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Abstract

We establish a bound for the classic PUSH-PULL rumor

spreading protocol on general graphs, in terms of the vertex

expansion of the graph. We show that O(log2(n)/α) rounds

suffice with high probability to spread a rumor from any sin-

gle node to all n nodes, in any graph with vertex expansion

at least α. This bound matches a known lower bound, and

settles the natural question on the relationship between ru-

mor spreading and vertex expansion asked by Chierichetti,

Lattanzi, and Panconesi (SODA 2010). Further, some of the

arguments used in the proof may be of independent interest,

as they give new insights, for example, on how to choose a

small set of nodes in which to plant the rumor initially, to

guarantee fast rumor spreading.

1 Introduction

We study a classic randomized protocol for information
dissemination in networks, known as (randomized) ru-
mor spreading. The protocol proceeds in a sequence
of synchronous rounds.1 Initially, in round 0, an ar-
bitrary node learns a piece of information, the rumor.
This rumor is then spread iteratively to other nodes:
In each round, every informed node (i.e., every node
that learned the rumor in a previous round) chooses a
random neighbor and sends the rumor to that neigh-
bor. This is the PUSH version of the protocol. The PULL

version is symmetric: In each round, every uninformed
node contacts a random neighbor, and if this neighbor
knows the rumor it sends it to the uninformed node.
Finally, the PUSH-PULL algorithm is the combination
of both: In each round, every node chooses a random
neighbor to send the rumor to, if the node knows the
rumor, or to request the rumor from, otherwise.

The above protocols were proposed almost thirty
years ago, and have been the subject of extensive study,
especially in the past decade. The most studied question
concerns the number of rounds these protocols need
to spread a rumor in various network topologies. It
has been shown that O(log n) rounds suffice with high
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1There are also asynchronous versions of rumor spreading (see,

e.g., [1]), but in this paper we focus on synchronous protocols.

probability (w.h.p.) for several families for networks,
from basic communication networks, such as complete
graphs and hypercubes, to more complex structures,
such as preferential attachment graphs modeling social
networks (see the Related Work Section).

A main motivation for the study of rumor spreading
is its application to algorithms for broadcasting in
communication networks [8, 14, 22]. Rumor spreading
provides a scalable alternative to the flooding protocol
(where each node sends the information to all its
neighbors in a round), and a simpler and more robust
alternative to deterministic solutions. The advantages
of simplicity (each node makes a simple local decision
in each round; no knowledge of the global topology
is needed; no state is maintained), scalability (each
node initiates just one connection per round), and
robustness (the protocol tolerates random node/link
failures without the use of error recovery mechanisms)
make rumor spreading protocols particularly suited for
today’s distributed networks of massive-scale. Such
networks, e.g., peer-to-peer, mobile ad-hoc, or sensor
networks, are highly dynamic, suffer from frequent link
and node failures, or nodes have limited computational,
communication, and energy resources.

Another motivation for the study of rumor spread-
ing protocols is that they provide intuition as to how
information spreads in social networks [5]. Understand-
ing these simple rumor spreading protocols may lead to
a better understanding of more realistic epidemic pro-
cesses on social and other complex networks.

Our main focus in this paper is the connection be-
tween rumor spreading and graph expansion properties
of networks. Many of the topologies for which rumor
spreading is known to be fast have high expansion. Fur-
ther, empirical studies indicate that social networks also
have good expansion properties [13, 24].

Several works have studied the relationship of ru-
mor spreading with the conductance of the network
graph [25, 7, 6, 19]. The conductance φ ∈ (0, 1] is a
standard expansion measure defined roughly as the min-
imum ratio of the edges leaving a set of nodes over the
total number of edges incident on these nodes (see Sec-
tion 2). The main result of the above works is an upper
bound of O(log(n)/φ) rounds for PUSH-PULL to inform
all nodes w.h.p., for any n-node graph with conductance
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at least φ. This bound is tight, as there are graphs with
diameter Ω(log(n)/φ) [6].

The above result has found applications to the de-
sign of various information dissemination protocols [4,
2, 21]. These protocols rely on the fact that PUSH-PULL
spreads information fast in subgraphs of high conduc-
tance, and they combine PUSH-PULL with more sophis-
ticated rules on how each node chooses the neighbor to
contact in each round. Those protocols achieve fast in-
formation spreading in a broader class of networks, and
some even achieve for all graphs time bounds that are
close (within poly-logarithmic factors) to the network
diameter, which is the natural lower bound for informa-
tion dissemination in networks.

More recently, another standard measure of expan-
sion, the vertex expansion, has been studied in con-
nection with rumor spreading. The vertex expansion
α ∈ (0, 1] of a graph is, roughly, the minimum ratio
of the neighbors that a set of nodes has (and are not
in the set) over the size of the set. In general, ver-
tex expansion is incomparable to conductance, as there
are graphs with high vertex expansion but low conduc-
tance, and vice versa. (For an account of the differ-
ences between the two measures see [20].) The ques-
tion of whether high vertex expansion implies fast ru-
mor spreading (similar to high conductance) was high-
lighted as an interesting and challenging open prob-
lem in [7]. This problem was subsequently studied
in [27, 20], and the main result obtained was an upper
bound for PUSH-PULL of O(log2.5(n)/α) rounds w.h.p.,
for any graph with vertex expansion at least α. The pre-
cise bound is O(log n · log ∆ ·

√
log(2∆/δ)/α), where ∆

and δ are the maximum and minimum node degrees, re-
spectively. Further, a lower bound of Ω(log n·log(∆)/α)
was shown, assuming ∆/α ≤ n1−ε for a constant ε > 0.

Our Contribution. Our main result is the following
upper bound for PUSH-PULL in terms of vertex expan-
sion, which matches the lower bound from [20].

Theorem 1.1. Let G = (V,E) be a graph with |V | = n
nodes, maximum degree at most ∆, and vertex expan-
sion at least α. For any such graph G and constant
β > 0, with probability 1 − O(n−β) PUSH-PULL informs
all nodes of G in O

(
log n · log(∆)/α

)
rounds.

This result, together with the O(log(n)/φ) bound
with conductance, resolve completely the natural ques-
tion asked by Chierichetti, Lattanzi, and Panconesi [5,
7], on the relationship between rumor spreading and the
two most standard measures of graph expansion.

A rough outline of the proof is as follows. Let S be
the set of informed nodes after a given round, and let ∂S
be the boundary of S, i.e., the set of nodes from V − S

that have a neighbor in S. The proof defines a new
simple measure of the expansion of S, called boundary
expansion. If S has low boundary expansion, then we
prove that a constant fraction of the boundary ∂S gets
informed in an expected number of O(log ∆) rounds;
this is the core argument of the proof. If, instead, S
has high boundary expansion, then we have that an
expected number of Ω(|∂S|) nodes from V − (S ∪ ∂S)
are added to the boundary in a single round. It follows
that a simple potential function Ψ(S) that counts 1
for each informed node and 1/2 for each node in the
boundary, increases “on average” per round by at least
Ω(|∂S|/ log ∆) = Ω(αΨ(S)/ log ∆); this is the right
increase rate we need to show the O

(
log n · log(∆)/α

)
time bound.

Some of the arguments used in the proof may be of
independent interest as tools for the analysis of rumor
spreading. We demonstrated this by applying those
arguments to show the following two smaller results.

1. Our first result serves as a “warm-up” for the
main proof, as it uses a simpler version of the core
argument of our analysis. We show that if a rumor
is initially known to a subset of nodes that is a
dominating set, then O(log n) rounds of PUSH-PULL
suffice w.h.p. to inform the other nodes. (In fact we
can use just PULL instead of PUSH-PULL.)2 This
result is somewhat relevant to problems in viral
marketing [10, 23]: It says that if we want to plant
a rumor, or ad, in a (small) initial set of nodes in
an arbitrary network, so that the remaining nodes
get informed quickly by rumor spreading, then it
suffices that the set we choose be a dominating set.

2. Our second result reuses the main argument from
the proof of Result 1 above, and establishes that
PUSH-PULL spreads a rumor in O(log n) rounds
w.h.p. in any graph of diameter (at most) 2. This
can be viewed as an extension to the classic result
that rumor spreading takes O(log n) rounds in
graphs of diameter 1, i.e., in complete graphs. We
point out that unlike complete graphs, graphs of
diameter 2 may have low expansion. Also the result
does not hold for graphs of diameter 3. (The proof
of the above result can be found in the appendix.)

Related Work. The first works on rumor spread-
ing provided a precise analysis of PUSH on complete
graphs [18, 26]. Time bounds of O(log n) rounds were
later proved for hypercubes and random graphs [14].

2Note that the analysis of the more sophisticated information
dissemination algorithm proposed in [2, 21], yields time bounds
of O(log3 n) and O(log2 n), respectively, for this setting.



Other symmetric graphs similar to the hypercube in
which rumor spreading takes O(log n + diam) rounds
were studied in [12]. A refined analysis for random
graphs proving essentially the same time bound as
for complete graphs was provided in [15], and ex-
tended to random regular graphs in [16]. The authors
of [5] studied rumor spreading on preferential attach-
ment graphs, which are used as models for social net-
works, and showed that PUSH or PULL need polynomially
many rounds, whereas PUSH-PULL needs only O(log2 n)
rounds. The last bound was subsequently improved to
Θ(log n) [9]. Another class of random graphs used to
model social networks was considered in [17], and it was
shown that PUSH-PULL needs just Θ(log log n) rounds to
inform all but an ε-fraction of nodes.

For general graphs, a bound of O(log(n)/Φ) was
shown in [25] for a version of PUSH-PULL with non-
uniform probabilities for neighbor selection, where Φ is
the conductance of the matrix of selection probabilities
(which is different than the conductance φ of the graph).
A comparable bound in terms of the mixing time of
an appropriate random walk was shown in [1]. For
PUSH-PULL, a polynomial bound in log(n)/φ was shown
in [5] via a connection to a spectral sparsification
process. An improved, almost tight bound was shown
in [6], and the tight O(log(n)/φ) bound was shown
in [19]. For PUSH or PULL this bound holds for regular
graphs, but not for general graphs.

The bound for PUSH-PULL with conductance has
been used in subsequent works [3, 4, 2, 21], mainly
to argue that rumors spread fast in subgraphs of high
conductance. A refinement of conductance, called weak
conductance, which is greater or equal to φ was intro-
duced in [3] and was related to the time for PUSH-PULL
to inform a certain fraction of nodes. A gossip protocol
for the problem in which every node has a rumor ini-
tially, and must receive the rumors of all other nodes
was proposed in [4]. The protocol alternates rounds
of PUSH-PULL with rounds of deterministic communica-
tion, and guarantees fast information spreading in all
graphs with high weak conductance. In [2, 21] proto-
cols for the same gossip problem were proposed that
need only O(diam ·polylog(n)) or O(diam + polylog(n))
rounds. One of these protocols is even determinis-
tic [21]. Similar to the conductance-based bounds, we
believe that the results with vertex expansion we present
in this paper could potentially help in the design of new
protocols for information dissemination.

2 Definitions and Notation

Throughout the paper we assume that graph G = (V,E)
is connected, and |V | = n. For a node v ∈ V , we
denote by N(v) the set of v’s neighbors in G, and

deg(v) = |N(u)| is the degree of v. By ∆ and δ we
denote the maximum and minimum node degrees of G.
For a set S ⊆ V , we denote by ∂S the boundary of
S, that is, the set of neighbors of S that are not in S;
formally, ∂S = {v ∈ V − S : N(v) ∩ S 6= ∅}. We will
write S+ to denote set S ∪ ∂S. A set S is a dominating
set iff each node v ∈ V either belongs to S or has a
neighbor in S, i.e., S+ = V . The vertex expansion of
a non-empty set S ⊆ V , and the vertex expansion of
graph G are defined respectively as

α(S) =
|∂S|
|S|

, α(G) = min
0<|S|≤n

2

α(S).

The volume of a set S is vol(S) =
∑
v∈S deg(v). By

E(S, V −S) we denote the set of edges with one endpoint
from S and the other from V − S. The conductance of
a non-empty set S ⊆ V , and the conductance of graph
G are defined respectively as

φ(S) =
|E(S, V − S)|

vol(S)
, φ(G) = min

0<vol(S)≤ vol(V )
2

φ(S).

For any graph G we have that 0 < φ(G), α(G) ≤ 1, and
(δ/∆) · φ(G) ≤ α(G) ≤ ∆ · φ(G) [20].

3 Warm-up: Rumors Spread Fast from a Domi-
nating Set

In this section we show the following result.

Theorem 3.1. Let S ⊆ V be a dominating set of
G = (V,E), and suppose that all nodes u ∈ S know
the rumor initially. Then PULL informs all remaining
nodes in O(log n) rounds, with probability 1 − O(n−β)
for any constant β > 0.

We start with an overview of the proof. By a
standard lemma on the symmetry between PUSH and
PULL (Lemma 3.2), we have that in order to bound the
time for PULL to spread a rumor from S to a given node
u /∈ S, it suffices to bound instead the time for PUSH to
spread a rumor from u to some node in S. We bound
the latter time as follows (Lemma 3.3). Let Iut be the
set of informed nodes after t rounds of PUSH, when the
rumor starts from u. We consider the earliest round τ
for which the expected growth of Iut in the next round
τ + 1 is smaller than by a constant factor ε > 0, i.e.,
E[|Iuτ+1−Iuτ | | Iuτ ] < ε · |Iuτ |. We argue that τ = O(log n)
w.h.p. (Claim 3.4), which is intuitively clear, as up
to round τ the number of informed nodes increases
by a constant factor in expectation per round. Next
we bound the harmonic mean of the degrees of nodes
in Iuτ ; precisely, we show that

∑
v∈Iut

1
deg(v) = Ω(1)

(Claim 3.5). If Iuτ ∩ S = ∅ then each node from Iuτ



has some neighbor in S, and from the above bound on
the degrees it follows that in a round, the probability
that some node from Iuτ pushes the rumor to a neighbor
in S is Ω(1). Thus, within O(log n) rounds after round
τ , the rumor has reached some node in S w.h.p.

Next we give the detailed proof.

Lemma 3.2. Let Tpush(V1, V2), for V1, V2 ⊆ V , be the
number of PUSH rounds until a rumor initially known
to all u ∈ V1 (and only them) spreads to at least one
v ∈ V2; define Tpull(V1, V2) similarly. For any V1, V2 ⊆
V , the random variables Tpush(V1, V2) and Tpull(V2, V1)
have the same distribution.

The proof of Lemma 3.2 is essentially the same as
that of [6, Lemma 3], and is therefore omitted. Next we
state our main lemma; its proof is given in Section 3.1.

Lemma 3.3. Let S be a dominating set and u ∈ V −S.
Using PUSH, a rumor originated at u spreads to at least
one node v ∈ S in O(log n) rounds, with probability
1−O(n−β) for any constant β > 0.

Theorem 3.1 follows now easily: From Lemma 3.3
we obtain that a rumor originated at a given u ∈ V −S
spreads to at least one v ∈ S after O(log n) rounds
of PUSH, with probability 1 − O(n−β−1). Lemma 3.2
then implies that a rumor known to all v ∈ S reaches u
afterO(log n) rounds of PULL, with the same probability,
1−O(n−β−1). Applying now the union bound over all
u ∈ V − S yields the theorem.

3.1 Proof of Lemma 3.3. Let Iut be the set of
informed nodes after t rounds of PUSH, when the rumor
starts from node u ∈ V −S. Let τ be the earliest round
such that the expected increase of Iut in the next round
is smaller than ε · |Iut |, i.e.,

τ = min{t : E[|Iut+1| | Iut ] < (1 + ε) · |Iut |},

for some positive constant ε < 1.

Claim 3.4. With probability 1− n−β, τ = O(log n).

Proof. Let Xt, for t ≥ 1, be a 0/1 random variable that
is 1 iff |Iut | ≥ (1 + ε/2) · |Iut−1| or t ≥ τ . Then for any k,

(3.1) Pr(τ ≤ k) ≥ Pr

(
k∑
t=1

Xt ≥ log1+ε/2 n

)
,

because: if τ > k, then |Iuk | ≥ (1+ ε/2)
∑k

t=1Xt and thus∑k
t=1Xt ≤ log1+ε/2(|Iuk |) < log1+ε/2 n; and taking the

contrapositive gives that
∑k
t=1Xt ≥ log1+ε/2 n implies

τ ≤ k.

Next we show that for any t,

(3.2) Pr(Xt = 1 | X1 . . . Xt−1) ≥ ε/2

1− ε/2
.

Fix the outcome of the first t − 1 rounds, and suppose
that τ > t − 1. (Otherwise, we have Xt = 1 and the
inequality above holds trivially.) We bound Pr(Xt = 0)
using Markov’s Inequality:

Pr(Xt = 0) ≤ Pr(|Iut | < (1 + ε/2) · |Iut−1|)
= Pr(2 |Iut−1| − |Iut | > (1− ε/2) · |Iut−1|)

≤
2 |Iut−1| −E[|Iut |]
(1− ε/2) · |Iut−1|

, by Markov’s Ineq.

Further, since τ > t−1 we have from τ ’s definition that
E[|Iut |] ≥ (1 + ε) · |Iut−1|. Hence,

Pr(Xt = 0) ≤
2 |Iut−1| − (1 + ε) · |Iut−1|

(1− ε/2) · |Iut−1|
=

1− ε
1− ε/2

,

and thus Pr(Xt = 1) ≥ ε/2
1−ε/2 .

From Eq. (3.2), it follows that
∑k
t=1Xt stochasti-

cally dominates binomial random variable B
(
k, ε/2

1−ε/2
)
.

Thus, using Chernoff bounds we obtain Pr
(∑k

t=1Xt ≥
log1+ε/2 n

)
≥ Pr

(
B
(
k, ε/2

1−ε/2
)
≥ log1+ε/2 n

)
≥ 1− n−β

for k ≥ c log n, for a sufficiently large constant c. From
this and Eq. (3.1), the claim follows.

The next claim bounds the harmonic mean of the
degrees of nodes v ∈ Iuτ .

Claim 3.5. If E[|Iut+1| | Iut ] < (1 + ε) · |Iut | then∑
v∈Iut

1
deg(v) ≥ 1−

√
ε.3

Proof. The proof is by contrapositive. Fix Iut and let
k = |Iut |. For 1 ≤ i ≤ k, let ui be the i-th node
in Iut , and let di = deg(ui). We will assume that∑k
i=1 1/di < 1−

√
ε and prove that E[|Iut+1|] ≥ (1 + ε)k.

We count the number of uninformed nodes that in
round t+ 1 receive exactly one copy of the rumor. This
is clearly a lower bound on the number of nodes that
get informed in round t+1. Let d′i = |N(ui)∩Iut | be the
number of neighbors that ui has in Iut . The probability
that in round t + 1 node ui pushes the rumor to some
uninformed node is then 1−d′i/di. And if this happens,
the probability that the recipient node does not receive
the rumor from any other node in the round is at least∏
j 6=i

(1− 1/dj) ≥ 1−
∑
j 6=i

(1/dj) ≥ 1− (1−
√
ε) =

√
ε.

3Inequality
∑
v∈Iut

1
deg(v)

≥ 1 −
√
ε yields that the harmonic

mean of deg(v), over all v ∈ Iut , is at most |Iut |/(1−
√
ε).



Thus the probability that ui sends the rumor to an
uninformed node that does not receive another copy of
the rumor is at least (1−d′i/di)

√
ε. Hence, the expected

number of uninformed nodes that receive exactly one
rumor copy in round t+1 is at least

∑k
i=1(1−d′i/di)

√
ε.

And since

k∑
i=1

(1− d′i/di) = k −
k∑
i=1

(d′i/di) ≥ k −
k∑
i=1

(k/di)

≥ k − k(1−
√
ε) = k

√
ε,

we obtain a lower bound of k
√
ε ·
√
ε = kε on the

expected number of uninformed nodes that receive
exactly one copy of the rumor in round t + 1. Hence,
the same lower bound holds for the total number on
nodes informed in the round, and we conclude that
E[|Iut+1|] ≥ (1 + ε)k.

Using Claim 3.5 it is easy to show anO(log n) bound
w.h.p. on the number of additional rounds after round τ ,
until the rumor spreads to at least one node from S:
Suppose that Iuτ = U for some set U ⊆ V − S. (If
U * V −S then some node from S is already informed.)
Each v ∈ U has at least one neighbor in the dominating
set S, and thus the probability that none of these nodes
pushes the rumor to a neighbor in S in a given round
t > τ , is upper bounded by∏

v∈U

(
1− 1

deg(v)

)
≤ e−

∑
v∈U

1
deg(v) ≤ e−1+

√
ε,

by Claim 3.5. This probability bound holds for each
round t > τ independently of the outcome of previous
rounds. It follows that ` := (β lnn)/(1−

√
ε) = O(log n)

additional rounds after round τ suffice to spread the
rumor to a node in S with probability 1− (e−1+

√
ε)` =

1−n−β . Combining this with Claim 3.4, which bounds
τ by O(log n) with probability 1 − n−β , and applying
the union bound gives that the rumor spreads from u to
at least one v ∈ S in O(log n) rounds with probability
1− 2n−β . This completes the proof of Lemma 3.3.

Another application of the same proof idea is de-
scribed in Section A of the appendix.

4 Proof of the Main Result

In this section we show our main result, Theorem 1.1.
We start with an overview of the proof. Let It denote
the set of informed nodes after the first t rounds. We
study the growth of the quantity Ψt := |It|+ |∂It|/2 =
(|It| + |I+

t |)/2. You can think of Ψt as a potential
function: each informed node has as a potential of 1,
each uninformed node with an informed neighbor has
potential 1/2, and the remaining uninformed nodes have

potential zero; Ψt is then the total potential after round
t. We have 1 < Ψt ≤ n. To prove the theorem, we show
that the expected number of rounds needed to double
Ψt is bounded by O(log(∆)/α), as long as |It| ≤ n/2. It
follows that O(log n · log(∆)/α) rounds suffice w.h.p. to
inform more than half of the nodes, and by a symmetry
argument, O(log n · log(∆)/α) additional rounds suffice
to inform the remaining nodes.

For Ψt to double in O(log(∆)/α) rounds, it suf-
fices that it increases by Ω(|∂It|/ log ∆) “on average”
per round, as |∂It| ≥ α · |It| and thus |∂It| = Ω(αΨt).
Such an increase can be achieved either by inform-
ing Ω(|∂It|/ log ∆) nodes from ∂It, or by informing
fewer nodes which however have a total number of
Ω(|∂It|/ log ∆) neighbors in ∂(I+

t ). Along this intuition,
we distinguish the following two cases, in terms of a sim-
ple expansion measure we define for It, called boundary
expansion (Definition 4.1).

The first case is when the boundary expansion of It
is low (upper-bounded by a constant εh < 1). This is the
more challenging case, and is the core of our analysis.
Our main lemma in this case is Lemma 4.3, which
establishes that a constant fraction of the boundary
∂It gets informed in an expected number of O(log ∆)
rounds. The proof builds upon and extends the ideas
used in the proof of Theorem 3.1. We note that in the
setting of Theorem 3.1, the boundary expansion of the
set S of informed nodes is zero.

The second case is when the boundary expansion of
It is high (lower-bounded by a constant εh > 0). Then
from our definition of boundary expansion it follows
that the expected number of nodes from ∂(I+

t ) that have
an informed neighbor after the next round is Ω(|∂It|),
i.e., E[|I+

t+1 − I
+
t | | It] = Ω(|∂It|). Our main lemma in

this case is Lemma 4.10, which turns the above lower
bound on the expected per round growth of I+

t into an
upper bound on the expected number of rounds until
I+
t grows by some quantity b · |∂It|, which depends on

the degrees of nodes in ∂It.
Finally we bound the expected time needed to

double Ψt (Lemma 4.12), by combining the results of
the two cases above and using an inductive argument.

The rest of this section is structured as follows.
We define the measure of boundary expansion in Sec-
tion 4.1. In Section 4.2 we lower-bound the growth of
It when boundary expansion is low. In Section 4.3 we
lower-bound the growth of I+

t when boundary expansion
is high. And in Section 4.4 we put the pieces together
to complete the proof of Theorem 1.1.

4.1 Boundary Expansion.

Definition 4.1. Let S ⊂ V be a non-empty set. Let U
be a random subset of ∂S such that each node u ∈ ∂S



belongs to U with probability 1/ deg(u) independently of
the other nodes. The boundary expansion h(S) of S
is the ratio of the expected number of nodes v ∈ ∂(S+)
that have some neighbor in U , over the size of ∂S, i.e.,
h(S) = E [|{v ∈ ∂(S+) : N(v) ∩ U 6= ∅}|] /|∂S|.

It is 0 ≤ h(S) < 1. The lower bound of 0 is matched
iff S is a dominating set; and the upper bound holds
because E [|{v ∈ ∂(S+) : N(v) ∩ U 6= ∅}|] is upper-
bounded by the expected number of the edges between
U and ∂(S+), which is

∑
u∈∂S |N(u)− S+|/deg(u) ≤∑

u∈∂S (deg(u)− 1)/deg(u) < |∂S|.
Intuitively, h(S) is small if for many nodes u ∈ ∂S,

we have that either just a small fraction of u’s neighbors
belong to ∂(S+), or, if u has a lot of neighbors in ∂(S+),
then a large fraction of them are common neighbors to
many nodes from ∂S.

If It = S then h(S) · |∂S| is a lower bound on the
expected number of new nodes that have some informed
neighbor after round t+ 1, i.e.,

(4.3) E[|I+
t+1 − I

+
t | | It = S] ≥ h(S) · |∂S|,

as each node u ∈ ∂It pulls the rumor from It in round
t+ 1 with probability at least 1/deg(u).

In Section 4.3 we will need the following refined
definition, which describes the boundary expansion of
S contributed by a given subset T of ∂S.

Definition 4.2. Let S ⊂ V and T ⊆ ∂S. Let UT be a
random subset of T such that each node u ∈ T belongs
to UT with probability 1/deg(u) independently of the
other nodes. The boundary expansion of S due to T
is hT (S) = E [|{v ∈ ∂(S+) : N(v) ∩ UT 6= ∅}|] /|∂S|.

For T = ∂S the above definition is identical to
Definition 4.1, i.e., h∂S(S) = h(S).

4.2 The Case of Low Boundary Expansion. In
this section we prove the following result, which is the
core lemma of our analysis.

Lemma 4.3. Suppose that It = S for some set S ⊂ V
with boundary expansion h(S) ≤ εh, where 0 ≤ εh < 1 is
an arbitrary constant. There is a constant ε = ε(εh) > 0
such that the expected number of rounds until ε · |∂S|
nodes from ∂S get informed is O(log ∆).

We start with an overview of the proof. Similar
to the proof of Theorem 3.1, to bound the time for a
given node u ∈ ∂S to get informed, we bound instead
the time for a rumor originated at u to spread to some
node from S. Establishing this bound, however, is more
difficult now than in the setting of Theorem 3.1. Recall
that in the proof of Theorem 3.1, to bound the time
until a rumor from u ∈ ∂S reaches S, we first bound the

time when the set Iut of informed nodes stops growing
by a constant expected factor in each round, and then
bound the harmonic mean of the degrees of nodes in Iut
at that time; the bound on the degrees implies that if
Iut ∩S = ∅, then with large probability some node from
Iut will send the rumor to a neighbor in S. This last
statement depends critically on the assumption that S
is a dominating set, and thus every node from Iut has
a neighbor in S. This in not the case, however, in the
current setting.

To tackle this problem we consider a “restricted”
rumor spreading process, on an induced subgraph of G.
We identify a set of nodes participating in rumor spread-
ing (Definition 4.4), such that, intuitively, each partici-
pating node has at least a constant probability to con-
tact or be contacted by another participating node in
a round. Only nodes from S+ or ∂(S+) can be partic-
ipating. Participating nodes from S+ are active, i.e.,
they initiate a connection to a random neighbor in each
round, while participating nodes from ∂(S+) are pas-
sive, i.e., they accept connections from active neighbors
but do not initiate connections to random neighbors.
Using the assumption that S has low boundary expan-
sion we show that at least a constant fraction of ∂S
is participating (Lemma 4.5). For each participating
node u ∈ ∂S then we show that an expected number of
O(log ∆) rounds suffice for a rumor originated at u to
spread to some node from S (Lemma 4.6). The proof
of this last result follows a similar outline to that of
Lemma 3.3, although it is a bit more involved.

Below, in Section 4.2.1 we formally define the set of
participating nodes and show that a constant fraction
of ∂S is participating. Then in Section 4.2.2 we bound
the time for a rumor originated at a participating node
from ∂S to reach S. Finally, we complete the proof of
Lemma 4.3 in Section 4.2.3.

4.2.1 Participating Nodes.

Definition 4.4. The set P of participating nodes is a
maximal subset of V such that for any u ∈ P and for
A := P ∩ S+,

|N(u) ∩ P |
deg(u)

+
∑

v∈N(u)∩A

1

deg(v)
≥ εp, if u ∈ A;(4.4)

∑
v∈N(u)∩A

1

deg(v)
≥ εp, if u ∈ P−A,(4.5)

where 0 < εp < (1−εh)/3 is a constant;4 set A is the set
of active nodes, and P −A is the set of passive nodes.

4We will see that P is unique, although this is not essential for

the analysis.



It follows from this definition that all participating
nodes belong to S+ ∪ ∂(S+); the ones in S+ are
active, and those in ∂(S+) are passive. Intuitively,
P is defined such that each participating node has at
least a constant probability to contact or be contacted
by another participating node in a round. The term
|N(u) ∩ P |/ deg(u) in Eq. (4.4) is the probability that
active node u chooses a participating neighbor in a
round. In Eq. (4.5) we do not have this term because,
as mentioned earlier, passive nodes do not initiate
connections. The sum that is common in both equations
adds the probabilities of the events that u is chosen by
v, for all active neighbors v of u. If this sum is small
(bounded by a constant), then it is of the same order
as the probability that u is chosen by at least one of its
active neighbors.

The set P can be obtained by a simple proce-
dure that recursively removes from V all nodes that
do not satisfy (4.4) or (4.5). (This proves also that P
is unique.) Formally, we start with set P0 = V . In
the i-th step of the procedure we obtain set Pi by re-
moving from Pi−1 all nodes u ∈ Ai−1 := Pi−1 ∩ S+ for
which |N(u)∩Pi−1|/ deg(u)+

∑
v∈N(u)∩Ai−1

1/ deg(v) <
εp, and all nodes u ∈ Pi−1 − Ai−1 for which∑
v∈N(u)∩Ai−1

1/ deg(v) < εp. Clearly, the procedure
finishes after at most n steps. Let P ∗ := Pi for the last
step i. We argue now that P ∗ = P . Because of the
maximality of P , it suffices to show that P ⊆ P ∗: Sup-
pose, for contradiction, that P * P ∗, and consider the
first step i for which P * Pi. Then, we have P ⊆ Pi−1

and A ⊆ Ai−1, and some node u ∈ P is removed from
Pi−1 in step i. If u ∈ A then it follows from (4.4) that
|N(u) ∩ Pi−1|/deg(u) +

∑
v∈N(u)∩Ai−1

1/ deg(v) ≥ εp,
which contradicts the assumption that u is removed in
step i. Similarly, if u ∈ P −A, then it follows from (4.5)
that

∑
v∈N(u)∩Ai−1

1/ deg(v) ≥ εp, which again contra-
dicts that u is removed.

We observe that if a subset of V is used as the
starting set P0 (instead of having P0 = V ), then the
set obtained by the procedure is a subset of P .

We will now show that at least a constant fraction
of nodes u ∈ ∂S is participating.

Lemma 4.5. |∂S ∩ P | ≥
(

1− εh
(1−εp)(1−2εp)

)
· |∂S|.5

Proof. We use a potential function argument. We con-
sider the recursive procedure given above to obtain P ,
and define a potential Φi after each step i. This po-
tential is a non-negative quantity. Further, for an ap-
propriate choice of the initial set P0 for the procedure,
we achieve that the potential function is non-increasing.

5From the assumption in Definition 4.4 that εp < (1 − εh)/3,
it follows that 1− εh

(1−εp)(1−2εp)
> 0.

For this P0 we show that the potential Φ0 before the
first step satisfies Φ0 ≤ εh

1−εp · |∂S|. We also show that

for each node u ∈ Ai−1 that is removed from Pi−1 in
step i, the potential drops by at least 1 − 2εp, and the
removal of a node u /∈ Ai−1 does not increase the poten-
tial. It follows that the total number of nodes u ∈ S+

removed in all steps is bounded by Φ0/(1− 2εp). Thus,
the same bound holds for the nodes u ∈ ∂S removed,
i.e., |∂S| − |∂S ∩ P | ≤ Φ0/(1 − 2εp). Rearranging and
using that Φ0 ≤ εh

1−εp · |∂S| yields the claim.

Next we fill in the details omitted in the outline
above. We start with the definition of the potential
function. Intuitively, the potential Φi after step i mea-
sures the probability “wasted” in connections between
participating and non-participating nodes. It has two
components. The first component, Φi,1, is the sum over
all u ∈ Ai of the probability that u chooses a neighbor
v /∈ Pi; the second component, Φi,2, is the sum over all
u ∈ S+ − Ai of the probability that u would choose a
neighbor v ∈ Pi if u were active. We give two equivalent
formulas for each of Φi,1,Φi,2, to be used later on.

Φi,1 =
∑
u∈Ai

∑
v∈N(u)−Pi

1

deg(u)
=
∑
u/∈Pi

∑
v∈N(u)∩Ai

1

deg(v)
;

Φi,2 =
∑

u∈S+−Ai

∑
v∈N(u)∩Pi

1
deg(u) =

∑
u∈Pi

∑
v∈N(u)∩(S+−Ai)

1
deg(v) .

Then, Φi = Φi,1 + Φi,2.
The starting set P0 we use consists of all nodes

u ∈ S+ plus those u ∈ ∂(S+) for which

(4.6)
∑

v∈N(u)∩∂S

1

deg(v)
≥ 2εp.

The above condition is similar to (4.5), but the thresh-
old is twice that in (4.5). We show now that

(4.7) Φ0 ≤
εh

1− εp
· |∂S|.

Let B be the set of nodes from ∂(S+) that do not
satisfy (4.6), i.e.,

B =

{
u ∈ ∂(S+) :

∑
v∈N(u)∩∂S

1

deg(v)
< 2εp

}
.

We have P0 = S+ ∪ (∂(S+)−B) and A0 = S+.
Substituting these values to the second formula for Φi,1
and the first one for Φi,2 yields

Φ0 = Φ0,1 + Φ0,2 =
∑
u∈B

∑
v∈N(u)∩∂S

1

deg(v)
+ 0.(4.8)



Next we relate the double sum above with εh. From the
definition of h(S) (Definition 4.1), it follows

h(S) =
1

|∂S|
∑

v∈∂(S+)

1−
∏

u∈N(v)∩∂S

(
1− 1

deg(u)

) .

Since the left side is at most εh, and replacing ∂(S+)
by B ⊆ ∂(S+) on the right side can only decrease the
sum’s value, it follows

εh ≥
1

|∂S|
∑
u∈B

1−
∏

v∈N(u)∩∂S

(
1− 1

deg(v)

) .

Further, for any u ∈ B, the product on the right side is∏
v∈N(u)∩∂S

(
1− 1

deg(v)

)
≤ e−

∑
v∈N(u)∩∂S

1
deg(v)

≤ 1−
∑

v∈N(u)∩∂S

1

deg(v)
+

1

2

 ∑
v∈N(u)∩∂S

1

deg(v)

2

≤ 1−

 ∑
v∈N(u)∩∂S

1

deg(v)

 (1− εp),

as
∑
v∈N(u)∩∂S 1/ deg(v) < 2εp for u ∈ B. It follows

εh ≥
1− εp
|∂S|

∑
u∈B

 ∑
v∈N(u)∩∂S

1

deg(v)

 (4.8)
=

(1− εp)Φ0

|∂S|
,

and rearranging yields Eq. (4.7).
It remains to show that for each node u ∈ Ai−1 that

is removed in step i, the potential decreases by at least
1−2εp, and for each node u ∈ Pi−1−Ai−1 removed the
potential does not increase. W.l.o.g. we assume that
only one node u ∈ Pi−1 is removed in step i. (If k > 1
nodes should be removed we just break step i into k
sub-steps.)

First, suppose that a node u ∈ Pi−1 − Ai−1 is
removed in step i. Then Pi = Pi−1−{u} and Ai = Ai−1.
From the second formulas for Φi,1 and Φi,2 we obtain

Φi,1 − Φi−1,1 =
∑

v∈N(u)∩Ai

1

deg(v)
=: φinc,

Φi,2 − Φi−1,2 = −
∑

v∈N(u)∩(S+−Ai−1)

1

deg(v)
=: −φdcr.

Since Ai = Ai−1 we have

φinc + φdcr =
∑

v∈N(u)∩S+

1

deg(v)
≥ 2εp,

where the inequality holds because of Eq. (4.6), since
u ∈ ∂(S+). Further, since u is removed in step i,
it satisfies the condition

∑
v∈N(u)∩Ai−1

1/ deg(v) < εp,
which yields φinc < εp. From the above two inequalities
on φinc and φdcr we get φinc < εp < φdcr, and thus,
Φi − Φi−1 = φinc − φdcr < 0.

Suppose now that a node u ∈ Ai−1 is removed.
Then Pi = Pi−1 − {u} and Ai = Ai−1 − {u}, and

Φi,1 − Φi−1,1 = −
∑

v∈N(u)−Pi−1

1
deg(u)︸ ︷︷ ︸

φ1

+
∑

v∈N(u)∩Ai

1
deg(v)︸ ︷︷ ︸

φ2

,

Φi,2 − Φi−1,2 =
∑

v∈N(u)∩Pi

1
deg(u)︸ ︷︷ ︸

φ3

−
∑

v∈N(u)∩(S+−Ai−1)

1
deg(v) .

In the expression for φ2 we can replace Ai by Ai−1, as
u /∈ N(u) and thus N(u)∩Ai = N(u)∩Ai−1. Similarly,
in the expression for φ3 we can replace Pi by Pi−1. It
follows that φ1 + φ3 =

∑
v∈N(u) 1/deg(u) = 1, and also

φ2 + φ3 < εp as otherwise u would not be removed in
step i. Thus,

Φi − Φi−1 = (Φi,1 − Φi−1,1) + (Φi,2 − Φi−1,2)

≤ −φ1 + φ2 + φ3 ≤ −φ1 + 2φ2 + φ3

= −(φ1 + φ3) + 2(φ2 + φ3) < −1 + 2εp.

This completes the proof of Lemma 4.5.

4.2.2 Spreading a Rumor from an Active Node.
We prove now the following lemma, which bounds the
expected time until a rumor originated at some active
node u ∈ ∂S reaches S.

Lemma 4.6. Let u ∈ ∂S ∩ P . Using PUSH-PULL, a
rumor originated at u spreads to at least one node v ∈ S
in an expected number of O(log ∆) rounds.

This result is similar to Lemma 3.3, but holds only
for active nodes rather than all u ∈ ∂S, and assumes
PUSH-PULL rather than just PUSH. The proof analyzes
the spread of u’s rumor on the subgraph induced by
the set P of participating nodes. Each active node (i.e.,
from set A = P∩S+) chooses a random neighbor in each
round, and contacts that neighbor if it is participating.
Passive nodes (i.e, from set P − A = P ∩ ∂(S+)) do
not choose neighbors; they communicate only with the
active nodes that contact them in each round.

Let Iut be the set of informed nodes after t rounds.
Similar to the proof of Lemma 3.3, we define

τ = min{t : E[|Iut+1| | Iut ] < (1 + ε) · |Iut | ∨ |Iut | ≥ ∆2},

where 0 < ε < εp/2 is a constant. The new condition
|Iut | ≥ ∆2 is added because we want to show a bound of



O(log ∆), instead of O(log n) as in Lemma 3.3. The
square in ∆ is to ensure that if at least ∆2 nodes
are informed then at least ∆ of them are active, as
we elaborate later. The next result is an analogue of
Claim 3.4, and bounds the expectation of τ .

Claim 4.7. E[τ ] = O(log ∆).

Proof. Let Xt, for t ≥ 1, be a 0/1 random variable that
is 1 iff |Iut | ≥ (1 + ε/3) · |Iut−1| or t ≥ τ . Further, let

τ ′ = min

{
i :

i∑
t=1

Xt ≥ 2 log1+ε/3 ∆

}
.

We have

(4.9) E[τ ] ≤ E[τ ′],

because: for any k, if τ > k then |Iuk | ≥ (1+ε/3)
∑k

t=1Xt

and |Iut | < ∆2, and thus,

k∑
t=1

Xt ≤ log1+ε/3(|Iuk |) < log1+ε/3(∆2) = 2 log1+ε/3 ∆,

which implies τ ′ > k. Hence, for any k we have that
τ > k implies τ ′ > k, and thus E[τ ] ≤ E[τ ′].

Next we show that for any t,

(4.10) Pr(Xt = 1 | X1 . . . Xt−1) ≥ 1− e−ε
2/18.

Fix the outcome of the first t − 1 rounds, and suppose
that τ > t − 1. (Otherwise, Xt = 1 and the inequality
above holds trivially.) We have

Pr(Xt = 0) ≤ Pr(|Iut | < (1 + ε/3) · |Iut−1|).

We will bound now the probability on the right side.
Observe that |Iut | =

∑
v∈V Yv, where Yv is the indicator

variable of the event that v ∈ Iut . The random variables
Yv are not independent: if two participating nodes
v, v′ /∈ Iut−1 have a common neighbor w ∈ Iut−1, then the
events that w pushes the rumor to v or to v′ in round t
are correlated. However, the variables Yv are negatively
associated [11]; this follows from [11, Example 4.5].6

Negative association allows us to use standard Chernoff
bounds to bound Pr(|Iut | < (1 + ε/3) · |Iut−1|): Since

6The example cited refers to a general balls and bins model.
In our case: bins are the nodes, and for each informed node v we

place a ball to a random neighbor of v, while for each uninformed

node v we place a ball to v iff a randomly chosen neighbor of v
is informed. The example then shows that the number of balls in

the bins are negatively associated.

we have τ > t − 1, it follows from τ ’s definition that
E[|Iut |] ≥ (1 + ε) · |Iut−1|, and

Pr(|Iut | < (1 + ε/3) · |Iut−1|)

≤ Pr

(
|Iut | < (1 + ε/3) · E[|Iut |]

1 + ε

)
≤ Pr(|Iut | < (1− ε/3) E[|Iut |])

≤ e−(ε/3)2 E[|Iut |]/2 ≤ e−ε
2/18.

Hence, Pr(Xt = 1) = 1− Pr(Xt = 0) ≥ 1− e−ε2/18.
From Eq. (4.10) it follows that τ ′ is stochastically

dominated by a negative-binomial random variable that
counts the number of independent bernoulli trials until
we have 2 log1+ε/3 ∆ successes, and each trial has a

success probability of 1 − e−ε2/18. Therefore, E[τ ′] ≤
(2 log1+ε/3 ∆)/(1− e−ε2/18) = O(log ∆). From this and
Eq. (4.9), the claim follows.

The next result is an analogue of Claim 3.5, and
bounds the harmonic mean of the degrees of active
nodes in Iuτ

Claim 4.8. If E[|Iut+1| | Iut ] < (1+ε)·|Iut | or |Iut | ≥ ∆2,
then

∑
v∈Iut ∩S+

1
deg(v) ≥ ζ, where ζ = (εp − 2ε)/3.

Proof. First we show that if |Iut | ≥ ∆2 holds then∑
v∈Iut ∩S+ 1/ deg(v) ≥ ζ—this is the easier case. Ob-

serve that each informed inactive node w ∈ Iut ∩ ∂(S+)
has at least one informed neighbor v in ∂S, namely, the
one that pushed the rumor to w. Further, each v ∈ ∂S
has at most deg(v)−1 ≤ ∆−1 neighbors in ∂(S+) (and
at least one in S). It follows that if |Iut | ≥ ∆2, then at
least ∆ of the nodes in Iut belong to S+, i.e., |Iut ∩S+| ≥
∆, because otherwise, |Iut | = |Iut ∩S+|+ |Iut ∩ ∂(S+)| ≤
|Iut ∩ S+| + |Iut ∩ S+| · (∆ − 1) = |Iut ∩ S+| · ∆ < ∆2.
And if we have |Iut ∩ S+| ≥ ∆, then∑

v∈Iut ∩S+

1/ deg(v) ≥ |Iut ∩ S+|/∆ ≥ ∆/∆ = 1 > ζ.

It remains to show that if E[|Iut+1| | Iut ] < (1+ε)·|Iut |
then

∑
v∈Iut ∩S+ 1/ deg(v) ≥ ζ. In the rest of the proof

we assume that
∑
v∈Iut ∩S+ 1/deg(v) < ζ, and will prove

that E[|Iut+1| | Iut ] ≥ (1 + ε) · |Iut |.
The proof builds upon the ideas used for Claim 3.5.

Similar to Claim 3.5, we count the number of unin-
formed nodes to which exactly one copy of the rumor
is pushed in round t + 1 (these nodes may also receive
a second copy via pull). Further, we count the number
of uninformed nodes that pull the rumor in that round.
The sum of the above two numbers is then a lower bound
on twice the total number of nodes informed in round



t+1. We lower-bound the expectation of this sum using
the definition of active and passive nodes.

Fix Iut . For each informed active node v ∈ Iut ∩S+,
let β(v) = |N(v) ∩ (P − Iut )|/ deg(v) be the fraction
of v’s neighbors that are participating and uninformed.
Then the probability that v pushes the rumor to such
a neighbor and no other node pushes the rumor to the
same neighbor is lower-bounded by

β(v) ·
∏

v′∈Iut ∩S+

(
1− 1

deg(v′)

)
≥ β(v) ·

1−
∑

v′∈Iut ∩S+

1
deg(v′)


≥ β(v) · (1− ζ).

Further, for each informed node v ∈ Iut , let γ(v) =∑
v′∈N(v)∩(A−Iut ) 1/deg(v′) be the expected number of

uninformed active nodes that pull the rumor from v. It
follows that the expected total number of nodes that
get informed in round t+ 1 is
(4.11)

E
[
|Iut+1| − |Iut |

]
≥ 1

2

∑
v∈Iut ∩S+

β(v) ·(1−ζ)+
1

2

∑
v∈Iut

γ(v).

Next we bound the above sums of β(v) and γ(v)
using Definition 4.4. For each informed active node
v ∈ Iut ∩ S+, we have

|N(v) ∩ P |
deg(v)

=
|N(v) ∩ Iut |

deg(v)
+ β(v) ≤ |Iut |

deg(v)
+ β(v),

and∑
v′∈N(v)∩A

1

deg(v′)
=

∑
v′∈N(v)∩(A∩Iut )

1

deg(v′)
+ γ(v)

≤
∑

v′∈A∩Iut

1

deg(v′)
+ γ(v) < ζ + γ(v).

Then (4.4) yields |Iut |/ deg(v) + β(v) + ζ + γ(v) ≥ εp.
Summing over all v ∈ Iut ∩ S+ and rearranging gives∑

v∈Iut ∩S+

(
β(v) + γ(v)

)
≥ |Iut ∩ S+| · (εp − ζ)−

∑
v∈Iut ∩S+

|Iut |
deg(v)

≥ |Iut ∩ S+| · (εp − ζ)− |Iut | · ζ.

Next, for each informed passive node v ∈ Iut − S+, we
obtain similarly using (4.5) that ζ + γ(v) ≥ εp, and
summing over all such v gives∑

v∈Iut −S+

γ(v) ≥ |Iut − S+| · (εp − ζ).

Adding the last two inequalities above yields∑
v∈Iut ∩S+

β(v) +
∑
v∈Iut

γ(v) ≥ |Iut | · (εp − ζ)− |Iut | · ζ

= |Iut | · (εp − 2ζ).

From this and (4.11) it follows

E[|Iut+1| − |Iut |] ≥
1

2
(1− ζ) · |Iut | · (εp − 2ζ) ≥ ε · |Iut |,

where the last inequality is obtained using that ζ =
(εp − 2ε)/3. This completes the proof of Claim 4.8.

Using Claim 4.8 it is easy to show an O(1) bound on
the expected number of additional rounds after round
τ , until some node in S gets informed: Fix Iuτ and
suppose that Iuτ ∩ S = ∅ (otherwise some node from
S is already informed). Then Iuτ ∩ S+ = Iuτ ∩ ∂S, and
Claim 4.8 gives

∑
v∈Iut ∩∂S

1/ deg(v) ≥ ζ. Since each
node v ∈ Iut ∩ ∂S has at least one neighbor from S, the
probability that none of these nodes pushes the rumor
to a neighbor from S in a given round t > τ , is at most∏
v∈Iut ∩∂S

(1− 1/ deg(v)) ≤ e
−

∑
v∈Iut ∩∂S 1/ deg(v) ≤ e−ζ .

It follows that the expected number of rounds until some
of the nodes v ∈ Iuτ ∩ ∂S pushes the rumor to a node
in S is at most 1/(1 − e−ζ) = O(1). Combining this
with Claim 4.7 gives an upper bound of O(log ∆) on
the expected number of rounds until some node from S
gets informed, concluding the proof of Lemma 4.6.

4.2.3 Completing the Proof of Lemma 4.3. The
next standard lemma is the analogue of Lemma 3.2 for
PUSH-PULL. Versions of this result can be found, e.g.,
in [6, 20, 2].

Lemma 4.9. Let T (V1, V2) be the number of PUSH-PULL
rounds until a rumor initially known to all u ∈ V1

(and only them) spreads to at least one v ∈ V2. Then
T (V1, V2) and T (V2, V1) have the same distribution.

From the lemma above and Lemma 4.6, it follows
that the rumor spreads from S to a given u ∈ ∂S ∩ P
in an expected number of at most ` = O(log ∆) rounds.
Markov’s Inequality then gives that in 2` rounds node
u has been informed with probability at least 1/2, and
from the linearity of expectation, in 2` rounds at least
1/2 of the nodes from ∂S ∩ P have been informed in
expectation. Using Markov’s again we obtain that in 2`
rounds more than 3/4 of the nodes from ∂S∩P are still
uninformed with probability at most (1/2)/(3/4) = 2/3.
Thus, 1/4 of the nodes from ∂S ∩ P get informed
within 2` rounds with probability at least 1/3, and
this implies that 1/4 of the nodes from ∂S ∩ P get
informed in an expected number of most 2`/(1/3) = 6`
steps. From this and Lemma 4.5, which states that
|∂S ∩ P | = Θ(|∂S|), we obtain Lemma 4.3.



4.3 The Case of High Boundary Expansion. In
this section we show the following result.

Lemma 4.10. Suppose that It = S for some set S ⊂ V
with boundary expansion h(S) ≥ εh, where εh > 0 is
an arbitrary constant. There is a positive real number
b = b(S) ≤ 1/α such that the expected number of rounds
until b · |∂S| nodes from ∂(S+) have some informed
neighbor is O(b log ∆).

We start with an overview of the proof. Eq. (4.3)
gives that the expected number of nodes from ∂(S+)
that have some informed neighbor after one round is
at least h(S) · |∂S| ≥ εh · |∂S| = Ω(|∂S|). To prove
the lemma we need to bound also the variance of those
nodes. Intuitively, the variance will be higher when the
degrees of nodes in ∂S are larger, and in this case larger
values for b are needed to satisfy the lemma.

The proof distinguishes three cases. The first case is
when the larger contribution to the boundary expansion
of S is from nodes u ∈ ∂S of degree deg(u) ≤ c · |∂S|, for
some constant c. Formally, we have hT (S) ≥ εh/3, for
T = {u ∈ ∂S : deg(u) ≤ c · |∂S|} (see Definition 4.2).
Using the second moment method, we show that after
one round of PULL we have with probability Ω(1)
that Ω(|∂S|) nodes from ∂(S+) have some informed
neighbor. It follows that the expected number of rounds
until Θ(|∂S|) nodes from ∂(S+) have some informed
neighbor is O(1), thus the lemma holds for b = Θ(1).

The next case is when the larger contribution to
h(S) comes from nodes u ∈ ∂S of degree between
c · |∂S| and |S|. We argue that for some degree k
from that range, the number of nodes u ∈ ∂S with
degree k ≤ deg(u) ≤ 2k and Θ(k) neighbors in ∂(S+)
is at least Ω(|∂S|/ log ∆). Then the probability of
informing at least one such u in a round of PULL is
p = Ω(|∂S|/(k log ∆)). It follows that the expected
number of rounds until Θ(k) nodes from ∂(S+) have
some informed neighbor is 1/p = O((k/|∂S|) log ∆),
thus the lemma holds for b = Θ(k/|∂S|).

The last case is when the largest contribution to
h(S) is from nodes u ∈ ∂S of degree deg(u) ≥ d∗,
where d∗ = max{|S|, c|∂S|}. We argue that Ω(|∂S|)
nodes u ∈ ∂S have Ω(d∗) neighbors in ∂(S+). As the
degree of those nodes u may be very large, we rely
on push transmissions to inform them. Using that the
degree of any node from S is bounded by |S+|, we argue
that in one round of PUSH, at least one of the above
nodes u is informed with probability p = Ω(|∂S|/|S+|).
It follows that the expected number of rounds until
Θ(d∗) = Θ(|S+|) nodes from ∂(S+) have some informed
neighbor is 1/p = O(|S+|/|∂S|), thus the lemma holds
for b = Θ(|S+|/|∂S|).

We give the detailed proof next.

4.3.1 Proof of Lemma 4.10. We partition ∂S into
three sets,

T1 = {u ∈ ∂S : deg(u) ≤ c · |∂S|},
T2 = {u ∈ ∂S : c · |∂S| < deg(u) ≤ |S|}},
T3 = {u ∈ ∂S : deg(u) > max{|S|, c · |∂S|}},

where c = (εh/3)2/8. From Definitions 4.1 and 4.2, it
follows hT1

(S)+hT2
(S)+hT2

(S) ≥ h(S) ≥ εh, and thus,
hTi(S) ≥ εh/3 for at least one i ∈ {1, 2, 3}.

The next result lower-bounds |I+
t+1 − I

+
t |, i.e., the

number of nodes from ∂(S+) that have an informed
neighbor after one round.

Claim 4.11. Let ε = εh/3.

(a) If hT1(S) ≥ ε then Pr
(
|I+
t+1 − I

+
t | ≥ ε|∂S|/2

)
≥ 1

2 .

(b) If hT2(S) ≥ ε then there is a k ∈ {c|∂S|, . . . , |S|}
such that for l = log 2 min{|S|,∆}

max{c|∂S|, δ} ≤ log(2∆),

Pr
(
|I+
t+1 − I

+
t | ≥ εk/2

)
≥ 1− e−

ε|∂S|
4kl = Ω

(
|∂S|
kl

)
.

(c) If hT3(S) ≥ ε then for k = max{|S|, c|∂S|},

Pr
(
|I+
t+1 − I

+
t | ≥ εk/2

)
≥ 1− e−

εc|∂S|
4k = Ω

(
|∂S|
k

)
.

Proof. (a) Before round t + 1, we fix for each node
u ∈ T1 a neighbor vu ∈ S. Let UT1 be the set of nodes
u ∈ T1 that get informed in round t + 1 by pulling the
rumor from their neighbor uv. Further, let fT1

be the
number of nodes from ∂(S+) that have a neighbor in
UT1

. Clearly, |I+
t+1 − I+

t | ≥ fT1
, thus to prove (a) it

suffices to show that Pr (fT1 ≥ ε · |∂S|/2) ≥ 1/2. We
show this next using Chebyshev’s Inequality.

Each node u ∈ T1 belongs to UT1
with probability

1/ deg(u) independently of the other nodes, similar
to UT in Definition 4.2. It follows that hT1

(S) =
E[fT1

]/|∂S|, thus

E[fT1 ] = hT1(S) · |∂S| ≥ ε · |∂S|.

For the variance of fT1
, we will prove below that

(4.12) Var[fT1
] ≤

∑
u∈T1

deg(u).

From this it follows

Var[fT1 ] ≤ |T1| · (c · |∂S|) ≤ c · |∂S|2 = ε2 · |∂S|2/8,

as c = ε2/8. Chebyshev’s Inequality then yields the
desired result:

Pr (fT1
≤ ε · |∂S|/2) ≤ Pr

(
|fT1 −E[fT1 ]| ≥ ε · |∂S|/2

)
≤ Var[fT1

]

(ε · |∂S|/2)2
≤ 1/2.



It remains to prove Eq. (4.12). For each v ∈ ∂(S+),
let Xv be a 0/1 random variable that is 1 iff v has a
neighbor in UT1

. Then, fT1
=
∑
v∈∂(S+)Xv, and

Var[fT1
] =

∑
(v1,v2)∈(∂(S+))2

Cov[Xv1 , Xv2 ].

The covariance term Cov[Xv1 , Xv2 ] equals

Pr(Xv1 = Xv2 = 1)− Pr(Xv1 = 1) · Pr(Xv2 = 1).

We can express Pr(Xv1 = Xv2 = 1) as the sum of the
following two terms: 1) the probability that v1 and v2

have a common neighbor in UT1
; by the union bound,

this is at most equal to
∑
u∈N(v1)∩N(v2)∩T1

1/ deg(u);

and 2) the probability that each of v1 and v2 has a neigh-
bor in UT1

but they have no common neighbors in UT1
;

this is at most equal to Pr(Xv1 = 1) · Pr(Xv2 = 1). It
follows Cov[Xv1 , Xv2 ] ≤

∑
u∈N(v1)∩N(v2)∩T1

1/ deg(u),
thus

Var[fT1 ] ≤
∑

(v1,v2)∈(∂(S+))2

∑
u∈N(v1)∩N(v2)∩T1

1/deg(u).

For each node u ∈ T1, the term 1/deg(u) appears in the
double sum above exactly |N(u) ∩ ∂(S+)|2 times: once

for each pair (v1, v2) ∈ (N(u) ∩ ∂(S+))
2
. Thus,

Var[fT1
] ≤

∑
u∈T1

(|N(u) ∩ ∂(S+)|2/ deg(u))

≤
∑
u∈T1

(deg(u)2/ deg(u)) =
∑
u∈T1

deg(u).

(b) Let T ′2 = {u ∈ T2 : |N(u) ∩ ∂(S+)|/deg(u) ≥
ε/2} be the set of nodes u ∈ T2 with the property that
an (ε/2)-fraction of u’s neighbors belong to ∂(S+). We
have |T ′2| ≥ ε · |∂S|/2, because otherwise the assumption
hT2

(S) ≥ ε is contradicted:

hT2(S) · |∂S| ≤
∑
u∈T2

|N(u) ∩ ∂(S+)|
deg(u)

≤ |T ′2| · 1 + (|T2| − |T ′2|) · (ε/2)

< ε · |∂S|/2 + |∂S| · (ε/2) = ε · |∂S|.

Since nodes in T ′2 have degrees in the range between
max{c|∂S|, δ} and min{|S|, ∆}, it follows that for some
k in this range, at least |T ′2|/l nodes u ∈ T ′2 have degree
k ≤ deg(u) ≤ 2k. If at least one of these nodes gets
informed in round t + 1 then |I+

t+1 − I
+
t | ≥ εk/2, and

the probability that this happens is at least

1−(1−1/(2k))|T
′
2|/l ≥ 1−e−|T

′
2|/(2lk) ≥ 1−e−ε|∂S|/(4lk).

(c) Similar to (b), we let T ′3 = {u ∈ T3 : |N(u) ∩
∂(S+)|/deg(u) ≥ ε/2}, and it is |T ′3| ≥ ε · |∂S|/2. If
a node u ∈ T ′3 gets informed in round t + 1, then we
have |I+

t+1 − I
+
t | ≥ εk/2, where k = max{|S|, c · |∂S|}.

Thus, to prove the claim it suffices to lower-bound the
probability of informing at least one node u ∈ T ′3 in
round t + 1. Unlike the proofs for (a) and (b) which
rely on pull transmissions of the rumor, we use push
transmissions here. For each u ∈ T ′3, we fix a neighbor
vu ∈ S of u before round t+1. The probability that the
rumor is pushed from vu to u is 1/ deg(vu) ≥ 1/|S+|.
Further, if i > 1 nodes u ∈ T ′3 have the same vu, the
probability that none of them receives the rumor via a
push from vu is 1−i/ deg(vu) ≤ (1−1/ deg(vu))i, i.e., it
is smaller than if the nodes u had distinct neighbors vu.
It follows that the probability at least one node u ∈ T ′3
receives the rumor via a push from its neighbor vu is
lower-bounded by

1− (1− 1/|S+|)|T
′
3| ≥ 1− e−|T

′
3|/|S

+| ≥ 1− e−
ε|∂S|/2
2k/c ,

where for the last inequality we used that |S+| =
|S| + |∂S| ≤ k + k/c ≤ 2k/c, as c ≤ 1. This completes
the proof of Claim 4.11.

From Claim 4.11, Lemma 4.10 follows easily: We
can assume that before each round i > t all informed
nodes u /∈ S become uninformed, as this can only
decrease the number of nodes v ∈ ∂(S+) with some
informed neighbor after round i. With this assumption,
the number of v ∈ ∂(S+) with an informed neighbor
after round i becomes independent of the outcome of
the previous rounds t+1, . . . , i−1. From Claim 4.11(a)
then we obtain that if hT1

(S) ≥ εh/3, the probability
that at least ε·|∂S|/2 nodes v ∈ ∂(S+) have an informed
neighbor after a given round i > t is at least 1/2. It
follows that for b = ε/2 the expected number of rounds
until b·|∂S| nodes v ∈ ∂(S+) have an informed neighbor
is at most 1/(1/2) = O(b). Similarly, Claim 4.11(b)
yields that if hT2

(S) ≥ εh/3, then for some k ∈
{c · |∂S|, . . . , |S|} and for b = εk/(2|∂S|) < 1/α, the
expected number of rounds until b·|∂S| nodes v ∈ ∂(S+)
have an informed neighbor is 1/Ω(|∂S|/kl) = O(bl).
Finally, Claim 4.11(c) gives that if hT3(S) ≥ εh/3, then
for k = max{|S|, c · |∂S|} and b = εk/(2|∂S|) < 1/α, the
expected number of rounds until b·|∂S| nodes v ∈ ∂(S+)
have an informed neighbor is 1/Ω(|∂S|/k) = O(b). This
completes the proof of Lemma 4.10.

4.4 Completing the Proof of Theorem 1.1. We
will now use Lemmas 4.3 and 4.10 to establish a lower
bound on the growth of Ψt = (|It| + |I+

t |)/2. We show
that the expected number of rounds needed to double
Ψt or increase |It| above n/2 (whichever occurs first) is



bounded by O(log(∆)/α).

Lemma 4.12. Let

Tt = min{i : Ψt+i ≥ 2Ψt ∨ |It+i| > n/2}.

Then E[Tt | It] ≤ s log(∆)/α, for a fixed constant s > 0.

Proof. The proof uses an inductive argument, and is
based on the following corollary of Lemmas 4.3 and 4.10.
Let ISi and ΨS

i denote respectively It+i and Ψt+i given
that It = S.

Claim 4.13. For any non-empty set S ⊂ V , there is a
positive real number bS ≤ 1/α such that for

τS = min{i : ΨS
i ≥ ΨS

0 + bS · |∂S|},

we have E[τS ] ≤ cbS log ∆, for some constant c > 0.

Proof. If h(S) ≤ εh < 1, then it follows from Lemma 4.3
that set ISi increases by Θ(|∂S|) nodes—and thus ΨS

i

increases by at least that amount—in an expected
number of O(log ∆) rounds; so the claim holds for
bs = Θ(1) in this case. If h(S) ≥ εh > 0, then it follows
from Lemma 4.10 that (ISi )+ increases by b·|∂S| nodes—
thus ΨS

i increases by at least b · |∂S|/2—in an expected
number of O(b log ∆) rounds, for some positive b ≤ 1/α;
so the claim holds for bs = b/2 in this case.

Define

T (S, k) = min
{
i : ΨS

i ≥ ΨS
0 + k ∨ |ISi | > n/2

}
.

The quantity E[Tt | It = S] we must bound is then the
same as E[T (S,ΨS

0 )]. We will prove that if |S| ≤ n/2
and 0 < k ≤ ΨS

0 , then

(4.13) E[T (S, k)] ≤
(

4− 3ΨS
0

k + ΨS
0

)
· c log ∆

α
,

where c is the constant of Claim 4.13. Lemma 4.12
then follows as a special case of the above inequality:
Setting k = ΨS

0 yields E[T (S,ΨS
0 )] ≤ 5c log(∆)/(2α),

and since E[T (S,ΨS
0 )] = E[Tt | It = S] it follows that

E[Tt | It = S] ≤ s log(∆)/α for s = 5c/2.
It remains to show Eq. (4.13). The proof is by

induction on k. We distinguish two cases.
Case 1: k ≤ bS · |∂S|. This is the base case of the

inductive proof. Since k ≤ bS · |∂S|, we have that
T (S, k) ≤ T (S, bS · |∂S|) ≤ τS , and from Claim 4.13,
E[τs] ≤ cbS log ∆ ≤ c log(∆)/α. Thus

E[T (S, k)] ≤ c log(∆)/α.

Eq. (4.13) now follows, because 4− 3ΨS
0

k+ΨS
0
≥ 1 as k ≥ 0.

Case 2: k > bS · |∂S|. We divide T (S, k) into two
terms, the rounds until the potential has increase by
bS ·|∂S|, and the remaining rounds until it has increased
by k in total. Let S′ = ISτS . Then

T (S, k) = T (S, bS · |∂S|) + T (S′, k + ΨS
0 −ΨS′

0 ).

The first term on the right side is at most τS , thus from
Claim 4.13 it follows

E[T (S, bS · |∂S|)] ≤ cbS log ∆.

We can bound the expectation of the second term,
T (S′, k+ ΨS

0 −ΨS′

0 ), by applying the induction hypoth-
esis, as S ( S′ and thus k + ΨS

0 − ΨS′

0 < k. Thus by
applying (4.13) with S′ and k+ ΨS

0 −ΨS′

0 in place of S
and k, respectively, we obtain that if k+ ΨS

0 −ΨS′

0 > 0,

E[T (S′, k + ΨS
0 −ΨS′

0 ) | S′] ≤

(
4− 3ΨS′

0

k + ΨS
0

)
· c log ∆

α

≤
(

4− 3(ΨS
0 + bS |∂S|)
k + ΨS

0

)
· c log ∆

α
.

If k + ΨS
0 − ΨS′

0 ≤ 0, the above expectation is 0, thus
it is still bounded by the quantity in the second line.
From the three equations above it follows

E[T (S, k)] ≤
(
αbS + 4− 3ΨS

0

k + ΨS
0

− 3bS |∂S|
k + ΨS

0

)
· c log ∆

α
.

To prove (4.13) it suffices to show that αbS− 3bS |∂S|
k+ΨS

0
≤ 0,

or equivalently, that α(k + ΨS
0 ) ≤ 3|∂S|: Using the

assumption of (4.13) that k ≤ ΨS
0 , and the fact that

|∂S|/|S| ≥ α as |S| ≤ n/2, we get α(k+ ΨS
0 ) ≤ 2αΨS

0 =
2α(|S|+ |∂S|/2) ≤ 2(|∂S|+ α|∂S|/2) ≤ 3|∂S|.

This completes the proof of Eq. (4.13) and the proof
of Lemma 4.12.

We will now use Lemma 4.12 to derive Theo-
rem 1.1. We partition rumor spreading in phases of
y = 2s log(∆)/α rounds each, and count the phases in
which Ψt doubles or |It| has exceeded n/2. Let Xi, for
i ≥ 1, be a 0/1 random variable that is 1 iff T(i−1)y ≤ y.
From Lemma 4.12, E[T(i−1)y | I(i−1)y] ≤ y/2, and

Markov’s Ineq. gives Pr
(
T(i−1)y ≤ y | I(i−1)y

)
≥ 1/2.

It follows Pr(Xi = 1 | X1 . . . Xi−1) ≥ 1/2, and from
this,

∑
j≤iXj stochastically dominates binomial ran-

dom variable B(i, 1/2). Then Chernoff bounds give
for i∗ = 2(β + 3) log n, Pr

(∑
j≤i∗ Xj < log n

)
≤

e−2(i∗/2−logn)2/i∗ < n−β−1. This implies that i∗y
rounds suffice to inform more than n/2 nodes with prob-
ability at least 1 − n−β−1: If |Ii∗y| ≤ n/2 then fewer
than log n among the X1 . . . Xi∗ are 1, as in this case



Ψi∗y ≥ 2
∑

j≤i∗ Xj , and Ψi∗y < n. Hence, we have
Pr(|Ii∗y| ≤ n/2) ≤ Pr(

∑
j≤i∗ Xj < log n) < n−β−1.

Once a set V1 ⊆ V with |V1| > n/2 has been in-
formed, any given node u /∈ V1 gets informed within i∗y
additional rounds with probability at least 1 − n−β−1:
From Lemma 4.9, the probability that u learns the ru-
mor from V1 within i∗y rounds equals the probability
that some node from V1 learns a rumor originated at u
within i∗y rounds. And the latter probability is at least
equal to the probability that more than n/2 nodes learn
u’s rumor within i∗y rounds, because then at least one
of these nodes will belong to V1 as |V1| > n/2.

From the above and the union bound, it follows
that all nodes get informed in at most 2i∗y = O(log n ·
log(∆)/α) rounds with probability at least 1−n−β . This
completes the proof of Theorem 1.1.
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APPENDIX

A Rumors Spread Fast in Graphs of Diameter 2

In this section we give an example of another result
that can be proved using the machinery developed
for the proof of our main result. We show that
PUSH-PULL completes in a logarithmic number of rounds
in any graph of diameter (at most) 2. This result can
be viewed as an extension to the classic result that
rumor spreading takes logarithmic time in graphs of
diameter 1, i.e., in complete graphs. We point out that
unlike complete graphs, some graphs of diameter 2 have
very low expansion, e.g., two cliques of the same size
with one common vertex. The result does not extend to
graphs of diameter 3, as for example, rumor spreading
takes linear time in the dumbbell graph, which consist
of two cliques of the same size and a single edge between
one node from each clique.

Theorem A.1. For any graph G = (V,E) of diameter
2, PUSH-PULL informs all nodes of G in O(log n) rounds
with probability 1−O(n−β), for any constant β > 0.

Proof Sketch. We fix an arbitrary pair of nodes u, v ∈
V , and show that a rumor originated at u reaches v
in O(log n) rounds w.h.p. We divide rumor spreading
into three phases, each of length c log n for a sufficiently
large constant c.

In the first phase we consider only push operations.
We define τ as in the proof of Lemma 3.3, and from
Claims 3.4 and 3.5 we obtain that w.h.p. in O(log n)
rounds the rumor has spread to all nodes of some set
Vu ⊆ V for which

∑
u′∈Vu

1/ deg(u′) = Ω(1).
In the last (third) phase we consider just pull

operations. From the symmetry between push and pull,
and the argument used for the first phase, it follows that
w.h.p. there is a set Vv ⊆ V with

∑
v′∈Vv

1/ deg(v′) =
Ω(1), such that if some node from Vv knows the rumor
at the beginning of the last phase, then v learns the
rumor as well within the next O(log n) rounds of the
phase. (The set Vv depends only on the random choices
of nodes in the rounds of the phase.)

Suppose now that sets Vu and Vv as above exist
(this is true w.h.p.), and fix all random choices in the
first and third phases (and thus sets Vu and Vv). We
will argue that in the second phase the rumor spreads
from Vu to some node in Vv w.h.p. This is trivially true
if Vu ∩ Vv 6= ∅, hence assume Vu ∩ Vv = ∅. From the
assumption that the graph has diameter 2, it follows
that for every node v′ ∈ Vv, at least one of the next two
conditions holds:

1. Node v′ has a neighbor in Vu; or

2. For every u′ ∈ Vu there is a node wu′v′ /∈ Vu ∪ Vv
that is a common neighbor of u′ and v′.

If Condition 1 holds for all v′ ∈ Vv, and thus each v′ ∈
Vv has some informed neighbor at the beginning of the
second phase, then from inequality

∑
v′∈Vv

1/ deg(v′) =
Ω(1) it follows that some v′ ∈ Vv will pull the ru-
mor from an informed neighbor w.h.p. within O(log n)
rounds. Suppose now that Condition 1 does not hold
for some v′ ∈ Vv, thus Condition 2 must hold. Then
from inequality

∑
u′∈Vu

1/ deg(u′) = Ω(1) it follows that
w.h.p. at least one of the nodes u′ ∈ Vu will push the ru-
mor to its neighbor wu′v′ within O(log n) rounds. And
thus v′ will have some informed neighbor after that.
Hence, after O(log n) rounds in the second phase, w.h.p.
all v′ ∈ Vv have some informed neighbor. It follows then
that some v′ ∈ Vv will pull the rumor in an additional
O(log n) rounds w.h.p., as we argued earlier.
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