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Talk Overview

* Part 1: Transform any connected regular graph into an expander
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* Part 2: Compute a maximal-independent-set of any graph
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Flip Process

e Start from any connected d-regular graph
* Apply a sequence of flip operations

* Flip operation
* Pick a random 3-path abcd

* If edges ac and bd do not exist:
replace ab and cd by ac and bd

* Maintains graph connectivity & degrees
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Flip Process

[Mahlmann and Schindelhaue, 2005]
* Converges to uniform distribution over all connected d-regular graphs

* Time until an expander graph is established? / Mixing time?

* Experiments: O(nd log n) operations to have an expander w.h.p.
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Motivation

* Simple local MCMC process for sampling (approximately) random
connected d-regular graphs

e Easy to implement in parallel (MapReduce, Hadoop,...)

 Simple local process for generating/maintaining a d-regular expander

* Application to design of unstructured overlay (p2p) networks
* Small diameter, low degree, good connectivity (for robustness)

* Edge flip operations already used in overlay systems in practice



Related: Switch Process

[McKay, 1981]

e Switch operation
* Pick random non-adjacent edges ab & cd

* If edges ac and bd do not exist:
replace ab and cd by ac and bd

e Converges to a random d-regular graph
* But not local & may disconnect graph
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Related: Expanders via “Structured” Overlay
Designs

SKIP+ Graph [Jacob, Richa, Scheideler,
Schmid and Taubig, 2014]

* Local, self-stabilizing

* Transforms any connected graph,
to one containing a spanning
constant-degree expander,
in O(log? n) synchronous rounds

* But complex (large state/messages)
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Known Bounds for Flip and Switch Processes

* For d-regular n-vertex graphs:

Mixing time Time to expander (w.h.p.)
0(n°d?**logn)

switch [Cooper, Dyer and Greenhill, 2007+2012] 0(nd)

process -jq—:'J, 0(n*d?logn), O(nlog?n) ifd = 0(1) [AI.Ien-Zh'u, Bhaskara,. Lattanzi,
o] [Tikhomirov and Youssef, 2020], Mirrokni and Orecchia, 2016]
@ [Kannan, Tetali and Vempala, 1999]

: 0(n'®d3°logn) Y
ranchZss [Cooper, Dyer, Greenhill and Handley, 2019], 0(" dy 108")
P [Feder, Guetz, Mihail, and Saberi, 2006] [Allen-Zhu et al, 2016]

* Techniques: canonical path, Markov Chain comparison, spectral /algebraic
* Also results for non-regular/directed graphs
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New Bound for the Flip Process

[Giakkoupis 2022]
For any n and d = Q(log? n), there exists t = 0(nd log? n), such that,

applying t flip operations to any connected d-regular n-vertex graph,
results in an expander graph w.h.p.

* 0(t/n) = 0(dlog? n) operations per vertex
* Previous best was O(ndzw/log n) [Allen-Zhu et al, 2016]
* Justifies use of flip-like operations in overlay networks

 Comparable to bounds for (non-local) switch process, and (more
complex) SKIP+ graph
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New Bound for the Flip Process

[Giakkoupis 2022]
For any n and d = Q(log? n), there exists t = 0(nd log? n), such that,

applying t flip operations to any connected d-regular n-vertex graph,
results in an expander graph w.h.p.

* Almost tight
* A(ndlog(n/d)) operations for “ring-of-cliques”

* Probably, a refinement of our analysis could improve
resulttod = Q(logn) and t = O(nd logn)
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Analysis of Flip Process



Some Standard Definitions

e Cut (§5,5)

e Cut size = number of crossing edges
* Graph (edge-)connectivity = min cut size

 Cut (edge-)expansion = cut size / | S|
* Graph expansion = min cut expansion

* A d-regular graph is an expander if the expansion is Q(d)
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Proof Overview

Part I: Edge Connectivity Analysis

* Edge connectivity = d /2 achieved in O(nd log? n) operations,
and maintained for poly(n) operations thereafter

e Requires d = Q(log? n)

Part II: Expansion Analysis
* Assumes edge connectivity = d /2 throughout

* Expansion Q(d) achieved in O(nd logn) operations,
and maintained for poly(n) operations thereafter

* Requires d = Q(logn)



Edge Connectivity Analysis

* Analyze a single cut (S, S)
* Analyze cut size c¢(S)
* c(S) = d/2 after t ops Vt = O(ndlogn) ...poly(n), wpr.1 —n~¢

* Argue about all cuts using “smart” union bounds
« UB over all S with £ < |S| < 24, after establishing the fact VS with |S| < ¢

* Key Lemma: If c(S) = k VS with |S| < 2, then there are O(n) many sets S
with ¢ < |S| < 2fand c(S) <k




Expansion Analysis

* Analyze a single cut (S; S) cut (S, S) is £-expanding if
* Analyze new measure of cut strain ¢(S) = Q(d min{?, [S[})

* Aslong as all cuts remain £-expanding,
(S,S) is 2¢-expanding after t ops Vt = O(nd) ... poly(n), w.pr. 1 — e ~(¢a)

* Argue about all cuts using “smart” union bounds
* Show 2f-expansion for all cuts, after establishing £-expansion

* By Karger’s bound and assumption that edge connectivity = d /2,
there are n9®) = g0(¢10gn) < Q) cyts of size 0 (£d)
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Cut Strain

e Let a,(S) € {O,%,%, e 1}: fraction of vertex v’s neighbors in set S

e Strain of cut (S, S)
7(8) = ) ay(S) - ay(5)

v

+ 0(8) < Tpes an(8) + Tyes ap(s) =22

 But, possibly, 0(S) < ZCCES)
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Conclusion of Part 1 of the Talk

The local flip process transforms any connected d-regular graph, with
d = Q(log? n), to an expander after O(nd log? n) operations w.h.p.

* Get rid of extra logarithmic factor ?

» Analysis for sub-logarithmic/constant degree d ?
* Bounds for vertex expansion ?

* Analysis of similar dynamic for bipartite graphs ?
* Improve existing bounds on the mixing time ?



Talk Overview

e Part 1: Transform any connected regular graph into an expander
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* Part 2: Compute a maximal-independent-set of any graph
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Maximal Independent Set (MIS)
* Graph G = (V,E)

B C€Visan MIS
1. u€eéB=>AvEB,v~u
2. u¢ B=>3veEeB,v~u
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A simplest process for the MIS problem

e Arbitrary G
* Each u has state s(u) € {0,1}, initially arbitrary
* All states updated in parallel rounds

° Update rule: blue-blue error

If (s(u) =1 & v ~u,s(v) = 1)'..

or(s(u) =0 & 4v ~ u,s(v) = 1) then

s(u) < coin—flip C
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A simplest process for the MIS problem

* A vertex stabilizes if
* is blue all its neighbors are white
* is white and has a blue stabilized neighbor

B ={u:s(u) =1}
* Eventually, B becomes an MIS
* And at that point stabilizes

 Time until stabilization?
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Properties

* Minimal state space: 2 states per vertex
* Minimal communication:

* beeping model with sender collision detection (SCD)

 3-state variant for stone age model (w/o collision detection) °
* Minimal computation: for stone age model
e Self-stabilizing (SS): works for any initial configuration

* And yet it has hardly ever been considered in literature !?!



Related: Sequential Version

* Folklore, also [Shukla, Rosenkrantz, and Ravi, 1995], [Hedetniemi,
Hedetniemi, Jacobs, and Srimani, 2003]

* One vertex u updated per step / no randomization
If (s(u)=1&3Iv~u,s(v)=1)

or(s(u) =0 & Av ~u,s(v) = 1) then
s(u) «1—s(u)

* No blue-blue errors left after each u takes one step
* No all-white errors left after each u takes one additional step
* Stochastic scheduler: stabilization in O(n log n) steps, w.h.p.
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Related: From Sequential to Parallel

[Shukla, Rosenkrantz, and Ravi, 1995]

* Adding randomization to updates yield a parallel algorithm that
stabilizes (in at most exponential time)

[Turau and Weyer, 2006]
e Similar observations for any sequential self-stabilizing MIS algorithm
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Other Related Work (Randomized + SS)

Algorithm States Communication | Knowledge Runtime
New 2 Beeping-SCD -
New 3 Stone-age -

[Afek et al 2013] poly(logn) Beeping n 0(log3n)

[Ghaffari 2017],

Jeavons et al 2016] O(logn) Beeping-SCD n O (logn)
[Emek and Keren 2021] poly(D) Stone-age D O(D logn)
[Turau 2019] 0(d,) State-reading - O (logn)

[Emek and Wattenhofer 2013] 0(1) Stone-age Non-SS 0(log® n)
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Other Related Work (Deterministic + SS)

Algorithm States Communication | Knowledge Runtime
[Ikeda et al 2002],
[Goddard et al 2003], ID + 2o0r3 | State-reading ID 0(n)
[Turau 2007]
[Barenboim et al 2018] poly(n) Local ID,n, A O(A +log™n)
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Stabilization Time Bounds



Simple Bounds: Complete Graph

* In each step, half of the blue vertices become white on average

 All blue vertices become white before only one left, with constant
probability < 0.61

* Stabilization time
* O(logn) expected
* 0(log?n) w.h.p.
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3-State Process

e Each u has state s(u) € {0,1,2}
 All states updated in parallel rounds
e Update rule:
If (s(u) =0 & Av ~ u,s(v) > s(u) ) then

c; < coin—flip; ¢, « coin—flip
s(u) «c;-(1+cy)

Elseif (s(u) >0 & Av ~ u,s(v) > s(u) ) then
s(u) « (1 + coin—flip)

Elseif (s(u) >0 & Jv ~ u,s(v) > s(u) ) then
s(u) « 0

SIROCCO 2022 29



3-State Process: Complete Graph

* In each step, ~half of the blue vertices become white on average

A a - a - Ava Alaa¥a WA a AN aAaYTAIVFAlIaalwala Alav¥a a
7 1 U v - - A - - - v U

* Stabilization time
* O(logn) expected and w.h.p.
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Simple Bounds: Trees

* Ignore stabilized vertices
At least half of remaining vertices u have degree < 2

w.pr. = % w.pr. = % w.pr. = %
i}oriiqszhgéhgaor’:)\‘

* At least a cons fraction of vertices stabilize in two rounds on average
* Stabilization time O(logn) w.h.p.
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Simple Bounds: General Graphs

e lemma:

Inlog(k + 1) rounds

w.pr. © (%)

K
* Proof: The probability u is still blue after r = log(k + 1) rounds and none
of its k blue neighbors is, is .

2—1‘ 1 — 2—1‘ k > 2—7‘4—k2_r —
( )" = 4(k+ 1)
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Simple Bounds: General Graphs

* A: maximum degree

* In O(log A) rounds, u or a neighbor permanently joins B w.pr. () (%)

* Thus u stabilizes in
* O(logA) rounds w.pr. Q (%)
e 0(AlegAlogn) rounds w.h.p.

* Stabilization time O(Alogn) w.h.p.



A More Refined Lemma

* k,,: number of blue neighbors of u

* B, =B n (I, Uiu})
e “Goodness” of u
1
Ju = Ekv+1
VEB,,

Ky

* Lemma: The prob. u stabilizes in O(log A) rounds is Q(min{1, g, })
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Low Goodness

If g, < %then

1 1\ .
* LveBly o gg = O (;) i.e., the
harmonic meanof k, + 1is Q(k - k;,)

candk, = Q(k),ifu€eRB

* In words: u’s blue neighbors have
many more blue neighbors than u
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Erdds-Renyi Random Graph Gy, 5,
* n vertices
* Each edge is present independently w.pr. p € [0,1]

* Average degreep - n

* [Giakkoupis and Ziccardi, in prep.]

For 0 < p < n~ € andany e > 0, the stabilization time is poly(logn) w.h.p.

e
Avg degree 0 ...n1~€
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Analysis Overview

1
logn

* uis “good” if g,, =

* W.h.p. (on the randomness of the graph),
for any given configuration (or for the conf. one round later),
a large enough fraction of the non-stabilized vertices are good

< poly(log n))
p

* In this case, progress is slow only if there exist vertices which switch
state frequently, over a long period

e ... except if the #of non-stabilized vertices is small (

* We show this to be highly unlikely unless p is too large



Simulation: Stabilization Time on Gy, ,:

A 216 4.5

° p:Z_l,l:O;;18 35

* 100 iterations for 3
eachp £ 25
All-1s initially E

[ J
=
) N}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
log(1/p)

— Average Stabilization Time Max Stabilization Time
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Conclusion of Part 2 of the Talk

* |s this simplest MIS process fast for all/most families of graphs?

Algorithm States Communication | Knowledge Runtime
New 2 Beeping-SCD -
New 3 Stone-age -

[Afek et al 2013] poly(logn) Beeping n 0(log3n)
[Jefgﬁzfsfae:i azlozlo71]6], O(logn) Beeping-SCD n O(logn)
[Emek and Keren 2021] poly(D) Stone-age D O(D logn)

[Turau 2019] o(d,) State-reading - O (logn)
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Thank you!
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