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Abstract

We investigate the randomness requirements of the clas-
sical rumor spreading problem on fully connected graphs
with n vertices. In the standard random protocol, where
each node that knows the rumor sends it to a ran-
domly chosen neighbor in every round, each node needs
O((log n)2) random bits in order to spread the rumor in
O(log n) rounds with high probability (w.h.p.). For the
simple quasirandom rumor spreading protocol proposed
by Doerr, Friedrich, and Sauerwald (2008), dlog ne ran-
dom bits per node are sufficient. A lower bound by Do-
err and Fouz (2009) shows that this is asymptotically
tight for a slightly more general class of protocols, the
so-called gate-model.

In this paper, we consider general rumor spreading
protocols. We provide a simple push-protocol that
requires only a total of O(n log log n) random bits (i.e.,
on average O(log log n) bits per node) in order to spread
the rumor in O(log n) rounds w.h.p. We also investigate
the theoretical minimal randomness requirements of
efficient rumor spreading. We prove the existence of
a (non-uniform) push-protocol for which a total of
2 log n + log log n + o(log log n) random bits suffice to
spread the rumor in log n + lnn + O(1) rounds with
probability 1−o(1). This is contrasted by a simple time-
randomness tradeoff for the class of all rumor spreading
protocols, according to which any protocol that uses
log n − log log n − ω(1) random bits requires ω(log n)
rounds to spread the rumor.

1 Introduction

The problem of disseminating information in large net-
works is a fundamental one with a variety of applica-
tions, e.g., in the maintenance of distributed replicated
database systems [3, 15]. As a consequence, the prob-
lem of broadcasting information has been studied to a
large extent, theoretically and experimentally. In order
to be useful for a broad range of applications, efficient
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broadcasting algorithms should be simple, local (nodes
need no information about the network topology), and
be able to tolerate small changes in the network topol-
ogy (e.g., due to failures).

The classical algorithm for this problem is the push-
model, also known as the fully random rumor spreading
algorithm. The protocol proceeds in rounds; each node
of the n-node graph can send one message per round.
Initially, in round 0, an arbitrary node receives a piece
of information, called the rumor. That rumor is then
spread iteratively to other nodes: In each round every
informed node (i.e., every node that received the rumor
in a previous round) chooses a random neighbor to
which it then transmits the rumor.

This fundamental protocol obviously satisfies the
desired simplicity and locality properties. Here we focus
on results for the complete graph with n vertices, Kn.
Frieze and Grimmet [18] provided an asymptotically
tight analysis of the number of rounds that are needed
until every node becomes informed with high probability
(w.h.p.).1 This was improved by Pittel [21], who showed
that log n+ lnn+ O(1) rounds suffice with probability
1− o(1).2

Clearly, in this protocol each node needs to generate
dlog ne random bits in order to select a random neigh-
bor. The analysis of the random process shows that
most nodes need to send messages for Θ(log n) rounds
until all nodes are informed. Therefore, each node has
to generate an expected number of Θ

(
(log n)2

)
random

bits in order to inform all other nodes. Recently, Do-
err, Friedrich, and Sauerwald proposed the quasiran-
dom rumor spreading algorithm as an alternative that
aims at “imitating properties of the classical push model
with a much smaller degree of randomness” [7]. In their
model, each node needs only to generate one random
dlog ne-bit string that identifies a start point in some
given list of the node’s neighbors (e.g., the adjacency
list). Starting with that point, the node then informs

1We say an event E(n) occurs with high probability, if there

exists a constant ε > 0 such that Pr
(
E(n)

)
= 1−O(n−ε).

2“log” denotes the logarithm to base 2 and “ln” the natural
logarithm.



its neighbors in the order determined by that list (in a
round-robin fashion). Despite the reduced randomness
requirements, the protocol is still efficient: Angelopou-
los, Doerr, Huber, and Panagiotou [1] as well as Foun-
toulakis and Huber [16] provide upper and lower bounds
for the broadcast time that essentially match the ones
of the fully random case.

Doerr and Fouz [4, 5] have considered further reduc-
ing the amount of randomness by limiting each node’s
choice of its start point in its list to a subset of n/`
nodes that are equidistantly distributed in the node’s
list. However, they proved a negative result: There ex-
ist lists such that for any ε > 0 it takes w.h.p. at least
(1 − ε)(log n + lnn − log ` − ln `) + ` − 1 rounds until
every node is informed. Note that in this so-called gate-
model with randomness parameter ` each node needs to
generate log n− log `+Θ(1) random bits. Hence, in this
model it is not possible to spread the rumor to all nodes
within O(log n) rounds, unless each node generates at
least log n− log log n−O(1) random bits.

1.1 Our Contributions. Since randomness is a
sparse resource, we study the problem of reducing
the amount of randomness needed for efficient rumor
spreading. We restrict ourselves to push-algorithms for
the complete graph, where in each round each node
can select a neighbor from its adjacency list to which
a message is then transmitted. We make the standard
assumption that algorithms have no edge connection
information available, other than an adjacency list of
neighbors in arbitrary order. Moreover, protocols are
anonymous3, meaning that a node’s decisions do not
depend on the node’s ID.

The fully random and the quasirandom algorithms
are both oblivious, in the sense that nodes choose their
neighbors without any information gained from incom-
ing messages. While this also precludes information
about the number of messages a node received, nodes
are aware of the number of rounds that have passed
since they received the rumor. In particular, such obliv-
ious algorithms require no information other than the
rumor to be transmitted. We prove that any oblivious
algorithm, where each node uses at most b < log n − 1
random bits, cannot spread the rumor to all nodes in
less than b + bn/2b+1c rounds (for carefully chosen ad-
jacency lists). Hence, at least log n − log log n − O(1)
random bits are necessary for any oblivious algorithm

3In the rumor spreading literature, anonymous algorithms

are usually called “address-oblivious”. We chose a different
terminology in order to avoid confusion with the notion of
oblivious algorithms. Note that our notion of anonymous nodes

is consistent with that of anonymous processes in the distributed
computing literature.

to spread the rumor within O(log n) rounds. This gen-
eralizes the result in [4] for the gate-model to the class
of all oblivious algorithms.

The proof of the above observation reveals that
oblivious algorithms cannot work efficiently with low
randomness due to a lack of entropy available to nodes.
Therefore, a natural idea to improve the randomness
requirements is to share randomness among nodes. We
present a simple modification of the quasirandom proto-
col, where the rumor is spread to all other nodes within
O(log n) rounds w.h.p., and where the average number
of random bits per node is reduced to O(log logn). The
idea is to proceed in phases. The first phase consists of
roughly log n− log log n rounds, in which nodes act ex-
actly as in the quasirandom protocol. After that, nodes
switch to a different strategy in order to share random-
ness with other nodes. Each of the nodes informed so
far generates a random prefix of dlog ne − Θ(log log n)
random bits and continues informing nodes in a quasir-
andom fashion, but appending the random prefix to its
messages. A non-informed node that receives such a
random prefix fills it up with a newly chosen random
suffix in order to compose a dlog ne-bit string. That
string then marks the start point in its list, and the
node starts to spread the rumor to its neighbors in the
quasirandom way. The main difference to the quasir-
andom algorithm is that in later rounds, nodes do not
have to generate dlog ne bits to select the start points
in their lists. Rather, most of the entropy for select-
ing these start points is generated by a small subset of
Θ(n/ log n) nodes that were informed in earlier rounds.
This main result demonstrates that a simple protocol
can be used to significantly decrease the total amount
of randomness without sacrificing efficiency.

This result raises the question about the minimum
entropy required for efficient rumor spreading. To an-
swer this question, we show that there is a proto-
col that distributes the rumor in log n + lnn + O(1)
rounds with probability 1 − o(1), and that needs only
2 log n + log log n + o(log log n) random bits in total
(which are generated by the first node that gets in-
formed). Unfortunately, the proof is existential, and
we have no explicit construction of such an extremely
low-randomness protocol. However, it is not hard to see
that our upper bound is asymptotically optimal: We ob-
serve that if the total number of random bits is limited
to log n − log log n − ω(1), then not all nodes can be
informed within O(log n) rounds.

1.2 Related Work. The fully random algorithm has
been analyzed for various other graph topologies, such
as general graphs, bounded-degree graphs, hypergraphs,
sufficiently dense random graphs [15], expanders [22],



star and Cayley graphs [11, 12], and complete k-ary
trees [7]. The quasirandom algorithm has been proven
to be at least as efficient as the fully random algorithm
for most of these types of graphs (see [7, 8] for details).
In fact, for some topologies, e.g., sparse random graphs,
the quasirandom model is superior to the fully random
one. An experimental comparison of the fully random
and the quasirandom model was provided in [6].

Besides minimizing the broadcast time and the
randomness requirements, one can also optimize the
total number of transmissions. This can be achieved by
combining the push algorithm with the so-called pull
algorithm, where nodes contact random neighbors in
order to receive (as opposed to send) the rumor from
them [19, 10, 13, 2]. The problem of minimizing the
total communication complexity (i.e., the total number
of bits transmitted throughout a run of the protocol)
was studied in [17].

The robustness of the fully random algorithm was
considered in [14]. The authors showed for all graphs,
that if each message transmission is lost with a prob-
ability of 1 − p, then the broadcast time increases by
at most O(1/p). The same is true for a variant of the
quasirandom algorithm, where recipients send feedback
to the sender [8]. Additional robustness results for the
quasirandom model on the complete graph can be found
in [9].

2 Low-Randomness Rumor Spreading

We present a rumor spreading protocol that distributes
a rumor to all nodes in O(log n) rounds w.h.p., using
a total number of O(n log log n) random bits. Also, no
single node generates more than 2 log n random bits.

Our protocol is a modification of the quasirandom
rumor spreading protocol [7] that we analyze for the
fully connected graph. Sacrificing consistency, but for
presentational simplicity, throughout this section n will
denote the number of neighbors that each node has—
as opposed to the total number of nodes. Thus, we
consider the complete graph on n+ 1 nodes, Kn+1, and
we assume that, as in the quasirandom protocol, each
node v stores its neighbors in a list Lv[0 . . . n− 1] in an
arbitrary order.

The protocol proceeds in two phases. The first
phase consists of log n − log log n + O(1) rounds, and
during these rounds nodes act exactly as in the quasir-
andom protocol. This phase results in a Θ(1/ log n)
fraction of the nodes being informed w.h.p., and gen-
erates Θ(n) random bits in total (dlog ne random bits
generated by each node that gets informed).

In the second phase, nodes switch to a more
randomness-efficient strategy. Each of the nodes in-
formed in the first phase generates a random prefix,

called a seed, of log n − Θ(log log n) random bits, and
continues to spread the rumor in a quasirandom fashion
sending the random seed together with the rumor. Ev-
ery non-informed node that receives a seed appends to
it a new random suffix to compose a dlog ne-bit string.
The node uses this string as the start point in its list,
and begins to spread the rumor in the quasirandom way.
The second phase lasts for Θ(log n) rounds. During
these rounds, seeds are distributed to at least a con-
stant fraction of the nodes w.h.p., and these newly-
informed nodes inform all the remaining nodes w.h.p.
A total number of O(n log log n) random bits are gener-
ated: log n−Θ(log log n) bits by each of the O(n/ log n)
nodes informed in the first phase, and O(log logn) bits
by each of the other nodes.

In the next two sections, we describe the two phases
of the protocol in more detail and provide their analysis.

2.1 First Phase. This phase lasts until the end of
round t0 + τ , where t0 is the round when the rumor
is generated, τ = dlog κe, and κ = Θ(n/ log n). To
simplify notation, we will assume from now on that
the rumor is generated in round t0 = 0; so, the last
round of the first phase is round τ . Suppose that node
v gets informed in round tv ≤ τ . (If v is the source
of the rumor, tv = 0.) Then v chooses a position
pv in its list Lv uniformly at random (this requires
dlog ne random bits),4 and in rounds tv+1, tv+2, . . . , τ ,
node v transmits the rumor to nodes Lv[pv], Lv[pv ⊕
1], . . . , Lv[pv⊕(τ−tv−1)], respectively, where ⊕ denotes
the addition modulo n, i.e., a ⊕ b = (a + b) mod n.
Together with the rumor, v transmits also a counter
value used to detect the end of the phase: In round 0,
the source of the rumor initializes this value to κ + 1;
and, at the beginning of each subsequent round, each
informed node decreases its copy of the counter by one,
until its value becomes 0—indicating the end of the
phase.

Since the number of informed nodes at most doubles
in each round, the number of informed nodes at the end
of the first phase is at most

(2.1) 2τ = 2dlog κe < 2κ = O(n/ log n).

Thus, the total number of random bits generated is
O(n). Next we show that w.h.p. the number of informed
nodes at the end of the phase is also at least Ω(n/ log n).

4In this extended abstract, we ignore the problem of finding
a uniformly distributed random value in {0, . . . , n − 1}, if n is
not a power of two and only binary random values are available.

However, it is easy to accommodate our algorithm and analysis
for this case.



Lemma 2.1. For any constant c > 0, the number of
informed nodes at the end of the first phase is at least
3−cκ with probability 1−O(n−c).

To prove Lemma 2.1 we consider a rumor spreading
process that is slightly different than the actual process.
The difference is that an informed node may be inactive,
that is, after it gets informed it does not spread the
rumor to other nodes. The rest of the informed nodes,
called active, behave as in the actual process. In this
new processes, at the end of each round t ≤ τ , the
number of informed nodes is stochastically smaller than
the number of informed nodes in the original random
process. Therefore, it suffices to show that the lower
bound of Lemma 2.1 holds for this modified process.

Whether a node v that gets informed in the first
phase will be active or inactive is determined when v
chooses the random start point pv in its list. Note that,
at that time, we know exactly to which nodes v will
send the rumor to in the remainder of the phase, if
v is active. Node v will be inactive if at least one of
these nodes also receives the rumor in this phase from
an active node that was informed before v. To be more
precise, let tu ≤ τ be the round in which node u gets
informed, and let ≺ be the total order defined on the
set of all nodes informed in the first phase, where u ≺ v
if and only if

• tu < tv, or

• tu = tv, and u precedes v in some predetermined
ordering of all the nodes.

Let Cv = {Lv[pv ⊕ i] : i = 0, . . . , τ − tv − 1} be the
set of nodes to which v will send the rumor during the
first phase, if v is active. Then, v is active if and only
if Cv ∩ Cu = ∅ for all nodes u ≺ v.

For 0 ≤ t ≤ τ , we denote by It and At the set of
informed nodes and the set of active nodes, respectively,
at the end of round t. Also, At = It − At is the set of
inactive nodes at that time.

Our analysis studies how |At| increases. First we
show that, w.h.p., at most a constant number of the
nodes that get informed during the first o(log n) rounds
are inactive.

Lemma 2.2. For any t = o(log n) and any constant
k ≥ 1, Pr(|At| ≥ k) ≤ n−k+o(1).

Proof. Let v1 ≺ v2 ≺ · · · ≺ v|It| be the informed nodes
at the end of round t. Further, for i = 1, . . . , |It|, let
Xi be the 0/1 random variable with Xi = 1 if vi is
inactive, and Xi = 0 if vi is active. Recall that Xi is
a function of pv1 , . . . , pvi , and that Xi = 1 if and only
if at least one of the nodes in

⋃
j<i,Xj=0 Cvj belongs

also to Cvi = {Lv[pvi ⊕ j] : j = 0, . . . , τ − tvi − 1}.
Since the value of pvi is chose uniformly at random
among the n possible list positions, the probability that
Cvi contains a given node is |Cvi |/n ≤ τ/n. Also,∣∣⋃

j<i,Xj=0 Cvj
∣∣ ≤ i · τ ≤ |It| · τ ≤ 2tτ , since |It| ≤ 2t.

Therefore, by the union bound, the probability that Cvi
contains any of the nodes in

⋃
j<i,Xj=0 Cvj is

(2.2) Pr(Xi = 1 | pv1 , . . . , pvi−1) ≤ 2tτ2/n.

From this, and the fact that |It| ≤ 2t, it follows that
the sum

∑
i≤|It|Xi = |At| is dominated by the binomial

random variable B
(
2t, 2tτ2/n

)
. Thus,

Pr(|At| ≥ k) ≤ Pr

(
B

(
2t,

2tτ2

n

)
≥ k

)
≤
(

2t

k

)
·
(

2tτ2

n

)k
≤ (2t)k

k!
·
(

2tτ2

n

)k
≤ 1

nk−o(1)
,

where the second inequality was obtained by using the
fact that Pr(B(m, q) ≥ k) ≤

(
m
k

)
· qk; and the last

inequality holds because t = o(log n) and k is a constant.

The next result, Lemma 2.3, is a high-probability
lower bound on the rate at which |At| increases per
round, when |At| is sufficiently large. It says that
|At| essentially doubles in each round. More precisely,
w.h.p., |At| ≥ (2− 6q) · |At−1|, where

• q ≈ 1/log2 n, for small t,

• q ≈ 2(τ − t) · κ/n = Θ((τ − t)/ log n), for large t
(close to τ), and

• q ≈ 2tτ2/n, for intermediate values of t.

Lemma 2.3. Let t ≤ τ , and

q =
1

log2 n
+

1

n
·min{2(τ − t) · κ, 2tτ2}.

Then

Pr
(
|At| ≥ (2− 6q) · |At−1|

∣∣∣
A1, . . . , At−1, |At−1| = ω(log3 n)

)
= 1− n−ω(1).

Proof. Fix all the random choices of the algorithm until
the end of round t−1 (and, thus, the sets A1, . . . , At−1)
in such a way that |At−1| = ω(log3 n). Let v1 ≺ v2 ≺
· · · ≺ v|It|−|It−1| be the nodes that get informed in round
t. Also, for i = 1, . . . , |It| − |It−1|, let Xi be the 0/1
random variable withXi = 1 if vi is inactive, andXi = 0



if vi is active. Similarly to the proof of Lemma 2.2, we
have that the probability that Cvi contains a given node
is Cvi/n = (τ − t)/n. Also,

∣∣⋃
v≺vi Cv

∣∣ ≤ min{2κ, 2tτ},
since, by (2.1), 2κ is an upper bound on the total
number of nodes that get informed in the first phase,
and 2t is an upper bound on the number of informed
nodes at the end of round t. So, similarly to (2.2),

Pr(Xi = 1 | pv1 , . . . , pvi−1)

≤ τ − t
n
·min{2κ, 2tτ}

≤ 1

n
·min{2(τ − t) · κ, 2tτ2}

= q − 1

log2 n
.

From this, and the observation that |It| − |It−1| =
|At−1|, it follows that the number of nodes that get
informed in round t and are inactive, that is,∑

i≤|It|−|It−1|

Xi = |At| − |At−1|

= (|It| − |At|)− (|It−1| − |At−1|)
= 2|At−1| − |At|,

is dominated by the binomial random variable
B
(
|At−1|, q − 1/log2 n

)
. Thus, the probability that

2|At−1| − |At| > 6q|At−1|, or equivalently, the proba-
bility that |At| < (2− 6q) · |At−1|, is at most

Pr
(
B
(
|At−1|, q − 1/log2 n

)
> 6q|At|

)
≤ Pr

(
B(|At−1|, q) > 6q|At−1|

)
≤ 2−6q|At−1|

= 2−ω(logn) = n−ω(1),

where the second relation was obtained by using Cher-
noff bounds (Theorem 4.4.3 in [20]); and the second-to-
last relation holds because q ≥ 1/ log2 n and |At−1| =
ω(log3 n).

Using the above two lemmata, Lemma 2.1 can be
derive as follows.

Proof of Lemma 2.1. By Lemma 2.2, applied for
t = 4 log log n and k = bcc + 1, we obtain that with
probability at least 1 − n−bcc−1+o(1) = 1 − O(n−c) at
most bcc of the nodes informed at the end of round
r = 4 log log n are inactive. Thus, with probability
1−O(n−c),

|Ar| ≥ 2r−bcc,

since the number of active nodes doubles during a
round, unless some of the nodes informed in that round

are inactive. This happens in at most bcc of the first r
rounds.

Next we apply Lemma 2.3 for each of the rounds
t = r + 1, . . . , τ . Suppose that

(2.3) |At−1| ≥ 2r−bcc = ω(log3 n),

which allows us to apply Lemma 2.3. We distinguish
two cases.

Case 1: If r+ 1 ≤ t ≤ log n− 4 log log n then, with
probability 1− n−ω(1),

|At| ≥
(

2− 6

log2 n
− 6 · 2tτ2

n

)
· |At−1|

≥
(

2− 6

log2 n
− 6 · (n/ log4 n) · τ2

n

)
· |At−1|

=
(
2− o

(
1

logn

))
· |At−1|.

Case 2: If log n − 4 log log n ≤ t ≤ τ then, with
probability 1− n−ω(1),

|At| ≥
(

2− 6

log2 n
− 6 · 2(τ − t) · κ

n

)
· |At−1|

≥
(

2− 6

log2 n
− 6 · 2 · 4 log log n · κ

n

)
· |At−1|

=
(
2− o

(
1

log logn

))
· |At−1|.

It is now easy to show (inductively) that, if
|Ar| ≥ 2r−bcc and the above inequalities hold for
|Ar+1|, . . . , |At−1|, then the sequence |Ar|, . . . , |At−1| is
non-decreasing, and thus, condition (2.3) holds.

Finally, by the union bound, all the above bounds
hold simultaneously with probability at least

1−O(n−c)− (τ − r) · n−ω(1) = 1−O(n−c).

So, with this probability,

|Aτ | ≥ 2r−bcc · (2− o(1/log n))
logn−4 log logn−r

· (2− o(1/log log n))
τ−(logn−4 log logn)

= 2r · 2−bcc · 2logn−4 log logn−r

· (1− o(1/2 log n))
logn−4 log logn−r

· 2τ−(logn−4 log logn)

· (1− o(1/2 log log n))
τ−(logn−4 log logn)

≥ 2τ · 2−bcc · (1− o(1/log n))
logn

· (1− o(1/log log n))
4 log logn

≥ κ · 2−c · (1− o(1))

≥ 3−c · κ,

for all large enough n. And since |Iτ | ≥ |Aτ |, the lemma
follows.



2.2 Second Phase. In this phase, every node that
was informed in the first phase generates and distributes
a random bit-string along with the rumor. This random
bit-string is called a seed, and the nodes informed during
the first phase are called seeders. Seeds are used by
nodes not informed in the first phase, to generate the
start points in their own lists. More precisely, at the
end of the first phase, every seeder generates a seed of
length `− `∗, where ` = dlog ne and `∗ = d3 log log ne.5
Then, in each subsequent round, the seeder sends the
rumor along with the seed to the next node in its list,
starting from the current position at the end of the first
phase. A seeder stops distributing the rumor (and the
seed) after Θ(log n) rounds from the beginning of the
second phase.

A node that receives a seed and is not a seeder is
called a seed receiver. Let s be the first seed that seed
receiver u receives, and let t be the round when that
happens. (If u receives multiple seeds in that round, s
can be chosen to be any of them, arbitrarily—but the
decision must not depend on the values of the seeds.)
Node u then generates a random suffix x of `∗ bits, and
uses the bit-string s ◦ x as the start point pu in its list
from which u begins to send the rumor in round t + 1.
Every seed receiver distributes the rumor for Θ(log n)
rounds. It is possible, that some node w that is neither
a seeder nor a seed receiver receives the rumor (but no
seed) from some seed receiver. In this case, w does not
distribute the rumor, unless it later on receives a seed
and thus becomes a seed receiver.

We begin the analysis of this phase by showing that
the total number of seed receivers is Ω(n) w.h.p. Recall
that κ = Θ(n/ log n).

Lemma 2.4. Suppose that every seeder distributes its
seed for r = Θ(log n) rounds. Then, for any constant
c > 0, the total number of seed receivers is at least
(1/34) ·min{n, 2 · 3−crκ} with probability 1−O(n−c).

Proof. Let v1, . . . , vZ be the list of seeders in the order
that they were informed (seeders informed in the same
round are listed in some predetermined order). Let also
Ni, for i ≤ Z, be the number of nodes (seed receivers or
seeders) that receive a seed from node vi, but not from
nodes vj , j < i.

First, we show that Ni ≥ r/4 with constant proba-
bility, if i ≤ n/2r. Clearly, Ni = Ni(pv1 , . . . , pvi), and

E[Ni | pv1 , . . . , pvi−1
] ≥ r · n− (i− 1) · r

n
,

because the first i − 1 seeders send seeds to at most
(i − 1) · r nodes, thus, the probability that the k-th of

5Any constant greater than 2 can be used in place of 3.

the r nodes that receive a seed from vi is not one of
those (i−1) ·r nodes is at least n−(i−1)r

n . Therefore, for
i ≤ min{Z, n/2r}, E[Ni | pv1 , . . . , pvi−1

] ≥ r/2, and, by
Markov’s inequality,

Pr(Ni ≥ r/4 | pv1 , . . . , pvi−1
)

= 1− Pr(Ni < r/4 | pv1 , . . . , pvi−1
)

= 1− Pr(r −Ni > 3r/4 | pv1 , . . . , pvi−1
)

≥ 1− r − r/2
3r/4

= 1/3.(2.4)

Next, we bound w.h.p. the number of seeders,
among the first z ≤ n/2r seeders, for which Ni ≥ r/4.
Let Xi be the 0/1 random variable with Xi = 1 if and
only if Ni ≥ r/4 or i > min{Z, n/2r}. (Note that Xi is
defined for all i, not just for i ≤ Z.)

If i ≤ min{Z, n/2r}, then Xi = Xi(Ni) =
Xi(pv1 , . . . , pvi), and, by (2.4), E[Xi | pv1 , . . . , pvi−1 ] ≥
1/3; while if i > min{Z, n/2r}, Xi = 1. From this
we see that, for any z, the sum

∑
i≤zXi dominates

the binomial random variable B(z, 1/3). And, apply-
ing Chernoff bounds (Theorem 4.5 in [20]), we obtain
for z = ω(log n),

Pr
(∑
i≤z

Xi ≥ z/4
)
≥ Pr

(
B(z, 1/3) ≥ z/4

)
= 1− n−ω(1).(2.5)

We can now bound the total number
∑
i≤Z Ni

of nodes that receive seeds as follows. Let z =
min{3−cκ, n/2r} = Θ(n/ log n). Then,

Pr
(∑
i≤Z

Ni ≥ zr/16
)

≥ Pr

((∑
i≤z

Ni ≥ zr/16
)
∧ (Z ≥ z)

)

≥ Pr

((∑
i≤z

Xi ≥ z/4
)
∧ (Z ≥ 3−cκ)

)
,

where for the last inequality we used the fact that, if
i ≤ z ≤ Z, then Ni ≥ (r/4) · Xi, since Xi = 1 only
if Ni ≥ r/4. Combining the above result with (2.5)
and Lemma 2.1 (which says that Pr(Z ≥ 3−cκ) =
1−O(n−c)), we obtain that

Pr
(∑
i≤Z

Ni ≥ zr/16
)

= 1−O(n−c).

Therefore, with probability 1−O(n−c), at least zr/16 =
Θ(n) nodes receive seeds. And since at most 2κ =
Θ(n/ log n) of them are seeders, it follows that, with
probability 1−O(n−c), there are at least zr/16− 2κ ≥
zr/17 = (1/17) ·min{3−crκ, n/2} seed receivers (where
the inequality holds for large enough n).



We have shown that the total number of seed re-
ceivers is Ω(n) w.h.p. Next, we show that if the number
of seed receivers is indeed Ω(n), then all nodes get in-
formed w.h.p., provided that seed receivers distribute
the rumor for a sufficiently large, logarithmic number
of rounds.

Lemma 2.5. Suppose that every seed receiver dis-
tributes the rumor for at least d = Θ(log n) rounds. If
the total number of seed receivers is at least βn, for
some constant β > 0, then all nodes get informed with
probability 1−O(n · e−βd/5).6

Proof. We say a seeder v seeds a seed receiver u, if u
uses the seed generated by v and sent to u to determine
the start point pu in its list. (Note that if a seed receiver
receives seeds from multiple nodes, it will only be seeded
by one of those nodes. For our analysis the seeder can
be chosen arbitrarily—but the decision must not depend
on the values of the seeds.)

The proof of the lemma is based on the following
key result.

Claim 2.1. Suppose that seeder v seeds the seed re-
ceivers u1, . . . , um. Let w be an arbitrary node, other
than the u1, . . . , um. Then, w receives the rumor from
at least one of the v1, . . . , vm with probability at least(
1− o(1)

)
·md/4n.

From this claim, the lemma follows easily: Fix the
set of seeders, and the seed receivers seeded by each
seeder, and letmi be the number of seed receivers seeded
by the i-th seeder. Let w be an arbitrary node that is
not a seeder nor a seed receiver. Since the seeds sent by
different seeders are independent, the probability that
none of the seeders seeds a seed receiver that sends the
rumor to w is at most∏

i

(
1−

(
1− o(1)

)
·mid/4n

)
≤
∏
i

exp
(
−
(
1− o(1)

)
·mid/4n

)
= exp

(
−
(
1− o(1)

)
·
∑
i

mid/4n
)

≤ exp
(
−
(
1− o(1)

)
· βd/4

)
= O

(
e−βd/5

)
,

where the first relation was obtained using the fact that
1+x ≤ ex; and the second-to-last relation was obtained

6Note that the number of seed receivers does not depend on
the choice of parameter d, because a node informed by a seed

receiver can also become a seed receiver, if it is contacted by a
seeder later on.

by using the lemma’s assumption that the total number
of seed receivers is

∑
imi ≥ βn. Hence, by the union

bound, with probability at least 1 − O(n · e−βd/5), all
nodes w get informed.

It remains to prove Claim 2.1. Recall that each
seed is chosen among 2`−`

∗
many possible seeds, where

` = dlog ne and `∗ = d3 log log ne; and each suffix is
chosen among 2`

∗
many possible suffices. We denote

the set of all possible seeds by A. We say that seed s
is good for node ui, if there are at least d/2 suffixes x
such that if pui = s ◦ x then ui sends the rumor to w.
Since each ui distributes the rumor for at least d rounds,
there is at least one good seed for every ui. Thus, the
probability that a randomly chosen seed is good for ui
is at least 1/|A| = 1/2`−`

∗
. Also, given that the seed

that seeder v chooses is good for ui, the probability that
ui chooses a suffix such that ui sends the rumor to w is
at least

q :=
d/2

2`∗
.

For any seed s, let zs be the number of seed receivers
among the u1, . . . , um for which s is good; i.e.,

zs = |{i : s is good for ui}|.

Since for each ui there is at least one good seed,

(2.6)
∑
s∈A

zs =
∑

1≤i≤m

|{s : s is good for ui}| ≥ m.

Let Es be the event that seeder v chooses seed s, and let
I be the event that at least one of the nodes u1, . . . , um
sends the rumor to w. Suppose that v chooses s, and
that w does not get informed. Then all the zs seed
receivers for which seed s is good have to pick the wrong
suffix. Hence,

Pr(¬I | Es) ≤ (1− q)zs .

Thus,

Pr(¬I) =
∑
s∈A

Pr(¬I | Es) · Pr(Es) ≤
1

|A|
·
∑
s∈A

(1− q)zs .

From (2.6), it follows that the sum
∑
s∈A(1 − q)zs is

maximized when zs = 0 for all but one seed s∗, and
zs∗ = m. Thus,

Pr(¬I) ≤ 1

|A|
·
(
(|A| − 1) · 1 + 1 · (1− q)m

)
= 1− 1− (1− q)m

|A|
.

We can bound (1− q)m as follows. Note that

q ·m =
d ·m/2

2d3 log logne ≤
d ·m/2
(log n)3

= o(1),



since d = Θ(log n), and m is at most equal to the
number of rounds for which v distributes its seed, which
is Θ(log n) rounds. So, using that fact that (1 − ε)k ≤
1 − kε + (kε)2, which holds if kε ≤ 1, we obtain that
(1− q)m = 1− (1− o(1)) · qm. Thus,

Pr(¬I) ≤ 1− (1− o(1)) · qm
|A|

= 1− (1− o(1)) · md
2 · 2`

.

≤ 1− (1− o(1)) · md
4n

.

This completes the proof of Claim 2.1, and of
Lemma 2.5.

The next statement summarizes the properties of
our protocol. Recall that the first phase lasts for τ
rounds, where τ = dlog κe = log n − log log n + O(1)
is a parameter of the protocol. Also, in the second
phase, every seeder (i.e., every node informed during
the first phase) distributes its seed for r rounds, and
every seed receiver distributes the rumor for d rounds,
where r, d = Θ(log n) are other protocol parameters.

Corollary 2.1. For any constant c > 0, there exist
parameters τ , r, d, such that the protocol informs all
nodes in O(log n) rounds with probability 1 − O(n−c),
and uses a total number of 3n log log n + O(n) random
bits.

Proof. For any choice of the parameters κ and r such
that κ = Θ(n/ log n) and r = Θ(log n), we show that
the required guarantees hold if we choose d such that

(2.7) d ≥ 170 · (c+ 1)

min{1, 2 · 3−crκ/n}
· lnn.

Since rκ/n = Θ(1), the quantity by which lnn is mul-
tiplied in the above formula is bounded by a constant.

Clearly, the protocol runs for at most τ + r + d =
O(log n) rounds.

The total number of random bits used is at most

4κdlog ne+ 3ndlog log ne = 3n log log n+O(n),

because each of the at most 2τ ≤ 2κ nodes that get
informed in the first phase generates dlog ne random
bits to choose the start point in its list, and another
dlog ne − d3 log log ne random bits to choose its seed;
and each of the at most n seed receivers generates
d3 log log ne random bits.

Finally, we bound the probability that all nodes get
informed as follows. From Lemma 2.4, it follows that,
with probability 1 − O(n−c), the total number of seed
receivers is at least βn, where

β := (1/34) ·min{1, 2 · 3−crκ/n}.

And, by Lemma 2.5, given that there are at least βn
seed receivers, all nodes get informed with probability
1 − O(n · e−βd/5). Thus, all nodes get informed with
probability at least

1−O(n−c)−O(n · e−βd/5).

By Inequality (2.7) and the definition of β, we obtain
that n · e−βd/5 ≤ n−c. Hence, the probability above is
1−O(n−c).

3 Bounds on the Minimal Randomness
Requirements

In this section we study the theoretically minimal
amount of randomness that is necessary to spread the
rumor in O(log n) rounds to all nodes.

We consider the complete graph Kn, with vertices
1, . . . , n. The input for the rumor spreading problem is
a pair (S,L), where S is the source of the rumor and
L = (L1, . . . , Ln) is a sequence of adjacency lists. Node
i, 1 ≤ i ≤ n, is given list Li, but it has no a priori
information about its own or any other adjacency list;
in each round the node can only choose an index j and
then the rumor is sent to the node stored in Li[j]. We
call Li[j] the j-th neighbor of node i.

3.1 Oblivious Protocols. We assume that each
node i is equipped with a private random bit-string Ri
of length b. Node i is oblivious, if its decision to which
neighbor to send the rumor to depends only on the ran-
dom string Ri and the number of rounds passed since
i received the rumor. A rumor spreading protocol is
oblivious, if all nodes are oblivious. Note that the fully
random protocol, the quasirandom protocol, and the
gate-model [4, 5] are all oblivious.

We note that for an oblivious protocol that uses
only o(log n) bits of randomness, the broadcast time
is at least n1−o(1). Consider two phases of r1 and r2
rounds, respectively. After r1 rounds, at most 2r1 nodes
are informed, and these nodes can inform at most 2r1 ·r2
other nodes. The nodes that get informed during the
second phase have at most r2 rounds in which they can
send messages. If each of them has only b random bits
available, then they can only “address” 2b · r2 positions
in their lists. Thus, we can fix all adjacency lists such
that nodes that were informed during the second phase,
only inform new nodes in {1, . . . , 2b · r2}. Hence, if
2r1(1 + r2) + 2b · r2 is less than n, not all nodes can
be informed.

Note that in their lower bound proof for the gate-
model, Doerr and Fouz [5] also split the random process
into two phases. They make the same worst-case
assumption, that 2r1 nodes get informed during the first
phase. Their analysis of the second phase is different



from ours, though, as theirs is targeted towards the
gate-model.

Theorem 3.1. For any oblivious protocol, where each
node uses at most b < log n− 1 random bits, there is an
input (S,L), such that the rumor cannot be distributed
to all nodes in fewer than b+ bn/2b+1c rounds.

Proof. Fix an arbitrary source S and some integers
r1, r2 with r1 < log n and let r = r1 + r2. In each
round, the number of informed nodes can double at
most. Hence, after r1 < log n rounds, at most 2r1

nodes are informed. Let S1 be the set of these nodes.
Further, let S2 be the set of nodes not in S1, that receive
the rumor directly from a node in S1 during rounds
r1 + 1, . . . , r1 + r2. Clearly, |S2| ≤ r2 · |S1|, and thus

(3.8) |S1 ∪ S2| ≤ 2r1(1 + r2).

Now note that during the first r rounds, all nodes
in S1 = {1, . . . , n} − S1 can send messages for at most
r2 rounds. Hence, the number of nodes that receive
the rumor directly from nodes in S1 is bounded by the
number of nodes that would receive the rumor if every
node sent messages for r2 rounds.

Since each node i acts obliviously and uses a random
string of length b, its first r2 messages are sent to
neighbors Li[j], where j is an index from a set Ji of
size at most 2b · r2. Clearly, we can choose the input
so that Li[j] ∈ {1, . . . , 2b · r2} for all j ∈ Ji. Hence,
the first r2 messages by node i can reach only nodes in
{1, . . . , 2b · r2}.

It follows that during the first r = r1 + r2 rounds,
only nodes in S1∪S2∪{1, . . . , 2b ·r2} receive the rumor.
Hence, by (3.8), the total number of nodes that receive
the rumor is bounded by

∆ := 2r1(1 + r2) + r2 · 2b = 2r1 + r2(2r1 + 2b).

Now choose r1 = b and r2 = bn/2b+1c − 1. Then

∆ < (r2 + 1) · 2b+1 ≤ n.

Hence, not all nodes receive the rumor during the first
r1 + r2 rounds.

We conclude that if each node has log n− log log n−
ω(1) random bits available, then ω(log n) rounds are
necessary to distribute the rumor using an oblivious
protocol. Thus, the only way to achieve efficient rumor
spreading with o(log n) randomness requires nodes to
acquire additional information from incoming messages.

3.2 Non-Oblivious Protocols. While in principle
non-oblivious nodes might generate some entropy just

by counting the number of incoming messages, it seems
difficult to derive any protocol that does not require ad-
ditional information (in particular some random bits) to
be transmitted together with the rumor. In the follow-
ing, we assume that the amount of communication be-
tween nodes can be unbounded. In particular, the first
node to receive the rumor can generate a random string
and then share it with all other nodes by appending the
random string to all messages sent. For simplicity, we
also assume that nodes pass the current round number
(i.e., the age of the rumor) along with their messages,
so that nodes can base their decisions on that.

We show that in such a setting, one O(log n)-bit
random string suffices to spread the rumor to all nodes
within O(log n) rounds w.h.p. The idea is the following:
We take the classical fully random rumor spreading
protocol, and fix the random bit strings used by each
node arbitrarily. This way, we obtain a deterministic
protocol. Denote P the set of all deterministic protocols
obtained this way. Now we chooseB protocols from P at
random to obtain a set P ′ of deterministic protocols. It
is not hard to prove that for any input (S,L) and large
enough B = nO(1), a randomly chosen deterministic
protocol in P ′ distributes the rumor within O(log n)
rounds to all nodes w.h.p. Thus, we obtain an efficient
random protocol, where the first node randomly chooses
a protocol P ∈ P ′ and then appends the index of that
protocol to each message.

One technical issue arises because in the fully
random protocol, each node has access to a private
random string Ri. Therefore, although nodes are
anonymous, each node i implicitly uses its ID i to
access its random bits. When we simulate one of the
deterministic protocols, a node that receives a message
telling the node to run protocol P , cannot conclude
how to act, because it does not have access to its ID.
Therefore, as a first step, we show that any private-
coin protocol can be simulated by a public-coin protocol,
where all nodes have access to the same random string,
and do not implicitly use their IDs.

3.3 Public- versus Private-Coin Protocols. In
a private-coin protocol, each node i bases its decision
(i.e., for which index j it sends its next message to
node Li[j]) on the current round number, the history
of all messages i has received so far, and a private
value Ri that is chosen uniformly at random from a
countable domain D. (All random values R1, . . . , Rn
are chosen independently.) However, nodes cannot use
their IDs for anything else other than to access their
private random string. Thus, if two nodes i 6= j receive
the same random string Ri = Rj , then they have to act
identically. In a public-coin protocol, all “private” coin-



flips show the same value. The randomness of a rumor
spreading protocol is the entropy of the random vector
(R1, . . . , Rn).

In the following we formally define private- and
public-coin protocols. A private-coin rumor spreading
protocol is a function

P : H ×D ×N→ {⊥} ∪ {1, . . . , n} × {0, 1}∗,

where H is the set of all finite lists whose elements are
(multi-)sets of binary strings; and D is some countable
domain. We require that P (h, ·, ·) = (⊥, ·) whenever
all the elements of list h are empty sets. Intuitively, if
P (h, s, r) = (j,m) then a node with history h of received
messages and random string s, sends message m to its
j-th neighbor in round r if j 6= ⊥. More precisely, the
semantics of P is the following: Before the protocol
starts, for each node i ∈ {1, . . . , n} a private random
string Ri ∈ D is chosen uniformly and independently at
random. At the beginning of the protocol (i.e., in round
0), node 1 receives the initial message 1 (all other nodes
receive no messages). Suppose that Mk is the (multi-)
set of messages that node i received in round k,7 for
k = 0, . . . , r, and let (j,m) = P (〈M1, . . . ,Mr〉, Ri, r+1).
If j = ⊥, then in round r + 1 node i sends no message,
otherwise it sends message m to node Li[j].

A public-coin rumor spreading protocol P is defined
as above, except that R1 = R2 = · · · = Rn = R, where
R ∈ D is a random string used by all nodes.

We say P has randomness b, if n · log |D| = b in the
case that P is a private-coin protocol P , and log |D| = b
in the case it is a public-coin protocol. If D is not a finite
set, then P has unbounded randomness.

A rumor spreading protocol has success mode (p, r),
if during a run of the protocol with probability at least
p all nodes get informed within r rounds.

Lemma 3.1. For every private-coin protocol P , there is
a public-coin protocol P ′ with the same success mode as
P .

The idea is to add an ID distribution mechanism to
protocol P , that allows each node to determine a unique
ID from a set {1, . . . , z}, based on the first message it
receives. Nodes can then use a large public random
string R ∈ Dz and access a unique portion of that string
when making their random decisions.

Proof of Lemma 3.1 Let P be a private-coin protocol
with success mode (p, r), and let D be the domain of

7Mk is a multi-set because i may receive messages from more

than one nodes in the same round—and two messages may be
identical.

the private random strings used by nodes. Let

Z =
⋃

1≤j≤r

{0, . . . , r}j and z = |Z|.

Nodes will run protocol P , but instead of using
private random strings, they have to use one public
random string R = (R1, . . . , Rz) ∈ Dz. (Since D is
countable, so is Dz.) The idea is to distribute IDs
in Z to the nodes, so that each node can determine
a unique ID i ∈ Z from the first message the node
receives. After a node has determined its ID, it runs
the protocol P using the random string Ri, but adding
additional information to its messages in order to allow
the receiving nodes to determine their own unique IDs.

Below we show how to achieve that each node which
receives a message in the first r rounds, also determines
a unique ID in Z. Clearly, then for the first r rounds
the resulting protocol behaves exactly as P ; hence it has
the same success mode.

The ID of a node u is determined by the ID of the
node that sends the first message to u and the round
number in which that message is sent. The unique node
that receives a message in round 0 (i.e., the node that
initially generates the rumor) uses ID 0. Whenever a
node with ID i sends the rumor, it appends i to that
message. Any node u that receives its first message
in round s, extracts the ID i of the sender from the
message, and from then on uses ID (i, s).

In order to ensure that the IDs are in Z, after round
r nodes switch to a trivial deterministic protocol for
which no additional IDs need to be assigned (i.e., in
round r + r′ a node sends the rumor to the (r ⊕ r′)-th
neighbor in its list). A simple induction on the round
number s, in which a message is sent that determines
the ID of the recipient, shows that IDs are unique: First
note that the last component of such an ID has value
s. Only one ID is generated for s = 0, which settles
the base case. Now suppose s > 0. For the purpose
of a contradiction assume that two different nodes v1
and v2 receive identical IDs (i1, i2, . . . , it−1, s). Then in
round s two different nodes u1 and u2 send the same
ID i := (i1, . . . , it−1). But then u1 and u2 both have ID
i, contradicting the induction hypothesis for s′ = it−1,
because ID i was generated in round s′ < s.

3.4 Low-Randomness Public-Coin Protocols.
We now show that any public-coin rumor spreading pro-
tocol that uses an arbitrary amount of randomness can
be converted into a public-coin rumor spreading proto-
col that has the same round complexity, only a slightly
increased error probability, but very low randomness re-
quirements.



Lemma 3.2. If there is a public-coin rumor spread-
ing protocol with success mode (p, r) (and possibly un-
bounded randomness), then for any p′ ∈ [0, p] and
B ∈ N, where

B ≥ 2 · (lnn+ n · ln(n!))

p · (1− p′/p)2
,

there exists a public-coin rumor spreading protocol with
success mode (p′, r) and randomness logB.

The proof is based on the probabilistic method: Fixing
the public random string used by P to some arbitrary
value yields a deterministic protocol. We determine a
set P ′ of B such deterministic protocols by choosing B
random strings. In P ′, the first node simply chooses one
of the deterministic protocols in P ′ uniformly at random
and then simulates it, but adding the description of that
protocol to each message. Then, all nodes can follow
that deterministic protocol.

Proof of Lemma 3.2. Suppose P is a public-coin rumor
spreading protocol with success mode (p, r). Let D be
the (possibly infinite but countable) domain from which
random strings R are chosen for P . Let P be the set
of all deterministic protocols obtained from P by fixing
the random bit-string R.

We now construct a public-coin protocol P ′ with
randomness b := logB as follows: We determine a
set P ′ ⊆ P of size B, by independently choosing B
random strings s1, . . . , sB from D at random. Now our
protocol P ′ is defined as P ′(h, j, r) = P (h, sj , r), where
j ∈ {1, . . . , B}. I.e., if the global random string of
protocol P ′ is j, then the nodes act as in protocol P
but use the random string sj . Hence, the new protocol
uses D′ = {1, . . . , B} as the domain for random strings
and thus has randomness b.

Note that each such random string sj defines a
deterministic protocol Pj . We say that the deterministic
protocol Pj succeeds for the input (S,L), if run on that
input, Pj spreads the rumor in at most r rounds to all
other nodes.

Now fix an input (S,L). For every 1 ≤ j ≤ B,
let Yj be an indicator variable, where Yj = 1 if and
only if protocol Pj succeeds on input (S,L). Since
each random string sj ∈ D′ is chosen independently
at random among all random strings in D, all random
variables Yj are independent and E[Yj ] ≥ p. Thus,
defining Y = Y1 + · · ·+ YB and δ = 1− p′/p, we obtain
from Chernoff bounds

Pr
(
Y < B · p′

)
= Pr

(
Y < B · p · (1− δ)

)
< exp

(
−B · p · δ2/2

)
< exp

(
−B · p(1− p′/p)2/2

)
.

Now note that there are at most n · (n!)n inputs (n
possibilities to choose the source S and n! possibilities
for each of the n adjacency lists.). Thus, by the union
bound

Pr
(
P ′ has success mode (p′, r)

)
> 1− n · (n!)n · exp

(
−B · p(1− p′/p)2/2

)
.

If the term on the right-hand side is at least 0, then
a public-coin protocol with success mode (p′, r) and
randomness B exists.

Combining Lemmata 3.1 and 3.2, and choosing
p′ = 1− 2ε, we can summarize:

Corollary 3.1. If there is a private-coin protocol with
success mode

(
p, r), then for any 1− p ≤ ε ≤ 1/2 there

is a public-coin protocol with success mode (1 − 2ε, r)
and randomness

2

(
log n+ log

1

ε

)
+ log lnn+ 1.

Proof. Let p′ = 1− 2ε. Then

p · (1− p′/p)2 = (p− p′)2/p
≥ (p− p′)2

≥
(
(1− ε)− (1− 2ε)

)2
= ε2.

Using the Stirling series, it is not hard to see that

lnn+ n ln(n!) ≤ n2 lnn,

for all positive integers n. Hence, we can conclude from
Lemma 3.2, that for

B ≥ 2 · lnn ·
(n
ε

)2
,

there is a public-coin protocol with error-mode
(p′, r).

Corollary 3.2. There exists a rumor spreading pro-
tocol that with probability 1 − o(1) informs every node
within log n+ lnn+O(1) rounds, and that uses at most
2 log n+ log log n+ o(log log n) random bits.

Proof. Pittel [21] proved that the fully random rumor
spreading protocol has success mode

(
1 − δ, r

)
, where

δ = o(1) and r = log n + lnn + O(1). Applying
Corollary 3.1 with ε = max{δ, 1/ log log n} yields the
desired protocol.

It turns out that the upper bound from Corol-
lary 3.2 is optimal up to a constant factor:



Theorem 3.2. For any protocol with total randomness
at most b < log n− 1, there is an input (s,L), such that
the rumor cannot be distributed to all nodes in fewer
than b + bn/2b+1c rounds. In particular, any protocol
with randomness log n − log log n − ω(1) needs at least
ω(log n) rounds to broadcast the rumor.

Proof. Suppose a randomized protocol P has random-
ness b. Consider the B = 2b deterministic protocols
P1, . . . , PB obtained by fixing the random string to all
possible B values. We can fix the lists of all n nodes in
such a way that the following holds for all 1 ≤ i ≤ B
and j ∈ N: In any of the protocols P1, . . . , Pi, each node
sends its first j messages to nodes in {1, . . . , i · j}.

Now the claim follows with exactly the same argu-
ments as the ones from the proof of Theorem 3.1 for
i = 2b and j = r2.

4 Conclusion

We provided a systematic study of the randomness
requirements for efficient rumor spreading. We gave
evidence that the broadcast time is at least n1−o(1) if
all nodes act obliviously and use only o(log n) random
bits each. However, a simple modification of the
quasirandom model demonstrates that if nodes can
communicate and thus share random bits, then only
O(log log n) bits on average per node are sufficient. We
also presented an asymptotically tight upper bound
of O(log n) for the total number of random bits that
are required to spread the rumor in O(log n) rounds.
An important open problem is to find an explicit or
even practical protocol that has such low randomness
requirements.

Our explicit protocol has the desired properties of
being simple and local. However, it does not seem to
be as robust as the fully random or the quasirandom
protocol. In particular it is important that nodes know
when to switch from the first to the second phase: If
too many messages get lost, then that switch could
occur too early, and not enough nodes get informed
in the first phase (resulting in a lack of seed supply
in the second phase). It seems that this problem can
be fixed, though, in a modified model such as the one
proposed in [8], where nodes receive feedback whether
their messages have reached their targets or not. In the
case of a message loss, a node could then simply repeat
sending its message without decrementing the “round
counter”. This would ensure that even if an arbitrary
(but bounded) number of messages get lost, enough
seeds would still show up in the system. We leave it
to future research to investigate this issue thoroughly.
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[14] R. Elsässer and T. Sauerwald. On the runtime and
robustness of randomized broadcasting. Theoretical
Computer Science, 410(36):3414–3427, 2009.

[15] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Ran-
domized broadcast in networks. Random Structures
and Algorithms, 1(4):447–460, 1990.

[16] N. Fountoulakis and A. Huber. Quasirandom rumor
spreading on the complete graph is as fast as ran-
domized rumor spreading. SIAM Journal on Discrete
Mathematics, 23(4):1964–1991, 2009.

[17] P. Fraigniaud and G. Giakkoupis. On the bit communi-
cation complexity of randomized rumor spreading. In
Proceedings of the 22nd ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 134–143,
2010.

[18] A. Frieze and G. Grimmett. The shortest-path problem
for graphs with random arc-lengths. Discrete Applied
Mathematics, 10:57–77, 1985.

[19] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking.
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