Simple Efficient Distributed Processes on Graphs

George Giakkoupis

INRIA, France

SIROCCO 2022, Paderborn, June 27-29 2022

Talk Overview

- Part 1: Transform any connected regular graph into an expander

- Part 2: Compute a maximal-independent-set of any graph

Flip Process

- Start from any connected d-regular graph
- Apply a sequence of flip operations
- Flip operation
- Pick a random 3-path abcd
- If edges $a c$ and $b d$ do not exist: replace $a b$ and $c d$ by $a c$ and $b d$
- Maintains graph connectivity \& degrees

Flip Process

[MahImann and Schindelhaue, 2005]

- Converges to uniform distribution over all connected d-regular graphs
- Time until an expander graph is established? / Mixing time?
- Experiments: $O(n d \log n)$ operations to have an expander w.h.p.

Motivation

- Simple local MCMC process for sampling (approximately) random connected d-regular graphs
- Easy to implement in parallel (MapReduce, Hadoop,...)
- Simple local process for generating/maintaining a d-regular expander
- Application to design of unstructured overlay (p2p) networks
- Small diameter, low degree, good connectivity (for robustness)
- Edge flip operations already used in overlay systems in practice

Related: Switch Process

[McKay, 1981]

- Switch operation
- Pick random non-adjacent edges $a b \& c d$
- If edges $a c$ and $b d$ do not exist: replace $a b$ and $c d$ by $a c$ and $b d$
- Converges to a random d-regular graph
- But not local \& may disconnect graph

Related: Expanders via "Structured" Overlay Designs

SKIP+ Graph [Jacob, Richa, Scheideler, Schmid and Täubig, 2014]

- Local, self-stabilizing
- Transforms any connected graph, to one containing a spanning constant-degree expander, in $O\left(\log ^{2} n\right)$ synchronous rounds
- But complex (large state/messages)

Known Bounds for Flip and Switch Processes

- For d-regular n-vertex graphs:

		Mixing time	Time to expander (w.h.p.)
Switch process		$O\left(n^{9} d^{24} \log n\right)$ Cooper, Dyer and Greenhill, 2007+2012]	$O(n d)$ [Allen-Zhu, Bhaskara, Lattanzi, Mirrokni and Orecchia, 2016]
		$O\left(n^{2} d^{2} \log n\right), O\left(n \log ^{2} n\right) \text { if } d=O(1)$ [Tikhomirov and Youssef, 2020], [Kannan, Tetali and Vempala, 1999]	
Flip process		$O\left(n^{16} d^{36} \log n\right)$ ooper, Dyer, Greenhill and Handley, 2019], [Feder, Guetz, Mihail, and Saberi, 2006]	$O\left(n^{2} d^{2} \sqrt{\log n}\right)$ [Allen-Zhu et al, 2016]

- Techniques: canonical path, Markov Chain comparison, spectral /algebraic
- Also results for non-regular/directed graphs

New Bound for the Flip Process

[Giakkoupis 2022]
For any n and $d=\Omega\left(\log ^{2} n\right)$, there exists $t=O\left(n d \log ^{2} n\right)$, such that, applying t flip operations to any connected d-regular n-vertex graph, results in an expander graph w.h.p.

- $O(t / n)=O\left(d \log ^{2} n\right)$ operations per vertex
- Previous best was $O\left(n d^{2} \sqrt{\log n}\right)$ [Allen-Zhu et al, 2016]
- Justifies use of flip-like operations in overlay networks
- Comparable to bounds for (non-local) switch process, and (more complex) SKIP+ graph

New Bound for the Flip Process

[Giakkoupis 2022]
For any n and $d=\Omega\left(\log ^{2} n\right)$, there exists $t=O\left(n d \log ^{2} n\right)$, such that, applying t flip operations to any connected d-regular n-vertex graph, results in an expander graph w.h.p.

- Almost tight
- $\Omega(n d \log (n / d))$ operations for "ring-of-cliques"
- Probably, a refinement of our analysis could improve result to $d=\Omega(\log n)$ and $t=O(n d \log n)$

Analysis of Flip Process

Some Standard Definitions

- Cut (S, \bar{S})
- Cut size = number of crossing edges
- Graph (edge-)connectivity = min cut size
- Cut (edge-)expansion = cut size $/|S|$
- Graph expansion = min cut expansion

- A d-regular graph is an expander if the expansion is $\Omega(d)$

Proof Overview

Part I: Edge Connectivity Analysis

- Edge connectivity $\geq d / 2$ achieved in $O\left(n d \log ^{2} n\right)$ operations, and maintained for poly (n) operations thereafter
- Requires $d=\Omega\left(\log ^{2} n\right)$

Part II: Expansion Analysis

- Assumes edge connectivity $\geq d / 2$ throughout
- Expansion $\Omega(d)$ achieved in $O(n d \log n)$ operations, and maintained for $\operatorname{poly}(n)$ operations thereafter
- Requires $d=\Omega(\log n)$

Edge Connectivity Analysis

- Analyze a single cut (S, \bar{S})
- Analyze cut size $c(S)$
- $c(S) \geq d / 2$ after t ops $\forall t=\Theta(n d \log n) \ldots$... $\operatorname{poly}(n)$, w.pr. $1-n^{-c}$
- Argue about all cuts using "smart" union bounds
- UB over all S with $\ell<|S| \leq 2 \ell$, after establishing the fact $\forall S$ with $|S| \leq \ell$
- Key Lemma: If $c(S) \geq k \forall S$ with $|S| \leq \ell$, then there are $O(n)$ many sets S with $\ell<|S| \leq 2 \ell$ and $c(S)<k$

Expansion Analysis

- Analyze a single cut (S, \bar{S})
cut (S, \bar{S}) is ℓ-expanding if
- Analyze new measure of cut strain
$c(S)=\Omega(d \min \{\ell,|S|\})$
- As long as all cuts remain ℓ-expanding, (S, \bar{S}) is 2ℓ-expanding after t ops $\forall t=\Theta(n d) \ldots$ poly (n), w.pr. $1-e^{-\Omega(\ell d)}$
- Argue about all cuts using "smart" union bounds
- Show 2ℓ-expansion for all cuts, after establishing ℓ-expansion
- By Karger's bound and assumption that edge connectivity $\geq d / 2$, there are $n^{O(\ell)}=e^{O(\ell \log n)}<e^{\Omega(\ell d)}$ cuts of size $O(\ell d)$

Cut Strain

- Let $a_{v}(S) \in\left\{0, \frac{1}{d}, \frac{2}{d}, \ldots, 1\right\}$: fraction of vertex v^{\prime} s neighbors in set S
- Strain of cut (S, \bar{S})

$$
\sigma(S)=\sum_{v} a_{v}(S) \cdot a_{v}(\bar{S})
$$

- $\sigma(S) \leq \sum_{v \in S} a_{v}(\bar{S})+\sum_{v \in \bar{S}} a_{v}(S)=\frac{2 c(S)}{d}$
- But, possibly, $\sigma(S) \ll \frac{2 c(S)}{d}$

Conclusion of Part 1 of the Talk

The local flip process transforms any connected d-regular graph, with $d=\Omega\left(\log ^{2} n\right)$, to an expander after $O\left(n d \log ^{2} n\right)$ operations w.h.p.

- Get rid of extra logarithmic factor ?
- Analysis for sub-logarithmic/constant degree d ?
- Bounds for vertex expansion ?
- Analysis of similar dynamic for bipartite graphs ?
- Improve existing bounds on the mixing time ?

Talk Overview

- Part 1: Transform any connected regular graph into an expander

- Part 2: Compute a maximal-independent-set of any graph

Maximal Independent Set (MIS)

- Graph $G=(V, E)$
- $B \subseteq V$ is an MIS

1. $u \in B \Rightarrow \nexists v \in B, v \sim u$
2. $u \notin B \Rightarrow \exists v \in B, v \sim u$

A simplest process for the MIS problem

- Arbitrary G
- Each u has state $s(u) \in\{0,1\}$, initially arbitrary
- All states updated in parallel rounds
- Update rule:

$$
\begin{aligned}
& \text { If }(s(u)=1 \& \exists v \sim u, s(v)=1)^{\circ \circ} \\
& \quad \text { or }(s(u)=0 \& \nexists v \sim u, s(v)=1) \text { then } \\
& \quad s(u) \leftarrow \text { coin-flip }
\end{aligned}
$$

A simplest process for the MIS problem

- A vertex stabilizes if
- is blue all its neighbors are white
- is white and has a blue stabilized neighbor
- $B=\{u: s(u)=1\}$
- Eventually, B becomes an MIS
- And at that point stabilizes

- Time until stabilization?

Properties

- Minimal state space: 2 states per vertex
- Minimal communication:
- beeping model with sender collision detection (SCD)
- 3-state variant for stone age model (w/o collision detection) ${ }^{\circ}$
- Minimal computation: for stone age model
- Self-stabilizing (SS): works for any initial configuration
- And yet it has hardly ever been considered in literature !?!

Related: Sequential Version

- Folklore, also [Shukla, Rosenkrantz, and Ravi, 1995], [Hedetniemi, Hedetniemi, Jacobs, and Srimani, 2003]
- One vertex u updated per step / no randomization

```
If (s(u)=1 & \existsv~u,s(v)=1)
    or (s(u)=0 & # v}~u,s(v)=1) the
        s(u)\leftarrow1-s(u)
```

- No blue-blue errors left after each u takes one step
- No all-white errors left after each u takes one additional step
- Stochastic scheduler: stabilization in $O(n \log n)$ steps, w.h.p.

Related: From Sequential to Parallel

[Shukla, Rosenkrantz, and Ravi, 1995]

- Adding randomization to updates yield a parallel algorithm that stabilizes (in at most exponential time)
[Turau and Weyer, 2006]
- Similar observations for any sequential self-stabilizing MIS algorithm

Other Related Work (Randomized + SS)

Algorithm	States	Communication	Knowledge	Runtime
New	2	Beeping-SCD	-	
New	3	Stone-age	-	
[Afek et al 2013]	poly $(\log n)$	Beeping	n	$O\left(\log ^{3} n\right)$
[Ghaffari 2017], [Jeavons et al 2016]	$O(\log n)$	Beeping-SCD	n	$O(\log n)$
[Emek and Keren 2021]	poly (D)	Stone-age	D	$O(D \log n)$
[Turau 2019]	$O\left(d_{u}\right)$	State-reading	-	$O(\log n)$

[Emek and Wattenhofer 2013]	$O(1)$	Stone-age	Non-SS	$O\left(\log ^{2} n\right)$

Other Related Work (Deterministic + SS)

Algorithm	States	Communication	Knowledge	Runtime
[Ikeda et al 2002], [Goddard et al 2003], [Turau 2007]	$I D+2$ or 3	State-reading	$I D$	$O(n)$
[Barenboim et al 2018]	$\operatorname{poly}(n)$	Local	$I D, n, \Delta$	$O\left(\Delta+\log ^{*} n\right)$

Stabilization Time Bounds

Simple Bounds: Complete Graph

- In each step, half of the blue vertices become white on average
- All blue vertices become white before only one left, with constant probability < 0.61
- Stabilization time
- $O(\log n)$ expected
- $O\left(\log ^{2} n\right)$ w.h.p.

3-State Process

- Each u has state $s(u) \in\{0,1,2\}$
- All states updated in parallel rounds
- Update rule:

$$
\begin{aligned}
& \text { If }(s(u)=0 \& \nexists v \sim u, s(v)>s(u)) \text { then } \\
& c_{1} \leftarrow \text { coin-flip; } c_{2} \leftarrow \text { coin-flip } \\
& s(u) \leftarrow c_{1} \cdot\left(1+c_{2}\right) \\
& \text { Elseif }(s(u)>0 \& \nexists v \sim u, s(v)>s(u)) \text { then } \\
& \quad s(u) \leftarrow(1+\operatorname{coin}-\mathrm{flip}) \\
& \text { Elseif }(s(u)>0 \& \exists v \sim u, s(v)>s(u)) \text { then } \\
& \quad s(u) \leftarrow 0
\end{aligned}
$$

3-State Process: Complete Graph

- In each step, ~half of the blue vertices become white on average
- All blue vertices become white before only one left, with constant probability <0.61
- Stabilization time
- $O(\log n)$ expected and w.h.p.

Simple Bounds: Trees

- Ignore stabilized vertices
- At least half of remaining vertices u have degree ≤ 2

- At least a cons fraction of vertices stabilize in two rounds on average
- Stabilization time $O(\log n)$ w.h.p.

Simple Bounds: General Graphs

- Lemma:

- Proof: The probability u is still blue after $r=\log (k+1)$ rounds and none of its k blue neighbors is, is

$$
2^{-r}\left(1-2^{-r}\right)^{k} \geq 2^{-r} 4^{-k 2^{-r}}=\frac{1}{4(k+1)}
$$

Simple Bounds: General Graphs

- Δ : maximum degree
- In $O(\log \Delta)$ rounds, u or a neighbor permanently joins B w.pr. $\Omega\left(\frac{1}{\Delta}\right)$
- Thus u stabilizes in
- $O(\log \Delta)$ rounds w.pr. $\Omega\left(\frac{1}{\Delta}\right)$
- $O(\Delta \log \Delta \log n)$ rounds w.h.p.
- Stabilization time $O(\Delta \log n)$ w.h.p.

A More Refined Lemma

- k_{u} : number of blue neighbors of u
- $B_{u}=B \cap\left(\Gamma_{u} \cup\{u\}\right)$
- "Goodness" of u

$$
g_{u}=\sum_{v \in B_{u}} \frac{1}{k_{v}+1}
$$

- Lemma: The prob. u stabilizes in $O(\log \Delta)$ rounds is $\Omega\left(\min \left\{1, g_{u}\right\}\right)$

Low Goodness

If $g_{u} \leq \frac{1}{k}$ then

- $\sum_{v \in B \cap \Gamma_{u}} \frac{1}{k_{v}+1}=O\left(\frac{1}{k}\right)$, i.e., the harmonic mean of $k_{v}+1$ is $\Omega\left(k \cdot k_{u}\right)$
- and $k_{u}=\Omega(k)$, if $u \in B$
- In words: u's blue neighbors have many more blue neighbors than u

Erdős-Rényi Random Graph $G_{n, p}$

- n vertices
- Each edge is present independently w.pr. $p \in[0,1]$
- Average degree $p \cdot n$
- [Giakkoupis and Ziccardi, in prep.]

For $0 \leq p \leq n^{-\epsilon}$ and any $\epsilon>0$, the stabilization time is poly($\left.\log n\right)$ w.h.p.

Analysis Overview

- u is "good" if $g_{u} \geq \frac{1}{\log n}$
- W.h.p. (on the randomness of the graph), for any given configuration (or for the conf. one round later), a large enough fraction of the non-stabilized vertices are good
-... except if the \#of non-stabilized vertices is small $\left(\leq \frac{\operatorname{poly}(\log n)}{p}\right)$
- In this case, progress is slow only if there exist vertices which switch state frequently, over a long period
- We show this to be highly unlikely unless p is too large

Simulation: Stabilization Time on $G_{n, p}$:

- $n=2^{16}$
- $p=2^{-i}, i=0, \ldots, 18$
- 100 iterations for each p
- All-1s initially

Conclusion of Part 2 of the Talk

- Is this simplest MIS process fast for all/most families of graphs?

Algorithm	States	Communication	Knowledge	Runtime
New	2	Beeping-SCD	-	$O\left(\log ^{2} n\right) ?$
New	3	Stone-age	-	$O(\log n) ?$
[Afek et al 2013]	$\operatorname{poly}(\log n)$	Beeping	n	$O\left(\log ^{3} n\right)$
[Jeavons et al 2016], [Ghaffari 2017]	$O(\log n)$	Beeping-SCD	n	$O(\log n)$
[Emek and Keren 2021] $n) ?$	$\operatorname{poly}(D)$	Stone-age	D	$O(D \log n)$
[Turau 2019]	$O\left(d_{u}\right)$	State-reading	-	$O(\log n)$

