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Talk Overview

• Part 1: Transform any connected regular graph into an expander

• Part 2: Compute a maximal-independent-set of any graph
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Flip Process

• Start from any connected 𝑑-regular graph

• Apply a sequence of flip operations

• Flip operation
• Pick a random 3-path 𝑎𝑏𝑐𝑑

• If edges 𝑎𝑐 and 𝑏𝑑 do not exist:
replace 𝑎𝑏 and 𝑐𝑑 by 𝑎𝑐 and 𝑏𝑑

• Maintains graph connectivity & degrees
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Flip Process

[Mahlmann and Schindelhaue, 2005]

• Converges to uniform distribution over all connected 𝑑-regular graphs

• Time until an expander graph is established? / Mixing time?

• Experiments: 𝑂(𝑛𝑑 log 𝑛) operations to have an expander w.h.p.
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Motivation

• Simple local MCMC process for sampling (approximately) random 
connected 𝑑-regular graphs

• Easy to implement in parallel (MapReduce, Hadoop,…)

• Simple local process for generating/maintaining a 𝑑-regular expander

• Application to design of unstructured overlay (p2p) networks
• Small diameter, low degree, good connectivity (for robustness)

• Edge flip operations already used in overlay systems in practice
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Related: Switch Process 

[McKay, 1981]

• Switch operation
• Pick random non-adjacent edges 𝑎𝑏 & 𝑐𝑑

• If edges 𝑎𝑐 and 𝑏𝑑 do not exist:
replace 𝑎𝑏 and 𝑐𝑑 by 𝑎𝑐 and 𝑏𝑑

• Converges to a random 𝑑-regular graph

• But not local & may disconnect graph
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Related: Expanders via “Structured” Overlay 
Designs
SKIP+ Graph [Jacob, Richa, Scheideler, 
Schmid and Täubig, 2014]

• Local, self-stabilizing

• Transforms any connected graph, 
to one containing a spanning 
constant-degree expander,
in 𝑂(log2 𝑛) synchronous rounds

• But complex (large state/messages)
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Known Bounds for Flip and Switch Processes 

• For 𝑑-regular 𝑛-vertex graphs:

• Techniques: canonical path, Markov Chain comparison, spectral /algebraic
• Also results for non-regular/directed graphs
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Mixing time Time to expander (w.h.p.)

Switch 
process

𝑂 𝑛9𝑑24 log 𝑛
[Cooper, Dyer and Greenhill, 2007+2012] 𝑂 𝑛𝑑

[Allen-Zhu, Bhaskara, Lattanzi, 
Mirrokni and Orecchia, 2016]

B
ip

ar
ti

te 𝑂 𝑛2𝑑2 log𝑛 , 𝑂 𝑛 log2 𝑛 if 𝑑 = O 1
[Tikhomirov and Youssef, 2020], 

[Kannan, Tetali and Vempala, 1999]

Flip 
process

𝑂 𝑛16𝑑36 log 𝑛
[Cooper, Dyer, Greenhill and Handley, 2019],

[Feder, Guetz, Mihail, and Saberi, 2006]

𝑂 𝑛2𝑑2 log 𝑛

[Allen-Zhu et al, 2016]



New Bound for the Flip Process  

• 𝑂 Τ𝑡 𝑛 = 𝑂 𝑑 log2 𝑛 operations per vertex
• Previous best was 𝑂 𝑛𝑑2 log 𝑛 [Allen-Zhu et al, 2016]
• Justifies use of flip-like operations in overlay networks

• Comparable to bounds for (non-local) switch process, and (more 
complex) SKIP+ graph
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For any 𝑛 and 𝑑 = Ω log2 𝑛 , there exists 𝑡 = 𝑂 𝑛𝑑 log2 𝑛 , such that,  
applying 𝑡 flip operations to any connected 𝑑-regular 𝑛-vertex graph, 
results in an expander graph w.h.p.

[Giakkoupis 2022]



New Bound for the Flip Process

• Almost tight 
• Ω 𝑛𝑑 log(𝑛/𝑑) operations for “ring-of-cliques”

• Probably, a refinement of our analysis could improve 
result to 𝑑 = Ω log 𝑛 and 𝑡 = 𝑂 𝑛𝑑 log 𝑛
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For any 𝑛 and 𝑑 = Ω log2 𝑛 , there exists 𝑡 = 𝑂 𝑛𝑑 log2 𝑛 , such that,  
applying 𝑡 flip operations to any connected 𝑑-regular 𝑛-vertex graph, 
results in an expander graph w.h.p.

[Giakkoupis 2022]



Analysis of Flip Process
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Some Standard Definitions

• Cut 𝑆, ҧ𝑆

• Cut size = number of crossing edges

• Graph (edge-)connectivity = min cut size

• Cut (edge-)expansion = cut size / 𝑆

• Graph expansion = min cut expansion

• A 𝑑-regular graph is an expander if the expansion is Ω 𝑑
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Proof Overview

Part I: Edge Connectivity Analysis

• Edge connectivity ≥ Τ𝑑 2 achieved in 𝑂 𝑛𝑑 log2 𝑛 operations, 
and maintained for poly(𝑛) operations thereafter

• Requires 𝑑 = Ω(log2 𝑛)

Part II: Expansion Analysis

• Assumes edge connectivity ≥ Τ𝑑 2 throughout

• Expansion Ω(𝑑) achieved in 𝑂 𝑛𝑑 log 𝑛 operations, 
and maintained for poly(𝑛) operations thereafter

• Requires 𝑑 = Ω(log 𝑛)
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Edge Connectivity Analysis

• Analyze a single cut 𝑆, ҧ𝑆
• Analyze cut size 𝑐 𝑆

• 𝑐 𝑆 ≥ 𝑑/2 after 𝑡 ops ∀𝑡 = Θ 𝑛𝑑 log 𝑛 …poly(𝑛), w.pr. 1 − 𝑛−𝑐

• Argue about all cuts using “smart” union bounds
• UB over all 𝑆 with ℓ < 𝑆 ≤ 2ℓ, after establishing the fact ∀𝑆 with |𝑆| ≤ ℓ

• Key Lemma: If 𝑐 𝑆 ≥ 𝑘 ∀𝑆 with |𝑆| ≤ ℓ, then there are 𝑂 𝑛 many sets 𝑆
with ℓ < 𝑆 ≤ 2ℓ and 𝑐 𝑆 < 𝑘
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Expansion Analysis

• Analyze a single cut 𝑆, ҧ𝑆
• Analyze new measure of cut strain

• As long as all cuts remain ℓ-expanding, 
𝑆, ҧ𝑆 is 2ℓ-expanding after 𝑡 ops ∀𝑡 = Θ 𝑛𝑑 …poly(𝑛), w.pr. 1 − 𝑒−Ω ℓ𝑑

• Argue about all cuts using “smart” union bounds
• Show 2ℓ-expansion for all cuts, after establishing ℓ-expansion

• By Karger’s bound and assumption that edge connectivity ≥ Τ𝑑 2, 
there are 𝑛𝑂(ℓ) = 𝑒𝑂(ℓ log 𝑛) < 𝑒Ω ℓ𝑑 cuts of size 𝑂(ℓ𝑑)
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cut 𝑆, ҧ𝑆 is ℓ-expanding if 
𝑐 𝑆 = Ω(𝑑min ℓ, 𝑆 )



Cut Strain

• Let 𝑎𝑣 𝑆 ∈ 0,
1

𝑑
,
2

𝑑
, … , 1 : fraction of vertex 𝑣’s neighbors in set 𝑆

• Strain of cut 𝑆, ҧ𝑆

𝜎 𝑆 =

𝑣

𝑎𝑣 𝑆 ⋅ 𝑎𝑣 ҧ𝑆

• 𝜎 𝑆 ≤ σ𝑣∈𝑆 𝑎𝑣 ҧ𝑆 + σ𝑣∈ ҧ𝑆 𝑎𝑣 𝑆 =
2𝑐 𝑆

𝑑

• But, possibly, 𝜎 𝑆 ≪
2𝑐 𝑆

𝑑
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Conclusion of Part 1 of the Talk

The local flip process transforms any connected 𝑑-regular graph, with 
𝑑 = Ω(log2 𝑛), to an expander after 𝑂(𝑛𝑑 log2 𝑛) operations w.h.p.

• Get rid of extra logarithmic factor ?

• Analysis for sub-logarithmic/constant degree 𝑑 ?

• Bounds for vertex expansion ?

• Analysis of similar dynamic for bipartite graphs ? 

• Improve existing bounds on the mixing time ?
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Talk Overview

• Part 1: Transform any connected regular graph into an expander

• Part 2: Compute a maximal-independent-set of any graph
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Maximal Independent Set (MIS)

• Graph 𝐺 = 𝑉, 𝐸

• 𝐵 ⊆ 𝑉 is an MIS
1. 𝑢 ∈ 𝐵 ⇒ ∄𝑣 ∈ 𝐵, 𝑣 ∼ 𝑢

2. 𝑢 ∉ 𝐵 ⇒ ∃𝑣 ∈ 𝐵, 𝑣 ∼ 𝑢
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A simplest process for the MIS problem

• Arbitrary 𝐺

• Each 𝑢 has state 𝑠 𝑢 ∈ 0,1 , initially arbitrary

• All states updated in parallel rounds

• Update rule:
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If 𝑠 𝑢 = 1 & ∃𝑣 ∼ 𝑢, 𝑠 𝑣 = 1
or 𝑠 𝑢 = 0 & ∄𝑣 ∼ 𝑢, 𝑠 𝑣 = 1 then
𝑠 𝑢 ← coin−flip

blue-blue error

all-white error



A simplest process for the MIS problem

• A vertex stabilizes if 
• is blue all its neighbors are white

• is white and has a blue stabilized neighbor

• 𝐵 = 𝑢: 𝑠 𝑢 = 1

• Eventually, 𝐵 becomes an MIS

• And at that point stabilizes

• Time until stabilization?
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Properties

• Minimal state space: 2 states per vertex

• Minimal communication: 
• beeping model with sender collision detection (SCD)

• 3-state variant for stone age model (w/o collision detection)

• Minimal computation: for stone age model

• Self-stabilizing (SS): works for any initial configuration

• And yet it has hardly ever been considered in literature !?!
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to see later



Related: Sequential Version 

• Folklore, also [Shukla, Rosenkrantz, and Ravi, 1995], [Hedetniemi, 
Hedetniemi, Jacobs, and Srimani, 2003]

• One vertex 𝑢 updated per step / no randomization

• No blue-blue errors left after each 𝑢 takes one step

• No all-white errors left after each 𝑢 takes one additional step

• Stochastic scheduler: stabilization in 𝑂(𝑛 log 𝑛) steps, w.h.p.
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If 𝑠 𝑢 = 1 & ∃𝑣 ∼ 𝑢, 𝑠 𝑣 = 1
or 𝑠 𝑢 = 0 & ∄𝑣 ∼ 𝑢, 𝑠 𝑣 = 1 then
𝑠 𝑢 ← 1 − 𝑠(𝑢)



Related: From Sequential to Parallel

[Shukla, Rosenkrantz, and Ravi, 1995]

• Adding randomization to updates yield a parallel algorithm that 
stabilizes (in at most exponential time)

[Turau and Weyer, 2006]

• Similar observations for any sequential self-stabilizing MIS algorithm
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Other Related Work (Randomized + SS)

Algorithm States Communication Knowledge Runtime

New 2 Beeping-SCD -

New 3 Stone-age -

[Afek et al 2013] poly(log 𝑛) Beeping 𝑛 𝑂(log3 𝑛)

[Ghaffari 2017], 
[Jeavons et al 2016]

𝑂 log 𝑛 Beeping-SCD 𝑛 𝑂 log𝑛

[Emek and Keren 2021] poly(𝐷) Stone-age 𝐷 𝑂(𝐷 log 𝑛)

[Turau 2019] 𝑂 𝑑𝑢 State-reading - 𝑂 log𝑛

[Emek and Wattenhofer 2013] 𝑂 1 Stone-age Non-SS 𝑂(log2 𝑛)
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Other Related Work (Deterministic + SS)
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Algorithm States Communication Knowledge Runtime

[Ikeda et al 2002], 
[Goddard et al 2003], 

[Turau 2007]
𝐼𝐷 + 2 or 3 State-reading 𝐼𝐷 𝑂 𝑛

[Barenboim et al 2018] poly(𝑛) Local 𝐼𝐷, 𝑛, Δ 𝑂(Δ + log∗ 𝑛)



Stabilization Time Bounds
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Simple Bounds: Complete Graph

• In each step, half of the blue vertices become white on average

• All blue vertices become white before only one left, with constant 
probability < 0.61

• Stabilization time 
• 𝑂(log 𝑛) expected

• 𝑂(log2 𝑛) w.h.p.
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3-State Process

• Each 𝑢 has state 𝑠 𝑢 ∈ 0,1,2

• All states updated in parallel rounds

• Update rule:
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If 𝑠 𝑢 = 0 & ∄𝑣 ∼ 𝑢, 𝑠 𝑣 > 𝑠 𝑢 then
𝑐1 ← coin−flip; 𝑐2 ← coin−flip
𝑠 𝑢 ← 𝑐1 ⋅ 1 + 𝑐2

Elseif 𝑠 𝑢 > 0 & ∄𝑣 ∼ 𝑢, 𝑠 𝑣 > 𝑠 𝑢 then
𝑠 𝑢 ← 1 + coin−flip

Elseif 𝑠 𝑢 > 0 & ∃𝑣 ∼ 𝑢, 𝑠 𝑣 > 𝑠 𝑢 then
𝑠 𝑢 ← 0

1

2

1

1

1



3-State Process: Complete Graph

• In each step, ~half of the blue vertices become white on average

• All blue vertices become white before only one left, with constant 
probability < 0.61

• Stabilization time 
• 𝑂(log 𝑛) expected and w.h.p.
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Simple Bounds: Trees

• Ignore stabilized vertices

• At least half of remaining vertices 𝑢 have degree ≤ 2

• At least a cons fraction of vertices stabilize in two rounds on average

• Stabilization time 𝑂(log 𝑛) w.h.p.
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Simple Bounds: General Graphs

• Lemma:

• Proof: The probability 𝑢 is still blue after 𝑟 = log(𝑘 + 1) rounds and none 
of its 𝑘 blue neighbors is, is 

2−𝑟 1 − 2−𝑟 𝑘 ≥ 2−𝑟4−𝑘2
−𝑟
=

1

4(𝑘 + 1)
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𝑢

… …

𝑘

𝑢

… …

In log(𝑘 + 1) rounds

w.pr. Θ
1

𝑘



Simple Bounds: General Graphs

• Δ: maximum degree

• In 𝑂(log Δ) rounds, 𝑢 or a neighbor permanently joins 𝐵 w.pr. Ω
1

Δ

• Thus 𝑢 stabilizes in 

• 𝑂 log Δ rounds w.pr. Ω
1

Δ

• 𝑂 Δ log Δ log 𝑛 rounds w.h.p.

• Stabilization time 𝑂(Δ log 𝑛) w.h.p.
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A More Refined Lemma

• 𝑘𝑢: number of blue neighbors of 𝑢

• 𝐵𝑢 = 𝐵 ∩ (Γ𝑢 ∪ 𝑢 )

• “Goodness” of 𝑢

𝑔𝑢 = 

𝑣∈𝐵𝑢

1

𝑘𝑣 + 1

• Lemma: The prob. 𝑢 stabilizes in 𝑂 log Δ rounds is Ω min 1, 𝑔𝑢
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Low Goodness

If 𝑔𝑢 ≤
1

𝑘
then

• σ𝑣∈𝐵∩Γ𝑢

1

𝑘𝑣+1
= 𝑂

1

𝑘
, i.e., the 

harmonic mean of 𝑘𝑣 + 1 is Ω(𝑘 ⋅ 𝑘𝑢)

• and 𝑘𝑢 = Ω(𝑘), if 𝑢 ∈ 𝐵

• In words: 𝑢’s blue neighbors have
many more blue neighbors than 𝑢
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Erdős-Rényi Random Graph 𝐺𝑛,𝑝

• 𝑛 vertices

• Each edge is present independently w.pr. 𝑝 ∈ [0,1]

• Average degree 𝑝 ⋅ 𝑛

• [Giakkoupis and Ziccardi, in prep.]
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For 0 ≤ 𝑝 ≤ 𝑛−𝜖 and any 𝜖 > 0, the stabilization time is poly(log 𝑛) w.h.p.

Avg degree 0…𝑛1−𝜖



Analysis Overview

• 𝑢 is “good” if 𝑔𝑢 ≥
1

log 𝑛

• W.h.p. (on the randomness of the graph),
for any given configuration (or for the conf. one round later),
a large enough fraction of the non-stabilized vertices are good

• … except if the #of non-stabilized vertices is small ≤
poly log 𝑛

𝑝

• In this case, progress is slow only if there exist vertices which switch 
state frequently, over a long period

• We show this to be highly unlikely unless 𝑝 is too large
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Simulation: Stabilization Time on 𝐺𝑛,𝑝:

• 𝑛 = 216

• 𝑝 = 2−𝑖 , 𝑖 = 0,… , 18

• 100 iterations for 
each 𝑝

• All-1s initially 
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Conclusion of Part 2 of the Talk

• Is this simplest MIS process fast for all/most families of graphs?

Thank you!
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Algorithm States Communication Knowledge Runtime

New 2 Beeping-SCD -

New 3 Stone-age -

[Afek et al 2013] poly(log 𝑛) Beeping 𝑛 𝑂(log3 𝑛)

[Jeavons et al 2016], 
[Ghaffari 2017]

𝑂 log 𝑛 Beeping-SCD 𝑛 𝑂 log𝑛

[Emek and Keren 2021] poly(𝐷) Stone-age 𝐷 𝑂(𝐷 log 𝑛)

[Turau 2019] 𝑂 𝑑𝑢 State-reading - 𝑂 log𝑛

poly log 𝑛 ?
𝑂 log2 𝑛 ?

𝑂 log𝑛 ?


