variant can deal with
the complication that the length of a phase is itself a
random variable.

We distinguish two types of phases, depending
on the expected increase in the number of infected
nodes in the �rst round of the phase. Suppose that
a phase starts in round t, and It−1 = S. Consider
E [|It| − |It−1| | It−1 = S]; more precisely, we consider
a quantity ψ(S) which is very close to that expectation.

If ψ(S) = Ω (1) then the phase consists of a single
round, round t. This satis�es the requirement that the
expected increase in the number of infected nodes in a
phase is at least proportional to the phase length.

If ψ(S) = o (1) then Lemma 5.1 implies that one of
the following two cases applies: (1) the number of edges
in the cut between S and V \ S is small, namely o (d);
or (2) the number of edges with both endpoints in S or
both in S \ V is o (d).

If case (1) holds, then the phase lasts until one of
the following happens: (i) the number of infected nodes
increases by 1/ψ(S); or (ii) some node from S becomes
uninfected; or (iii) 2/ψ(S) rounds have passed since the
beginning of the phase. In Lemma 6.1 we show that (i)
happens with at least some constant probability, while
the probability that (ii) happens and k ≥ 1 nodes from S

are uninfected at the end of the phase is ψ(S)
Ω(k)

. These
two imply that the expected increase in the number of
infected nodes in the phase is at least proportional to
the length of the phase.

In the above case (1), it is unlikely that some node
from S becomes uninfected during the phase, because
there are very few edges between S and the rest of the
graph. If case (2) holds, it is no longer true that nodes
in S are likely to remain infected during the phase.
Instead they are likely to switch between the infected
and uninfected states in each round. It turns out that



this case can be treated similarly to case (1), if in place
of set S we consider the set {u : γu,S > 1/2 } in odd
rounds from the beginning of the phase. The conditions
for terminating the phase are the same as the conditions
(i)�(iii) from case (1), except that condition (ii) now
states that: some node from S is uninfected at the end
of an even round from the beginning of the phase, or
some node from set {u : γu,S > 1/2 } is uninfected at
the end of an odd round. Using Lemma 6.1 as before,
we conclude that the expected increase in the number
of infected nodes in the phase is at least proportional to
the length of the phase.

We now give the detailed proof. For any S ⊆ V , let

ψ(S) :=
∑
u∈V

min { γu,S , 1− γu,S } ,

and
ξ(S) := {u ∈ V : γu,S > 1/2 } .

Note that ψ(S) =
∑
u∈ξ(S)(1− γu,S) +

∑
u∈V \ξ(S) γu,S .

Note also that ψ(S) is within a factor of two of the sum∑
u∈V γu,S(1− γu,S) from Lemma 5.1.
We consider the following partition of the 2-Bips

process into phases. Let `i, for i ∈ N0, denote the total
length of the �rst i phases. So, phase i ∈ N consists of
the rounds `i−1 + 1 up to `i. Assuming I`i−1

= S,
we de�ne `i inductively as follows. Let ε > 0 be a
su�ciently small constant (to be chosen later).

• If ψ(S) ≥ ε or ψ(S) = 0, then `i = `i−1 + 1, i.e.,
phase i consists of just a single round.
• If 0 < ψ(S) < ε, then `i is the smallest round that
is greater than `i−1 and satis�es at least one of the
conditions below:

(i) |I`i | ≥ |S|+ 1/ψ(S);
(ii) S′ \ I`i 6= ∅, where

(6.15) S′ :=

S,
if E(S, V \ S) < d/2
or `i − `i−1 is even;

ξ(S), otherwise.

(iii) `i ≥ `i−1 + 2/ψ(S).

The next lemma analyzes the case where 0 < ψ(S) < ε.

Lemma 6.1. Consider a phase i ≥ 1. Let S ⊆ V such
that 0 < ψ(S) < ε, and let S′ be de�ned as in (6.15).

(a) Pr
[
|S′ \ I`i | ≥ k

∣∣ I`i−1
= S

]
≤ 2ψ(S)

2k−1
, for any

k ≥ 1.
(b) Pr

[
|I`i | ≥ |S|+ 1/ψ(S)

∣∣ I`i−1
= S

]
≥ ε′, for some

constant ε′ > 0.

6.1 Proof of Lemma 6.1. First we prove the result
for the case in which E(S, V \ S) < d/2, and then for
the case of E(S, V \ S) ≥ d/2.

The Case of Small Cut: E(S, V \ S) < d/2
In this case, we have S′ = S. Moreover, γu,S > 1/2 for
all u ∈ S, and γu,S < 1/2 for all u ∈ V \ S.

We prove (a) �rst. For a round t ≥ 1, �x It−1 and
assume S ⊆ It−1. We show by induction on k ≥ 0 that

(6.16) Pr [|S \ It| ≥ k] ≤ ψ(S)
2k
.

This holds trivially for k = 0, because the right side is 1.
Suppose that Pr [|S \ It| ≥ k] ≤ ψ(S)

2k
for some k ≥ 0.

We show that Pr [|S \ It| ≥ k + 1] ≤ ψ(S)
2(k+1)

:

Pr [|S \ It| ≥ k + 1]

≤
∑
u∈S

Pr [u /∈ It] · Pr [|S \ {u } \ It| ≥ k]

≤
∑
u∈S

(1− γu,S)
2 · Pr [|S \ It| ≥ k]

≤
∑
u∈S

(1− γu,S)
2 · ψ(S)

2k
,

by the induction hypothesis. Also,

∑
u∈S

(1− γu,S)
2 ≤

(∑
u∈S

(1− γu,S)

)2

≤ ψ(S)
2
,

where the last relation is obtained by using the case
hypothesis, which implies that 1 − γu,S < 1/2 for all

u ∈ S. It follows that Pr [|T \ It| ≥ k + 1] ≤ ψ(S)
2(k+1)

,
completing the proof of (6.16).

From (6.16) and a union bound, the probability that
|S \ It| ≥ k for at least one of the `i ≤ 2/ψ(S) rounds of

phase i is at most (2/ψ(S)) · ψ(S)
2k
. This implies (a),

since S′ = S.
Next we prove (b). For a round t ≥ 1, �x It−1 and

suppose that S ⊆ It−1 and |It−1 \ S| = k. Given that,
we compute in the conditional distribution of |It \ S|.

First, suppose that |It−1 \ S| = 0, i.e., It−1 = S.

Pr [|It \ S| ≥ 1] = 1−
∏

u∈V \S

(1− γu,S)
2

(6.17)

≥ 1− e−
∑
u∈V \S 2γu,S

≥ 1− e−2ψ(S)

≥ 2ψ(S)− 2ψ(S)
2
,

where the penultimate inequality is obtained using the
case hypothesis, which implies γu,S < 1/2 if u ∈ V \ S.

Suppose now that |It−1 \ S| = k ≥ 1. We have

E [|It \ S|] =
∑

u∈V \S

(
1− (1− γu,It−1

)
2
)

=
∑

u∈V \S

γu,It−1
(2− γu,It−1

).



For any u ∈ V \ S,

γu,It−1 ≤ ψ(S) + k/d,

because u has a fraction γu,S ≤ ψ(S) of its neighbors in
S, and at most k neighbors in It−1 \ S. Also,∑

u∈V \S

γu,It−1
≥ k.

Substituting these two bounds above gives

E [|It \ S|] ≥ k · (2− ψ(S)− k/d) ≥ 3k/2,

for ψ(S) < ε ≤ 1/4 and k ≤ d/4. Then a Cherno�
bound gives,

Pr [|It \ S| ≥ 4k/3](6.18)

= Pr [|It \ S| ≥ (1− 1/8) · 3k/2]

≥ 1− e−ck,

for c := 1
86 <

(1/8)2·3/2
2 .

We now combine the above results to show (b). For
k ≥ 0, let xk = min { t > `i−1 : |It \ S| ≥ k }, and let
xbad = min { t > `i−1 : S \ It 6= ∅ }.

Let E1 denote the following event: �x1 < xbad and
x1 ≤ 1

ψ(S)−ψ(S)2
�. The expectation of min {x1, xbad } is

at most 1
2ψ(S)−2ψ(S)2

, by (6.17). Thus, by Markov's in-

equality, min {x1, xbad } ≤ 1
ψ(S)−ψ(S)2

, with probability

at least 1/2. Moreover, by (6.16) (applied for k = 1)
and (6.17), the probability that x1 < xbad is at least

1− ψ(S)2

2ψ(S)−2ψ(S)2
. It follows

(6.19) Pr [E1] ≥ 1

2
·
(

1− ψ(S)

2− 2ψ(S)

)
≥ 1

3
,

for ψ(S) < ε ≤ 1/4.
Suppose now that E1 occurs. Let E2 be the event:

�x1/c < xbad and in each of the rounds x1 +1 up to x1/c

the number of infected nodes increases by at least one.�
Then by (6.18) and (6.16),

Pr [E2] ≥
∏

1≤k≤1/c−1

(1− e−ck − ψ(S)
2
)(6.20)

≥
∏

1≤k≤1/c−1

ck/2

≥ (c/2)
1/c · (1/c)!

≥ (1/2e)
1/c
,

where the second inequality above holds for ψ(S)
2
<

ε2 ≤ c/4 and is obtained using 1− e−ck ≥ ck− (ck)
2
/2;

and the last inequality above is obtained using Stirling's
formula.

Given the event E1 ∩ E2, let E3 be the event:
�x1/ψ(S) < xbad and in each of the rounds x1/c+1 up to
x1/ψ(S) the number of infected nodes u ∈ V \S increases
by at least a factor of 4/3.� Then by (6.18) and (6.16),

Pr [E3](6.21)

≥
∏

0≤i≤log4/3(1/ψ(S))−1

(1− e−(4/3)i − ψ(S)
2
).

≥ 1−
∑
i≥0

e−(4/3)i − ψ(S)
2 · log4/3(1/ψ(S))

≥ 1/25− ψ(S)
2 · log4/3(1/ψ(S))

≥ 1/30,

for ψ(S) < ε, for a small enough constant ε.
Finally, we observe that event E1 ∩ E2 ∩ E3 implies

|I`i | ≥ |S|+ 1/ψ(S) and

`i − `i−1 ≤
1

ψ(S)− ψ(S)
2 +

1

c
+ log4/3(1/ψ(S)),

which is less than 2/ψ(S) for ψ(S) < ε, for a small
enough constant ε. Finally, from (6.19), (6.20), (6.21),

Pr [E1 ∩ E2 ∩ E3] ≥ (1/2e)
1/c

90
.

It follows that the same lower bounds applies also
to Pr [|I`i | ≥ |S|+ 1/ψ(S)]. This completes the proof
of (b).

The Case of Large Cut: E(S, V \ S) ≥ d/2
The analysis for this case is a straightforward adapta-
tion of the proof for the case of E(S, V \ S) < d/2 (pre-
sented earlier), given the following claim which relates
S and ξ(S). Note that the claim does not assume that
E(S, V \ S) ≥ d/2.

Claim 6.1. For any S ⊆ V , if ψ(S) < 1/2, then
ξ(ξ(S)) = S, ψ(ξ(S)) = ψ(S), and |ξ(S)| = |S|.

Proof. Suppose, for contradiction, that there is some
u ∈ S \ ξ(ξ(S)). Since u /∈ ξ(ξ(S)), we have that
γu,ξ(S) ≤ 1/2. That is, for at least d/2 of the neighbors
v of u, we have v /∈ ξ(S) and thus γv,S ≤ 1/2. Moreover,
for each of those nodes v, we have γv,S ≥ 1/d, as they
are neighbors of u ∈ S. Counting just the contribution
of these nodes v to ψ(S) we obtain

ψ(S) ≥ (d/2) · (1/d) = 1/2,

which contradicts the assumption that ψ(S) < 1/2. We
conclude that S ⊆ ξ(ξ(S)).



Suppose now that there is some u ∈ ξ(ξ(S)) \ S;
we use a similar argument as above. Since u ∈ ξ(ξ(S)),
we have that γu,ξ(S) > 1/2. That is, for more than d/2
of the neighbors v of u, we have v ∈ ξ(S) and thus
γv,S > 1/2. Moreover, for each of those v we have
γv,S ≤ 1−1/d, as they are neighbors of u /∈ S. Counting
just the contribution of those nodes v to ψ(S) we obtain

ψ(S) > (d/2) · (1/d) = 1/2,

which contradicts the assumption that ψ(S) < 1/2.
Therefore ξ(ξ(S)) ⊆ S, and since we have shown earlier
that S ⊆ ξ(ξ(S)), we conclude that ξ(ξ(S)) = S.

Next we prove ψ(ξ(S)) = ψ(S). De�ne

ν(S) := { (u, v) : {u, v } ∈ E, u ∈ ξ(S), v ∈ V \ S }
∪ { (u, v) : {u, v } ∈ E, u ∈ V \ ξ(S), v ∈ S } .

Observe that
ψ(S) = |ν(S)|/d.

From the de�nition of ν and the property ξ(ξ(S)) = S
we showed earlier, it follows that (u, v) ∈ ν(ξ(S)) if and
only if (v, u) ∈ ν(S), thus

|ν(ξ(S))| = |ν(S)|.
Therefore,

ψ(ξ(S)) = |ν(ξ(S))|/d = |ν(S)|/d = ψ(S).

Last, we prove |ξ(S)| = |S|. We have

(6.22)

|ξ(S)| =
∑

u∈ξ(S)

γu,S +
∑

u∈ξ(S)

(1− γu,S)

≤ |S|+ ψ(S).

By substituting S with ξ(S), we get

|ξ(ξ(S))| ≤ |ξ(S)|+ ψ(ξ(S)).

Substituting also ξ(ξ(S)) = S and ψ(ξ(S)) = ψ(S) (as
shown earlier), yields

|S| ≤ |ξ(S)|+ ψ(S).

Combining this with (6.22), and using that ψ(S) < 1,
we obtain |ξ(S)| = |S|. This completes the proof of
Claim 6.1.

To prove part (a) of Lemma 6.1, we show similar to
(6.16), that if S ⊆ It−1 then Pr [|ξ(S) \ It| ≥ k | It−1] ≤
ψ(S)

2k
, and if ξ(S) ⊆ It−1 then Pr [|S \ It| ≥ k | It−1] ≤

ψ(S)
2k
. To show that we also use the properties

ξ(ξ(S)) = S and ψ(ξ(S)) = ψ(S), from Claim 6.1.
To prove (b), we show that (6.17) and (6.18) still

hold if we replace S by ξ(S), or if we condition on
ξ(S) ⊆ It−1 instead of S ⊆ It−1. For that again
we use that ξ(ξ(S)) = S and ψ(ξ(S)) = ψ(S), and
also that |ξ(S)| = |S|, by Claim 6.1. The rest of
the proof is essentially the same as for the case of
E(S, V \ S) < d/2.

6.2 Proof of Theorem 6.1. We apply Lemma 4.1
for the random variable sequences (Xi)i∈N and (Yi)i∈N,
where Xi is an upper bound on the length `i − `i−1 of
phase i, and Yi is the increase in the number of infected
nodes during that phase. Formally, for i ∈ N,

Xi :=

{
2/ψ(I`i−1

), if 0 < ψ(I`i−1
) < ε;

1, otherwise,

Yi := |I`i | − |I`i−1 |.

Let T := min { t : It = V } be the number of rounds until
all nodes are infected (i.e., the infection time), and let
τ := min { i : I`i = V } be the number of phases until all
nodes are infected. Then

(6.23)

τ∑
i=1

Xi ≥ T, and

τ∑
i=1

Yi = n− 1.

Consider the �ltration (Fi)i∈N that describes the out-
come of the �rst i phases. Let i ∈ N and assume
i ≤ τ . We distinguish three cases: If ψ(I`i−1

) ≥ ε,
then `i = `i−1 + 1, and

E [Yi | Fi−1] ≥
∑
u∈V

γu,I`i−1
(1− γu,I`i−1

)

≥ ψ(I`i−1)/2

≥ ε/2,

where the �rst inequality follows from Lemma 5.1, and
the second inequality follows from the de�nition of ψ.
If 0 < ψ(I`i−1) < ε, then Lemma 6.1 implies

E [Yi | Fi−1] ≥
∑
k∈N

(−k) · 2ψ(I`i−1)
2k−1

+
ε′

ψ(I`i−1
)

≥ −
∑
k∈N

k2ε2(k−1)ψ(I`i−1
) +

ε′

ψ(I`i−1
)

≥ −3ψ(I`i−1) +
ε′

ψ(I`i−1
)

≥ ε′

2ψ(I`i−1)
,

where the last two inequalities hold if constant ε is
su�ciently small. The last case we need to consider
is the case in which ψ(I`i−1

) = 0. In this case, `i =
`i−1 + 1, and (I`i−1

, V \ I`i−1
, E) is a bipartite graph.

Lemma 5.2 then gives E [Yi | Fi−1] ≥ 1. Therefore, in
all three cases above, E [Yi | Fi−1] ≥ α·Xi, for a suitable
constant α > 0. From Lemma 4.1 then we obtain that
E [
∑τ
i=1 Yi] ≥ α · E [

∑τ
i=1Xi] . Substituting to that the

equations from (6.23), gives n−1 ≥ α ·E [T ], completing
the proof of Theorem 6.1.



7 Comparison with Rumor Spreading

Our bounds on the cover time of a 2-CoBra walk from
Theorems 1.1 and 1.2 coincide with the worst-case time
that Push rumor spreading needs to inform all nodes
on a regular graph [19, 20]. This raises the question
of whether 2-CoBra walks and Push rumor spreading
perform similar in general. Our next theorem, a slightly
reformulated version of Theorem 1.3, implies that this
is not the case. To show this, we construct a family of
tree-like regular graphs for which the cover time of the
2-CoBra walk exceeds the Push rumor spreading time
by a super-polylogarithmic factor.

Theorem 7.1. Let n ∈ N be su�ciently large and let
d := 2

√
logn·log logn. There is a (d+1)-regular graph with

2n nodes such that:

(a) The 2-CoBra walk has an expected cover time of

d · 2Ω(
√

logn/log logn), and
(b) Push rumor spreading informs all nodes in time

O
(
d · log n

)
w.h.p.

We prove Theorem 7.1 for a family of almost regular
graphs Sd,h, where d, h ∈ N and d ≥ 2. Here, Sd,h is
obtained from a full d-ary tree of height h by replacing
each leaf u by a clique of d + 1 nodes and adding an
edge between u's parent and one (arbitrary) node of the
clique. This graph has n = (dh+1−1)/(d−1) nodes and
is almost (d+ 1)-regular (only the root and d nodes per
leaf-clique have degree d). To obtain a regular graph
from Sd,h, one can, for example, consider two copies
of Sd,h and match the two roots as well as the clique
nodes of degree d from the two copies. Our analysis
immediately generalizes to this (d + 1)-regular graph
with 2n nodes.

We prove that the lower bound from Theorem 7.1(a)
holds for the 2-CoBra walk on Sd,h (Lemma 7.2) and
that the upper bound from Theorem 7.1(b) holds for
Push rumor spreading on Sd,h (Lemma 7.1). The latter
follows easily from a result by Feige et al. [19] and is
given in the next lemma.

Lemma 7.1. Starting from an arbitrary node, the Push
protocol informs all nodes in Sd,h in time O (d · log n)
w.h.p.

Proof. From [19, Theorem 2.2] we get a bound of
O (∆ · (diam(G) + log n)) for Push rumor spreading to
inform all nodes on any graph with n nodes, maximum
degree ∆, and diameter diam(G). The lemma's state-
ment follows since deg(Sd,h) = d+ 1 and diam(Sd,h) =
2 · (h+ 1) = O (log n).

The lower bound for 2-CoBra on Sd,h is stated it
in the following lemma.

Lemma 7.2. Let n ∈ N be su�ciently large, let d :=
2
√

logn·log logn, and let h :=
√

log n/log log n − o (1).2

The expected cover time of the 2-CoBra walk on Sd,h
is d · 2Ω(

√
logn/log logn).

Our main tool to prove Lemma 7.2 is Lemma 7.3,
which provides a recursive lower bound on the time
T` it takes a node u at depth ` to activate its parent.
Slightly simpli�ed, we show that T` ≈ Ω (log d) · T`+1.
To build up the intuition behind this lower bound,
consider a 2-CoBra walk starting from node u. In
any round in which u is active, the probability that
it activates its parent is roughly 2/d. Thus, if u is
active for O

(√
d
)
rounds, the probability that its parent

got activated at least once is relatively low (of order
O
(
1/
√
d
)
). Thus, to bound the time until u activates

its parent with a good probability, it is su�cient to
bound the time until u was active for Ω

(√
d
)
rounds. In

the �rst round, the 2-CoBra walk most likely activates
two of u's subtrees. Node u becomes inactive and it
takes roughly T`+1/2 rounds before one of the two active
subtrees reactivates u. Each time u is reactivated, the
number of active subtrees increases by at most two.
With k active subtrees, the time until u is reactivated is

roughly T`+1/k. Thus, it takes about
∑Θ(

√
d)

k=1 T`+1/k =
Θ (log d) · T`+1 rounds for u to be activated for at least
Θ
(√
d
)
rounds.

The formalization of this proof idea needs some
care, since we have to deal, for example, with occasional
subtrees that are much faster in reactivating u. Taking
such technicalities into account, we can prove the actual,
slightly more involved recursive lower bound stated in
the following lemma.

Lemma 7.3. Consider the values n, d, h ∈ N from
Lemma 7.2. Let the random variable T` denote the time
until a 2-CoBra walk started from a node u of Sd,h at
depth ` activates its parent for the �rst time. For any
` ∈ { 1, . . . , h− 1 }, Pr [T` ≥ τ`] ≥ 1− d−1/2, where

τ` =


Ω (d · log d) , if ` = h− 1;(

1− o (1)
)

log d

2 log(τ`+1/d)
· τ`+1, if 1 ≤ ` < h− 1.

It remains to prove Lemma 7.3 and, with its help,
Lemma 7.2. We start with the comparatively easier
proof of Lemma 7.2, and provide the proof of Lemma 7.3
afterward.

2The o (1) term in the expression for h ensures that the number
of nodes equals n = (dh+1 − 1)/(d − 1), as required by our
construction of Sd,h.



Proof of Lemma 7.2. By unfolding the recurrence for
τ` in Lemma 7.3, we obtain

τ` = Ω

(
d · log d

(h− 1− `)!
·
(

(1− o (1)) · log d

2 log log d

)h−1−`
)
.

Substituting ` = 1, and using Stirling's formula n! ≤
e ·
√
n · (n/e)n, gives

τ1 = Ω

(
d · log d

(h− 2)!
·
(

(1− o (1)) · log d

2 log log d

)h−2
)

= Ω

(
d · log d√
h− 2

·
(
e · (1− o (1)) · log d

2 log log d · (h− 2)

)h−2
)
.

Finally, by substituting d = 2
√

logn·log logn and h =√
log n/log log n− o (1), we obtain τ1 ≥ d · 2Ω(h). With

this, Lemma 7.3 implies T1 ≥ d · 2Ω(h) with probability
1−d−1/2 and, thus, E [T1] ≥ d·2Ω(h). Therefore the same
d · 2Ω(h) lower bound holds for the expected cover time
of the 2-CoBra walk, when the start node is a child of
the root in Sd,h, completing the proof of Lemma 7.2.

Proof of Lemma 7.3. In the rest of the analysis, we
assume that n (and, thus, also h and d) is at least some
suitably large constant. The proof is by induction over `.
We start with the inductive step; the base case ` = h−1
is considered at the end of the proof.

For the inductive step, assume there is an ` ∈
{ 1, . . . , h− 2 } for which Pr [T`+1 ≥ τ`+1] ≥ 1 − d−1/2.
We have to show that Pr [T` ≥ τ`] ≥ 1− d−1/2. To this
end, consider a 2-CoBra walk that starts from a node
u at depth `. Let C denote the set of u's children and let
p be u's parent. By de�nition of the 2-CoBra walk, T`
is the �rst round in which u is active and p is among the
2 samples of u. Without loss of generality, we assume
each v ∈ C becomes permanently active as soon as

• v samples its parent u for the �rst time or
• v is sampled by u for the second time.

Note that this assumption can only speed up the process
and, thus, strengthens the lower bound.

For i ∈ N, let ti be the ith round in which node u
is sampled by at least one of its children. We also set
t0 := 0. Thus, for each i ∈ N0, node u is active at the
beginning of round ti + 1. De�ne P as the event that u
does not sample its parent p in any of the rounds ti + 1
with 0 ≤ i ≤

√
d/4. This event implies T` > t√d/4 + 1.

If u is active, the probability that p is not sampled is

(
1− 1/(d+ 1)

)2
. This yields

Pr [P] =

(
1− 1

d+ 1

)2·(
√
d/4+1)

(7.24)

≥
(

1− 1

d

)2·(
√
d/4+1)

≥ 1− 1

2 ·
√
d
− 2

d
,

where the last step used Bernoulli's inequality.
De�ne D as the event that the total number of

distinct nodes sampled by u during rounds ti + 1,
0 ≤ i ≤

√
d/4, is at least 2 · (

√
d/4 + 1)− log d. Observe

that u performs in total N := 2 ·(
√
d/4+1) independent

samples in those rounds. The probability that the ith
of these samples equals one of the at most i−1 previous
distinct samples is at most (i − 1)/(d + 1). Thus the
expected number of samples that equal some of the
previous samples is at most

∑N
i=1

i−1
d+1 < 1. A standard

Cherno� bound gives

(7.25) Pr [D] ≥ 1− 2− log d = 1− 1

d
.

Assume a child v ∈ C of u is sampled by u for the
�rst time in round x and for the second time in round
y. Moreover, let z be the �rst round in which v samples
u (note that z > x). We say v is fast if z < y and
z − x < τl+1. Consider the event H that the number of
fast (distinct) nodes v ∈ C sampled by u during rounds
ti + 1, 0 ≤ i ≤

√
d/4, is at most log d. The induction

hypothesis states T`+1 ≥ τ`+1 with probability at least
1−d−1/2. Using a standard Cherno� bound, this implies

(7.26) Pr [H] ≥ 1− 2− log d = 1− 1/d.

Let πv denote the round in which a child v ∈ C
becomes permanently active. That is, v sampled u
for the �rst time or u sampled v for the second time.
Consider the list (v1, r1), (v2, r2), . . . of all tuples vi ∈ C
and ri ≥ πvi + 1 order non-decreasingly by ri (breaking
ties by node IDs). Let

ak := |{ (vi, ri) : 1 ≤ i ≤ k, vi samples u in round ri }|,

for k ∈ N0. The probability for vi to sample u in a

round ri is
(
1 − (1− 1

d+1 )
2)
. Thus, E [ak] = k ·

(
1 −

(1− 1
d+1 )

2)
< 2k/d. De�ne the event C that ak < 8k/d

for all k ≥ d · ln d. Using the union bound over all k and



applying a standard Cherno� bound for each k gives

Pr [C] ≥ 1−
∑

k≥d·ln d

Pr

[
ak ≥

8k

d

]
≥ 1−

∑
k≥d·ln d

e−
2k
d(7.27)

= 1− e− 2d·ln d
d ·

∑
i≥0

e−
2i
d

= 1− d−2 · 1

1− e− 2
d

≥ 1− 1

d
.

Next we show that the event P ∩D ∩H∩C implies
T` ≥ τ`. Once this is proven, the lemma's statement
follows by observing that Pr [P ∩ D ∩H ∩ C] ≥ 1 −
d−1/2, which follows from (7.24) to (7.27) by a union
bound. In order to prove that P ∩ D ∩ H ∩ C implies
T` ≥ τ`, de�ne sj for j ∈ N0 as the number of the
�rst j · τ`+1 rounds in which u is sampled by at least
one of its children. By de�nition (of sj and ti) we have
tsj ≤ j · τ`+1 < tsj+1. We use the following auxiliary
result, whose proof can be found at the of this section.

Claim 7.1. Assume the event P ∩ D ∩ H ∩ C occurs.
For any j ∈ N, either sj ≤ 33j · (sj−1 + log d) · τ`+1/d

or the quantity on the right side is at least
√
d/4.

Now suppose that event P ∩ D ∩ H ∩ C occurs.
By recursively applying Claim 7.1, we obtain that the
smallest j for which sj ≥

√
d/4, satis�es (34j · τ`+1/d)

j ·
log d ≥

√
d/4, where we used s0 = 0 and that the log d

factor in Claim 7.1 is negligible except for j = 1. Solving
the above inequality gives

j ≥ log d/2− 2− log log d

log(τ`+1/d) + log(34j)
=

(1− o (1)) · log d

2 log(τ`+1/d)
.

It follows

t√d/4 ≥
(1− o (1)) · log d

2 log(τ`+1/d)
· τ`+1,

and, since T` > t√d/4 (by event P), we have

T` >
(1− o (1)) log d

2 log(τ`+1/d)
· τ`+1,

�nishing the induction step.
It remains to consider the base case of the induction,

` = h−1. That is, the start node u is at depth h−1. We
assume, without loss of generality, that each node v ∈ C
becomes permanently active as soon as it is sampled by
u for the �rst time. We will use event P de�ned earlier,
stating that u does not sample its parent in rounds ti+1,
0 ≤ i ≤

√
d/4.

Given event P, we lower bound the number of
rounds until u is sampled by its children in

√
d/4

di�erent rounds. Each time u gets sampled, it samples

(and, thus, permanently activates) at most two children
in the next round. If 2k nodes v ∈ C are active at the
beginning of a round, the probability u is activated is

1−
(

1− 1

d+ 1

)2·2k

≤ 4k

d+ 1
.

It follows that the number of rounds until u is sampled
by its children in

√
d/4 rounds stochastically dominates

the sum of
√
d/4 geometric random variables, where the

kth of these variables has success probability 4k/(d+1).
This sum has the same distribution as the number of
remaining rounds until all coupons are collected, in
a coupon collection problem in which all but

√
d/4

out of d + 1 coupons have been collected and four
random coupons are sampled per round. Then standard
analyses for coupon collection give that the number of
rounds needed is Ω (d · log d) with probability 1 − 1/d.
Combined with (7.24), we get Th−1 = Ω (d · log d) with
probability at least 1− d−1/2. This completes the proof
of Lemma 7.3.

Proof of Claim 7.1 We prove the statement via
induction over j ∈ N. De�ne t := min { j · τ`+1, t√d/4 }
and s′j := min { sj ,

√
d/4 }. Note that, by this de�nition,

we have ts′j ≤ t < ts′j+1.

If sj−1 >
√
d/4, then the statement follows trivially

from 33j · (sj−1 + log d) · τ`+1/d > sj−1 >
√
d/4, where

the �rst inequality uses τ`+1 = Ω (d · log d). So assume
sj−1 ≤

√
d/4. During the �rst (j−1) ·τ`+1 rounds, node

u is activated sj−1 times (by its children). Being the
start node, u is also active in the �rst round. Moreover,
since the event P holds, u's parent was not active during
these (j−1)·τ`+1 rounds and could not sample u. Thus,
in total u was active during at most sj−1 + 1 rounds of
the �rst (j− 1) · τ`+1 rounds and could activate at most
2(sj−1 + 1) of its children.

Consider the nodes v ∈ C that u samples for the
�rst time during the rounds (j − 1) · τ`+1 + 1 up to t.
Since event D holds, at most log d of them are sampled
twice by u. Moreover, by event H, at most log d of them
are fast. In particular, at most these 2 log d become
permanently active before round j · τ`+1 + 1.

Summing up, at most 2(sj−1 + 1) + 2 log d nodes
v ∈ C become permanently active during the �rst t
rounds. This implies that the total number of pairs
(vi, ri) with ri ≤ t is at most (2(sj−1 +1)+2 log d) ·2t ≤
(2(sj−1+1)+2 log d)·2j ·τ`+1. Then event C implies that
at most (2(sj−1 +1)+2 log d) ·2j ·τ`+1 ·8/d times is node
u sampled in the �rst t rounds by nodes v ∈ C that are
permanently active. Also, at most 2(sj−1 + 1) + 2 log d
times is u sampled by nodes v ∈ C before they become
permanently active, as each v ∈ C samples u at most



once before becoming permanently active (precisely, in
round πv). Therefore,

s′j ≤ (2(sj−1 + 1) + 2 log d) · 2j · τ`+1 · 8/d
+ 2(sj−1 + 1) + 2 log d

≤ 33j · (sj−1 + log d) · τ`+1/d,

where the last inequality holds for all su�ciently large
d. Since s′j = min { sj ,

√
d/4 }, if the quantity in

the last line above is less than
√
d/4, then sj = s′j ,

and thus sj ≤ 33j · (sj−1 + log d) · τ`+1/d; otherwise,

33j · (sj−1 + log d) · τ`+1/d ≥
√
d/4, and the claim holds

trivially. This completes the proof of Claim 7.1.

APPENDIX

A Proof of Lemma 4.2

First we show a Cherno�-like bound for a single sum of
(possibly not independent) binary random variables.

Lemma A.1. Let n ∈ N. Consider a �ltration F =
(Fi)ni=1 and a sequence (Xi)

n
i=1 of binary random vari-

ables that is adapted to F . De�ne the random variables
X[1,n] :=

∑n
i=1Xi and M :=

∑n
i=1 E [Xi | Fi−1]. The

following statements hold for any δ ∈ (0, 1] and b > 0:

(a) If M is bounded from above by b then

Pr
[
X[1,n] ≥ (1 + δ) · b

]
≤ e−δ2·b/3.

(b) If M is bounded from below by b then

Pr
[
X[1,n] ≤ (1− δ) · b

]
≤ e−δ2·b/2.

Proof. We follow the standard proof technique for Cher-
no� bounds (see, e.g., [28, Chapter 4.1] or [26, Chap-
ter 4.2]). In the following we only prove (a). The proof
of (b) is along the same lines.

For any t > 0 we have Pr
[
X[1,n] ≥ (1 + δ) · b

]
=

Pr
[
et·X[1,n] ≥ et·(1+δ)·b]. Markov's inequality yields

(A.1) Pr
[
X[1,n] ≥ (1 + δ) · b

]
≤

E
[
et·X[1,n]

]
et·(1+δ)·b .

Next we show that

(A.2) E
[
et·X[1,n]

]
≤ eb·(e

t−1).

Once this is proven, combining (A.1) and (A.2) yields

Pr
[
X[1,n] ≥ (1 + δ) · b

]
≤ eb·(e

t−1)

et·(1+δ)·b . Choosing t = ln(1+
δ) > 0 and performing standard calculations (see [26,
Theorem 4.4]) gives (a).

It remains to prove (A.2). To this end, we
de�ne the sequence (xi)

n
i=1 iteratively as fol-

lows: Given x1, . . . , xi−1, let xi ∈ { 0, 1 } be
such that Pr [Xi = xi | x1, . . . , xi−1] > 0 and

E[et·
∑
i<j≤nXj | x1, . . . , xi] is maximized; here,

conditioning on xj is a shorthand for condi-
tioning on Xj = xj . For i ∈ { 1, . . . , n } let
pi := E [Xi | x1, . . . , xi−1]. We now argue that for
i ∈ { 1, . . . , n } we have

E
[
et

∑
i≤j≤nXj

∣∣∣ x1, . . . , xi−1

]
(A.3)

≤ epi·(e
t−1) · E

[
et

∑
i<j≤nXj

∣∣∣ x1, . . . , xi

]
.

To see this, compute

E
[
et

∑
i≤j≤nXj

∣∣∣ x1, . . . , xi−1

]
= Pr [Xi = 1 | x1, . . . , xi−1]

· E
[
et+t·

∑
i<j≤nXj

∣∣∣ x1, . . . , xi−1, Xi = 1
]

+ Pr [Xi = 0 | x1, . . . , xi−1]

· E
[
et·

∑
i<j≤nXj

∣∣∣ x1, . . . , xi−1, Xi = 0
]

= pi · et · E
[
et·

∑
i<j≤nXj

∣∣∣ x1, . . . , xi−1, Xi = 1
]

+ (1− pi) · E
[
et·

∑
i<j≤nXj

∣∣∣ x1, . . . , xi−1, Xi = 0
]

≤
(
1 + pi · (et − 1)

)
· E
[
et

∑
i<j≤nXj

∣∣∣ x1, . . . , xi−1, xi

]
≤ epi·(e

t−1) · E
[
et

∑
i<j≤nXj

∣∣∣ x1, . . . , xi

]
,

where the penultimate inequality holds by our choice of
xi. This proves (A.3).

Applying (A.3) iteratively for i = 1, . . . , n yields

E
[
et

∑
1≤j≤nXj

]
≤
∏

1≤j≤n

epi·(e
t−1) = e

∑
1≤j≤n pi·(e

t−1)

≤ eb·(e
t−1),

where the last inequality uses
∑

1≤i≤n pi ≤ b, which
follows from the lemma's assumption that M ≤ b. This
yields (A.2) and, as argued above, concludes the proof
of (a).

We will use the following corollary of Lemma A.1.

Lemma A.2. Let n ∈ N. Consider a �ltration F =
(Fi)ni=1 and a sequence (Xi)

n
i=1 of binary random vari-

ables that is adapted to F . For i ∈ { 1, . . . , n }, de-
�ne the random variables X[1,i] :=

∑
1≤j≤iXj and

P[1,i] :=
∑

1≤j≤i E [Xj | Fj−1]. For any 0 < ε < 1 and
0 < δ ≤ 1, the following equations hold:

(a) Pr
[
∀ i : X[1,i] ≤ (1 + δ) · (P[1,i] + log ε−1)

]
= 1−O

(
δ−2 · εδ2/3

)
.

(b) Pr
[
∀ i : X[1,i] ≥ (1− δ) · (P[1,i] − log ε−1)

]
= 1−O

(
δ−2 · εδ2/2

)
.



Proof. We only prove (a). Part (b) follows similarly (by
using Lemma A.1(b) instead of Lemma A.1(a)). Fix
k ∈ N0 and j ∈ { 1, . . . , n }. De�ne

X
(k)
j :=

{
Xj , if P[1,j] ≤ k;

0, otherwise.

Note that sequence (X
(k)
j )

n

j=1
is adapted to F . Let

X̃(k) :=
∑

1≤j≤nX
(k)
j , P̃ (k) :=

∑
1≤j≤n E[X

(k)
j | Fj−1].

By de�nition P̃ (k) ≤ k, so we can apply Lemma A.1(a)
for b = k+β ≥ P̃ (k), where β ≥ 0 will be speci�ed later.
This yields Pr[X̃(k) ≥ (1 + δ) · (k + β)] ≤ e−δ

2·(k+β)/3.
Applying a union bound over all k ∈ N0 yields

Pr
[
∀ k ∈ N0 : X̃(k) ≤ (1 + δ) · (k + β)

]
(A.4)

≥ 1−
∑
k∈N0

e−δ
2·(k+β)/3 = 1− e−δ

2·β/3

1− e−δ2/3

= 1−O
(
δ−2 · e−δ

2·β/3
)
.

Observe that if X̃(k) ≤ (1 + δ) · (k + β) for all k ∈ N0,
then for any i ∈ { 1, . . . , n }, we have X[1,i] ≤ (1 + δ) ·
(P[1,i] + β + 1). To see this, �x P[1,i] and choose k ∈ N0

such that k − 1 < P[1,i] ≤ k. Then X[1,i] ≤ X̃(k) by

de�nition of X̃(k), and thus,

X[1,i] ≤ X̃(k) ≤ (1+δ) · (k+β) < (1+δ) · (P[1,i] +1+β).

From this and (A.4) we get

Pr
[
∀ i : X[1,i] ≤ (1 + δ) · (P[1,i] + β + 1)

]
≥ Pr

[
∀ k ∈ N0 : X̃(k) ≤ (1 + δ) · (k + β)

]
= 1−O

(
δ−2 · e−δ

2·β/3
)
.

The claim follows by letting β = log ε−1 − 1.

Proof of Lemma 4.2. We apply Lemma A.2(a) and
Lemma A.2(b) to (Xi)

n
i=1 and (Yi)

n
i=1, respectively.

Thus, for any 0 < ε < 1 and 0 < ζ < 1,

Pr
[
∀ i ∈ I : X[1,i] ≥ (1− ζ) ·

(
P[1,i] − log ε−1

)]
= 1−O

(
ζ−2 · εζ

2/2
)

;

Pr
[
∀ i ∈ I : Y[1,i] ≤ (1 + ζ) ·

(
Q[1,i] + log ε−1

)]
= 1−O

(
ζ−2 · εζ

2/3
)
.

By the union bound, this implies

Pr
[
∀ i ∈ I : X[1,i] − Y[1,i](A.5)

≥ (1− ζ) ·
(
P[1,i] − log ε−1

)
− (1 + ζ) ·

(
Q[1,i] + log ε−1

) ]
= 1−O

(
ζ−2 · εζ

2/2 + ζ−2 · εζ
2/3
)
.

By setting ζ = δ
1+2/α and ε = ε(1−δ)/2, and using

P[1,i] ≥ (1 + α)Q[1,i], we calculate

(1− ζ) ·
(
P[1,i] − log ε−1

)
− (1 + ζ) ·

(
Q[1,i] + log ε−1

)
≥ (1− δ) · (P[1,i] −Q[1,i] − log ε−1),

and

ζ−2εζ
2/2 + ζ−2εζ

2/3 ≤ 2ζ−2εζ
2/3 = O

(
δ−2ε

δ2(1−δ)
6(1+2/α)2

)
.

Substituting these to (A.5) completes the proof of
Lemma 4.2.
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