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Abstract

We analyze decentralized routing in small-world networks that combine a wide variation in node degrees
with a notion of spatial embedding. Specifically, we consider a variation of Kleinberg’s augmented-lattice
model (STOC 2000), where the number of long-range contacts for each node is drawn from a power-law
distribution. This model is motivated by the experimental observation that many “real-world” networks have
power-law degrees. In such networks, the exponentα of the power law is typically between 2 and 3. We
prove that, in our model, for this range of values,2 < α < 3, the expected number of steps of greedy routing
from any source to any target isO(logα−1 n) steps. This bound is tight in a strong sense. Indeed, we prove
that the expected number of steps of greedy routing for a uniformly-random pair of source–target nodes is
Ω(logα−1 n) steps. We also show that forα < 2 or α ≥ 3, greedy routing performs inΘ(log2 n) expected
steps, and forα = 2, Θ(log1+ε n) expected steps are required, where1/3 ≤ ε ≤ 1/2.

To the best of our knowledge, these results are the first to formally quantify the effect of the power-law
degree distribution on the navigability of small worlds. Moreover, they show that this effect is significant. In
particular, asα approaches 2 from above, the expected number of steps of greedy routing in the augmented
lattice withpower-law degreesapproaches the square-root of the expected number of steps of greedy routing
in the augmented lattice withfixed degrees, although both networks have the sameaverage degree.

1 Introduction

1.1 Navigability of small worlds

It has been observed that many “real-world” networks, such as social, information, technological, and biological
networks, exhibit thesmall-world property; i.e., they are locally clustered, and (yet) shortpaths exist between
almost all pairs of nodes (see [2, 9, 19] and the references therein). It is also well-established that many small-
world networks (e.g., the network of acquaintances betweenindividuals) are easy tonavigate, provided that the
nodes are able to estimate the distances to other nodes with respect to some underlying metric (e.g., geography,
professions, etc.) [8, 18].Navigabilityrefers to the ability of nodes to route messages efficiently in a decentralized
manner, using local information only. The most prominent example of such a routing scheme isgreedyrouting:
a node handling a message destined to some target node forwards the message to its neighbor that is closest to
the target, according to the underlying metric. The first formal analysis of greedy routing in a plausible model
of small worlds was presented in [13]. The model studied there was theaugmented lattice: Consider then-node
d-dimensional lattice that wraps around, whered ≥ 1. A node has links to its2d lattice-neighbors, and also
to k ≥ 1 other nodes, itslong-range contacts. Each of the long-range contacts of a nodeu is chosen using an

∗Both authors are supported by the ANR project ALADDIN, and bythe INRIA project GANG.
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independent random trial following thed-harmonic distribution: the probability that nodev is chosen in a given
trial is

pu,v ∝ 1/(dist(u, v))d, (1.1)

where dist(u, v) is the lattice-distance betweenu andv. In [13] it was shown that, in this model, greedy routing
requiresO

(

1
k log2 n

)

expected number of steps, for any source–target pair. (Thiscomplexity was later shown to
be tight [17].) It was also shown thatanydecentralized routing algorithm performs poorly if thed-dimensional
lattice is augmented using theh-harmonic distribution, for anyh 6= d. Specifically,Ω(nγ) expected steps are
required, for someγ > 0 that depends onh andd.1

Despite its simplicity, the augmented-lattice model seemsto capture successfully the small-world and navi-
gability properties of real-world networks. Note that in the d-dimensional lattice thed-harmonic distribution is
equivalent to the “natural” distributionpu,v ∝ 1/|Bu(dist(u, v))|, whereBu(r) is the ball centered atu of radius
r; this latter distribution was used in [10, 23] to extend the results of [13] to graphs of bounded ball growth,
and to graphs of bounded doubling dimension. Also, thed-harmonic distribution is equivalent in the lattice to
the rank-based distributionpu,v ∝ 1/ru(v), whereru(v) is the rank ofv when nodes are sorted in increasing
distance from nodeu; this latter distribution was used in [15] to extend the results of [13] to non-uniform pop-
ulation densities. In fact, it was experimentally demonstrated that two-thirds of friendships are geographically
distributed this way: the probability of befriending a particular person is inversely proportional to the number of
people closer to you [16]. Finally, it was recently shown that thed-harmonic distribution of the long-range links
might as well be an inherent byproduct of node mobility [4]. See also [6, 20] for other dynamics yielding the
d-harmonic distribution in the lattice. Therefore, there isnow a consensus that the augmented-lattice model is an
appropriate framework for analyzing small-world navigability.

1.2 Power-law degree distribution

The augmented-lattice model, however, fails to capture another commonly observed property of real-world net-
works, theheavy-tailed degree distribution. Such a distribution is well approximated by apower lawPr[deg(u) = k] ∝ 1/kα, (1.2)

whereα is a real, typically between 2 and 3 [2, 9, 19]. Nevertheless,it is straightforward to reconcile the
augmented-lattice model with a power-law distribution forthe node degrees, simply by drawing the number of
long-range links added to each node independently at randomfrom a power-law distribution [14]. It is reason-
able to expect that this modification would reduce the lengths of shortest paths between nodes and the network
diameter, since the (few) high-degree nodes should provideshort-cuts between most nodes. This is typically the
case in networks with power-law degree sequences [3, 5]. However, it is unclear how decentralized routing could
benefit from the existence of these high-degree nodes [14].

Utilizing the heavy-tailed degree distribution in the design of decentralized routing algorithms was suggested
in [1, 11, 12, 21]. In all these works, the routing algorithmsonly have access to information about the degrees of
neighboring nodes, not to any embedding of the graph. Although some performance improvements are observed
compared to routing algorithms oblivious to the node degrees, the expected number of steps remains polynomial
in the network size. Also, [22] proposed a heuristic decentralized algorithm for routing in a variance of the
augmented lattice where nodes have widely varying degrees.This heuristic assumes that nodes have access both
to the locations of theirs neighbors, and to their degrees. Simulations showed that this algorithm performs better
than decentralized algorithms using only one of these two sources of information. However, no formal analysis
was provided.

1It was recently shown [7] that ford = 1, the augmentation using the 1-harmonic distribution is essentially optimal in the sense that
for anyaugmentation distribution withk expectedlong-range contacts per node, greedy routing requiresΩ

(

1

k
log2

n
)

expected steps.
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Figure 1: Summary of the results.

1.3 Our framework

We consider the following variance of the augmented-lattice model. As in the original model, the long-range
links are drawn independently at random according the harmonic distribution with exponent equal to the dimen-
sionality of the lattice (cf. Eq. 1.1). Unlike the original model, however, the number of long-range contacts each
node has is not fixed, but it is drawn independently at random from the power-law distribution with exponent
α ≥ 0 (cf. Eq. 1.2). This distribution is scaled so that its expectation is constant and each node has at least
one long-range contact.2 We then remove the orientation of each of the long-range links to get a non-directed
network. We study the performance of greedy routing in this network.

1.4 Our results

In this section, we ignoreO(log log n) multiplicative factors in the statement of the asymptotic bounds. The
precise bounds are described in Section 2.3.

We prove that for2 < α < 3, which is the case for most real-world networks, the expected number of
steps of greedy routingfrom any source to any targetis O(logα−1 n) steps. Thus, for this range of values forα,
the effect of the power-law degree distribution is significant. In particular, whenα approaches 2, the expected
number of steps of greedy routing in the augmented lattice with power-law degreesapproaches the square-root
of the expected number of steps of greedy routing in the augmented lattice withfixed degrees, although both
networks have the sameaverage degree. For bothα < 2 andα ≥ 3, we show that the expected number of steps
of greedy routing from any source to any target isO(log2 n) steps, which is the same order of magnitude as the
performance of greedy routing in the augmented lattice withfixed degrees. For the critical valueα = 2, we prove
that the expected number of steps of greedy routing from any source to any target isO(log3/2 n) steps.

All these upper bounds are tight (but, perhaps, forα = 2). Forα > 2, the upper bounds are even tight in a
strong sense. Indeed, we prove that the expected number of steps of greedy routing for auniformly-randompair
of source–target nodes isΩ(logα−1 n) steps if2 < α < 3, andΩ(log2 n) steps ifα ≥ 3. Forα < 2, we prove
that there exists a source–target pair for which greedy routing requiresΩ(log2 n) expected steps. Forα = 2, we
show that the expected number of steps for a uniformly-random source–target pair isΩ(log4/3 n).

We formally prove the above results for the case of the 1-dimensional lattice, i.e., the ring. Nevertheless,
none of the arguments we use is specifically tied to the ring, and theexactsame results can be easily shown for

2Forα > 2, even without the scaling, the expectation is constant and,with constant probability, each node has at least one long-range
contact. So, the scaling makes a difference only forα ≤ 2.
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d-dimensional lattices, for constant values ofd. Note that unlike the results in [13], where the critical value of
the exponent depends on the dimensionalityd of the lattice, our results do not depend ond.

To the best of our knowledge, these results are the first to formally quantify the effect of the power-law degree
distribution on the navigability of small worlds.

The following picture emerges from our analysis. Forα ≥ 3, almost all nodes are of small degree, and the
nodes of higher degree are too few to contribute significantly. Hence greedy routing performs essentially the
same as when the degrees are fixed.

For 2 < α < 3, there are still very few nodes of high degree. However, nodes of degree roughlylog n are
relatively abundant, and there are more and more such nodes as α approaches 2. It is the contribution of these
nodes that reduces the routing time fromlog2 n to logα−1 n.

The caseα = 2 is special. All “degree scales” are present, and each is equally likely to contribute. On the
one hand, this results in greater routing speed than in the case2 < α < 3 when the current node is far from the
target, since there are many high-degree nodes between the current node and the target in the lattice. On the other
hand, the balance in the degree scales means that as we get closer to the target the number of high-degree nodes
available decreases faster than in the case2 < α < 3; and when we get at distance sub-polynomial from the
target (essentially at distance less thane

√
ln n), greedy routing performs the same as when the degrees are fixed.

Finally, for α < 2, there are many nodes of high degree, and the role of the cut-off point kmax of the power
law becomes critical. We assumed thatkmax ∼ nγ , for some0 < γ ≤ 1. In this setting, only the contribution
of nodes with degree close tokmax is significant. However, when the current node is at distanceless thankmax

from the target, it is very likely that greedy routing will not find a node of such degree, and from that distance it
starts performing the same as when the degrees are fixed. Notethat forα < 2, nodes that are further away from
the target may, in expectation, require fewer steps to reachthe target than nodes closer to the target, which is not
the case whenα > 2.

2 Model and main results

2.1 Network model

We will use the notation[i..j] = {k ∈ Z : i ≤ k ≤ j} and [i..j) = [i..j − 1], for i, j ∈ Z. (If i > j then
[i..j] = ∅.) Also, whenever we treat a real numberx as an integer we will mean⌊x⌋.

In our analysis we will focus on the 1-dimensional lattice case. LetGn be the class of all directed graphs
with set of nodes[0..n) that contain as a subgraph then-nodering, i.e., the graph with set of nodes[0..n), and set
of edges{(u, u ± 1 mod n) : u ∈ [0..n)}.3 Let G be a graph inGn, andE be the set of edges ofG. Theout-
neighbors(in-neighbors) of a nodeu of G are all nodesv such that(u, v) ∈ E ((v, u) ∈ E). More specifically,
the nodesu ± 1 mod n are called thering-neighborsof u, and the remaining out-neighbors (in-neighbors) ofu
are itsout-contacts(in-contacts). For any two subsets of nodesA andB, we will write A → B to denote that a
node inB is an out-contact of a node inA (or, equivalently, a node inA is an in-contact of a node inB). When
|A| = 1, sayA = {a}, we will often writea → B, instead; and the same convention is used when|B| = 1. The
ring-distancebetween nodesu andv, denotedδ(u, v), is the minimum number of ring edges between them in
either clockwise or counter-clockwise direction, i.e.,

δ(u, v) = min{u − v mod n, v − u mod n}.

So, if v is a ring-neighbor ofu thenδ(u, v) = 1, and if it is an in-contact or out-contact ofu thenδ(u, v) ≥ 2.
We will write ‖u‖ to denoteδ(u, 0).

Random-graph models: We study two random-graph models. Each of them is parameterized by the sizen of
the graph, and the exponentα ≥ 0 of a power-law distribution. In the first model, denotedG(n, α), a random

3For a graph inGn, the underlying ring will be used to compute distances between nodes. Also, when we refer to nodes we will mean
their integer labels.
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element ofGn is generated by choosing the out-contacts of the nodes as follows. For each nodeu, we draw an
integerDu from [1..kmax] independently at random, such that

(1) Pr[Du = k] ∝ 1/kα, for k 6= 1, and (2) E[Du] = 2.

We assume that the “cut-off point”kmax of the power-law distribution isΘ(nγ), for some constant0 < γ ≤ 1.
Then, we performDu independent identical random trials, such that in each trial a nodev 6= u is chosen with
probability

∝ 1/δ(u, v).

The out-contacts ofu are all thedistinctnodes chosen by theseDu trials that are not ring-neighbors ofu; formally,
if vi is the node chosen in thei-th trial then the out-contacts ofu are the elements of the set

⋃

1≤i≤Du
{vi} \ {u±

1 mod n}. The second random-graph model we consider, denotedU(n, α), is the model in which a random graph
is obtained by first generating a random graph inG(n, α), and then taking its underlyingundirected graph; in fact,
for each (directed) edge ofG(n, α) we also add its opposite-directed edge, if it does not already exist. Formally,
if E is the set of edges inG(n, α) then the set of edges inU(n, α) is {(u, v) : (u, v) ∈ E or (v, u) ∈ E}.

Discussion: Recall that the long-range contacts of a node inG(n, α) are selected using independent trialswith
replacement. This assumption simplifies the analysis, but it has the sideeffect that the out-degreeD+

u of node
u in G(n, α) can be smaller thanDu, and also the distribution ofD+

u is notexactlya power law. Nevertheless,
the use of trials with replacement gives essentially the same results as the trialswithout replacement. This is
because the discrepancy betweenD+

u andDu is significant only for large values ofDu (e.g., of orderΩ(
√

n)).
And our analysis shows that the effect of such high-degree nodes is negligible whenα > 2; while for α < 2 our
proof actually holds even if trials are without replacement. For the in-degreeD−

u of u in G(n, α), it is easy to see
that its distribution is close to a Poisson with constant expectation (see the Appendix); so, the distribution of the
(total) degreeD+

u + D−
u of u in U(n, α) is essentially the same as that ofD+

u for all but very small values.
Next, recall thatDu ≤ kmax = Θ(nγ) andDu 6= 0. Forα > 2, the exact same asymptotic results hold with

or without these constrains. The rest of the discussion is for the caseα ≤ 2. Note that it must bekmax < ∞,
otherwise the expectation ofDu is∞. Also, a value forkmax that is polynomial inn is consistent with real-world
networks. It can be shown that ifkmax is poly-log inn then greedy routing performs in logarithmic time. On the
lower side, a minimum value is imposed onDu because otherwiseDu would be0 with overwhelming probability.
It can be shown that, in that case, greedy routing would require polynomial time ifα < 2, and poly-log time if
α = 2.

2.2 Greedy routing

We consider the following routing algorithm for graphs inGn. When a nodeu receives a message for a target
nodet 6= u, u forwards the message to an out-neighbor that is closest tot, with respect to the ring-distance. We
call this routing algorithmGREEDY. We are interested in the performance ofGREEDY in G(n, α) andU(n, α).
Specifically, we study two performance measures: theexpected delivery timeof GREEDY, and theGREEDY

diameter. Let lu,v be theexpectedlength of theGREEDY routing path fromu to v in the random graph. The
expected delivery timeis theaverageof lu,v, taken over all possible source–target pairs, i.e.,

Expected delivery time ofGREEDY =
1

n2

∑

u,v

lu,v.

TheGREEDY diameteris the correspondingmaximum, i.e.,

GREEDY diameter= max
u,v

lu,v.

Note that theGREEDY diameter is always greater or equal to the corresponding expected delivery time. All the
lower bounds we prove, except for the modelU(n, α) with α < 2, are for the expected delivery time ofGREEDY;
whereas all the upper bounds are for theGREEDY diameter.
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Throughout our analysis ofGREEDY in G(n, α) andU(n, α), we will assume that the target node is node0.
We can make this assumption without loss of generality because of the symmetry of the random-graph models.
Also, for the analysis inU(n, α), instead of considering the graphU(n, α) directly, we will considerG(n, α), and
for the purposes of routing we will ignore the direction of the links. So, whenever we refer to the in-/out-contacts,
in-/out-links, etc., of a node, we will mean inG(n, α); the same convention is used for the ‘→’ notation.

In G(n, α), theGREEDY path from a fixed source to a fixed target is a Markov chain; the next node in the path
depends only on the last node visited. However, this is not the case inU(n, α), where the next node depends on
all the previously visited nodes, and also on their in- and out-links. Specifically, if〈Y0, Y1, . . .〉 is the routing path
from nodeY0 to 0 then for any nodev with ‖v‖ < ‖Yi‖, v 6→ {Y0, . . . , Yi−1}; hence, the values ofY0, . . . , Yi−1

affect the distribution of the out-contacts ofv. More importantly, the distribution of the out-contacts ofYi is
affected by whetherYi−1 → Yi or not; e.g., ifYi−1 6→ Yi andYi is not a ring-neighbor ofYi−1 thenYi → Yi−1,
which, for some values ofα, changes the a-priory distribution of the out-degree ofYi significantly.

2.3 Statement of the results

In all the results below, the asymptotic notation is asn → ∞, andα is not a function ofn.

Theorem 2.1. The expected delivery time ofGREEDY in G(n, α) is Ω(ln2 n).

Theorem 2.2. TheGREEDY diameter ofG(n, α) is O(ln2 n).

Theorem 2.3. The expected delivery time ofGREEDY in U(n, α) is






















Ω(ln4/3 n), if α = 2;

Ω(lnα−1 n), if 2 < α < 3;

Ω(ln2 n/ ln ln n), if α = 3;

Ω(ln2 n), if α > 3.

Also, for0 ≤ α < 2, theGREEDY diameter isΩ(ln2 n).

Theorem 2.4. TheGREEDY diameter ofU(n, α) is






















O(ln2 n), if 0 ≤ α < 2;

O(ln3/2 n), if α = 2;

O(lnα−1 n ln ln n), if 2 < α < 3;

O(ln2 n), if α ≥ 3.

3 Definitions and basic facts

3.1 Distribution of out-contacts

Recall that the out-contacts of a nodeu in G(n, α) are chosen using independent identical trials, such that, in
each trial, nodev 6= u is picked with probability∝ 1/δ(u, v). So, the probability thatv is picked in a given trial
is

1

ν δ(u, v)
, whereν =

∑

v 6=u

1

δ(u, v)
= 2 ln n + O(1).

Also, the numberDu of trials used is chosen independently at random from[1..kmax], wherekmax = Θ(nγ),
such thatPr[Du = k] ∝ 1/kα, for k 6= 1, andE[Du] = 2. Let

qk = Pr[Du = k] =

{

1
βkα , if k 6= 1;

1 −∑j 6=1 qj, if k = 1,
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whereβ is the normalizing factor such thatE[Du] =
∑

k kqk = 2. It is easy to see that

β =
∑

k

k − 1

kα
=











Θ(1), if α > 2;

Θ(ln n), if α = 2;

Θ(k2−α
max ), if 0 ≤ α < 2.

Also, the probability thatDu = 1 is q1 = Θ(1), if α > 2, andq1 = 1 − o(1), if 0 ≤ α ≤ 2.

3.2 Simple facts aboutG(n, α)

We now state some simple facts that we use repeatedly in the analysis. Their proofs can be found in the Appendix.
In all these facts, the underlying graph isG(n, α) andu, v ∈ [0..n).

Fact 3.1. If U ⊆ [0..n) andp = Pr[u → U |Du = 1] then

1
2 min{1, kp} ≤ Pr[u → U |Du = k] ≤ min{1, kp}.

Fact 3.2. If v is not a ring-neighbor ofu4 then

1
νδ(u,v) ≤ Pr[u → v] ≤ 2

νδ(u,v) .

Fact 3.3. If U = {u + d mod n : d ∈ [a..b]} or U = {u − d mod n : d ∈ [a..b]}, where2 ≤ a ≤ b ≤ n/2,
then

1
ν ln b+1

a ≤ Pr[u → U |Du = 1] ≤ 1
ν ln b

a−1 .

Fact 3.4. If U1, U2 ⊆ [0..n) andU1 ∩ U2 = ∅ thenPr[u → U1 | {Du = k} ∩ {u 6→ U2}] =
Pr[u → U1 |Du = k]Pr[u 6→ U2 |Du = 1]

.

For the next fact we need to introduce some notation, which wealso use throughout the analysis. LetRx be
the set of all nodes at ring-distance at mostx from 0; i.e.,

Rx = {u : ‖u‖ ≤ x}.

By Hu we denote the set of all setsH ⊆ [0..n) \ R‖u‖, such that for any two distinctv1, v2 ∈ H, ‖v1‖ 6= ‖v2‖.
Note that for any graph inGn and nodes, every prefix path of the routing path froms to 0 that contains no nodes
in R‖u‖ belongs toHu.

Fact 3.5. If H ∈ Hu andd = minv∈H δ(u, v) then (a)Pr[u → H |Du = k] ≤ Pr[0 → [d..d+ |H|) |D0 = k];
(b)Pr[u 6→ H |Du = k] ≥ 1/2k; and (c)Pr[u 6→ H] ≥ q1/2.

4 Proof of the lower bounds

We begin with an auxiliary lemma that bounds from below the average length of any process that approaches 0
with jumps that follow a distribution of a specific form. We use this result in the proofs of all the lower bounds.
We prove the lower bound forG(n, α) in Section 4.1, and forU(n, α) with α > 2, α < 2, andα = 2 in
Sections 4.2–4.4, respectively.

The next lemma provides a lower bound on the expected number of steps of an arbitrary process on the non-
negative integers, which is non-increasing, and the lengthof the jump in each step is bounded by a distribution
of a certain form. We will use this result in the proofs of all the lower bounds.

4If v is a ring-neighbor ofu thenPr[u → v] = 0, by the definition of ‘→’.
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Lemma 4.1. If 〈X0,X1, . . .〉 is a non-increasing, non-negative, integer-valued randomprocess withX0 > ρ ≥ 1,
such that for allj with ρ < j ≤ X0,Pr[Xi+1 = j′ |Xi = j] ≤

{

c (j/j′)ǫ

ρ(j−j′) , if 0 < j′ ≤ j − 2;

c 1
ρ ln j , if j′ = 0,

(4.1)

where0 ≤ ǫ < 1, then the expected number of steps to reach 0 is at leastc′ρ ln(X0/ρ), wherec′ = c′(c, ǫ) > 0.

The proof of Lemma 4.1 is similar to the proof of the lower bound for the augmented lattice with fixed
degrees, described in [17] (Theorem 7). Roughly, we consider the sequence ofln Xi, show that the average
reduction in each step is at mostc′′(c, ǫ)/ρ, and use an expectation argument to obtain the lower bound. The full
proof can be found in the Appendix.

4.1 Proof of Theorem 2.1

It is a straightforward application of Lemma 4.1. Let〈Y0, Y1, . . .〉 be the routing path fromY0 to 0 in G(n, α).
For allu, v with ‖v‖ ≤ ‖u‖ − 2,Pr[Yi+1 = v |Yi = u] ≤ Pr[u → v] ≤ 2

νδ(u,v) ,

by Fact 3.2. From this and Lemma 4.1, applied forn/4 ≤ X0 ≤ n/2, ρ = ν, ǫ = 0, andXi = ‖Yi‖, we obtain
that the expected length of the routing path fromu to 0 isΩ(ν ln n) = Ω(ln2 n), for all u with ‖u‖ ≥ n/4; the
theorem then follows.

4.2 Proof of Theorem 2.3 caseα > 2

We describe a random processN , which we prove approaches zero faster thanGREEDY (Section 4.2.1), and we
derive a lower bound on its expected length (Section 4.2.2).Combining these two results we obtain the theorem
(Section 4.2.3). UnlikeGREEDY, N is a Markov chain, so, it is easier to analyze.

4.2.1 ProcessN
ProcessN is parameterized byn, α, ands, wheres ∈ [0..n), and it resemblesGREEDY routing inU(n, α) from
sources to target 0. Roughly speaking,N differs from GREEDY mainly in that: (1) each time the message is
forwarded to anin-contact, sayv, of the current node, the message is next forwarded to anout-neighborof v
closest to 0, and thesetwo forwardings count as asinglestep ofN ; and (2) the random graph is regenerated in
each step ofN . In addition, instead of the contacts of the current node, say u, the out-contacts of a nodea1 and
the in-contacts of a (possibly different) nodea2 are used to determine the next node. Theai are functions on
u, have‖ai‖ ≥ ‖u‖, and they are such that they minimize the expected length ofN . We introduceN because
its expected length is a lower bound for the expected stepsGREEDY takes to route a message froms to 0, and
becauseN is a Markov chain, hence, it is easier to analyze thanGREEDY. Another useful property ofN is that
its expected length is (provably) a non-decreasing function of ‖s‖.

We now defineN formally. Let a1 : [0..n) → [0..n), A1 : [0..n) → 2[0..n), a2 : [0..n)2 → [0..n), and
A2 : [0..n)2 → 2[0..n) be functions such that for all nodesu, r,

‖a1(u)‖ ≥ ‖u‖, A1(u) ∈ Ha1(u),

‖a2(u, r)‖ ≥ ‖u‖, A2(u, r) ∈ Ha2(u,r).

Recall from Section 3.2 that for any graph inGn and nodeu′, Hu contains every prefix path of the routing path
from u′ to 0 such that no node in this prefix path is inR‖u‖ = {v : v ≤ ‖u‖}. Theai andAi should also satisfy
an additional condition, which we specify later.
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Let u 6= 0 be the current node inN . (Initially u = s, andN finishes whenu = 0.) The next node, denoted
Nu, is a node closest to 0 among the two ring-neighbors ofu, and the nodesNu,1, Nu,2 which are determined as
follows. First we choose the out-contacts ofa1(u) as inG(n, α), conditioned on the event{a1(u) 6→ A1(u)}.
We letNu,1 be an out-contact ofa1(u) that is closest to 0; or, ifa1(u) has no out-contacts,Nu,1 is a randomly
chosen node amongu and the ring-neighbors ofu (this ensures thatPr[Nu,1 = v] > 0, for all v). Suppose
that Nu,1 = r. Nu,2 is then chosen as follows. We choose the out-contacts of the nodes inR‖a2(u,r)‖−1 as in
G(n, α), conditioned on the event{R‖a2(u,r)‖−1 6→ A2(u, r)}. (If a1(u) ∈ Ra2(u,r)−1 then the out-links ofa1(u)
generated earlier to determineNu,1 are deleted, and replaced by new ones.) LetZ be the set of the in-contacts
of a2(u, r) that are inR‖a2(u,r)‖−1 and are closest to 0 (0 ≤ |Z| ≤ 2). If Z = ∅, Nu,2 = a2(u, r); if Z = {0},
Nu,2 = 0; otherwise,Nu,2 is a node closest to 0 among the out-neighbors of the nodes inZ.

Functionsai, Ai should satisfy the following optimization condition. Roughly speaking, this condition says
that given the values ofai andAi for all u with ‖u‖ < ‖v‖, their values foru = v are such that they minimize
the expected length ofN when starting froms = u. Formally, letLN

u denote the expected number of steps ofN
for s = u. The condition is described inductively as: for‖u‖ = 1, 2, . . . ,

{

for all r, a2(u, r) andA2(u, r) are such that they minimizeE[LN
u |Nu,1 = r];

a1(u) andA1(u) are such that they minimizeE[LN
u ].

(4.2)

The next two lemmata state the two properties ofN we described at the beginning, thatE[LN
s ] is a non-

decreasing function of‖s‖, and it is a lower bound for the expected value of the number ofstepsLs thatGREEDY

requires to route a message froms to 0. The proofs are by induction, and can be found in the Appendix.

Lemma 4.2. If ‖u‖ ≥ ‖u′‖ thenE[LN
u ] ≥ E[LN

u′ ].

Lemma 4.3. E[LN
s ] ≤ E[Ls].

4.2.2 Expected length ofN
The next lemma provides lower bounds on the expected length of N , for α > 2.

Lemma 4.4.

(a) If α > 3 thenE[LN
n/4] = Ω(ln2 n).

(b) If α = 3 thenE[LN
n/4] = Ω

(

ln2 n
ln lnn

)

.

(c) If 2 < α < 3 then forλ = elnα−2 n,E[LN
λ ] = Ω

(

lnα−1 n
ln lnn

)

.

Proof. (a) We show below that for allu, j such that0 ≤ j ≤ ‖u‖ − 2,Pr[‖Nu‖ = j] = O
(

1
ν(‖u‖−j)

)

. (4.3)

From this and Lemma 4.1, applied forX0 = n/4, Xi+1 = ‖NXi‖, ρ = ν, andǫ = 0, it follows thatE[LN
n/4] =

Ω(ln2 n). We now prove (4.3).Pr[‖Nu‖ = j] ≤ Pr[‖Nu,1‖ = j] + max
r
Pr[‖Nu,2‖ = j |Nu,1 = r]. (4.4)

Below we will writea1 andA1 instead ofa1(u) andA1(u), respectively.Pr[‖Nu,1‖ = j] ≤ Pr [a1 → {j, n − j}
∣

∣ a1 6→ A1

]

≤ Pr[a1 → {j, n − j}]Pr[a1 6→ A1]
= O

( 1

ν(‖a1‖ − j)

)

, (4.5)

by Facts 3.2 and 3.5(c). Next we bound the second term on the right-hand side of (4.4). We will need the
following definitions. LetSv, for v 6= 0, be anout-neighborof v in G(n, α) that is closest to 0 (there may be two
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such nodes); andS0 = 0. Let alsoZv be the set of thein-contactsof v that are inR‖v‖−1 and are closest to 0
(0 ≤ |Zu| ≤ 2).Pr[‖Nu,2‖ = j |Nu,1 = r]

≤
∑

v : j≤‖v‖<‖a2‖

∑

k

Pr [{v ∈ Za2
} ∩ {‖Sv‖ = j} ∩ {Dv = k}

∣

∣R‖a2‖−1 6→ A2

]

, (4.6)

where again we writea2 andA2 instead ofa2(u, r) andA2(u, r), respectively. Forj + 2 ≤ ‖v‖ < ‖a2‖,Pr [‖Sv‖ = j
∣

∣ {v ∈ Za2
} ∩ {Dv = k} ∩ {R‖a2‖−1 6→ A2}

]

= Pr [‖Sv‖ = j
∣

∣ {Dv = k − 1} ∩ {v 6→ A2}
]

≤ Pr [v → {j, n − j}
∣

∣ {Dv = k − 1} ∩ {v 6→ A2}
]

=
Pr [v → {j, n − j}

∣

∣Dv = k − 1
]Pr[v 6→ A2 |Dv = 1]

= O
( k − 1

ν(‖v‖ − j)

)

, (4.7)

where the second-to-last line was obtained using Fact 3.4, and the last using Facts 3.1 and 3.5(b); also,Pr [v ∈ Za2

∣

∣ {Dv = k} ∩ {R‖a2‖−1 6→ A2}
]

≤ Pr [v → a2

∣

∣ {Dv = k} ∩ {v 6→ A2}
]

= O
( k

ν(‖a2‖ − ‖v‖)
)

, (4.8)

similarly to (4.5); andPr [Dv = k
∣

∣R‖a2‖−1 6→ A2

]

= Pr [Dv = k
∣

∣ v 6→ A2

]

= O(qk), (4.9)

by Fact 3.5(c). Combining (4.6)–(4.9), we obtainPr[‖Nu,2‖ = j |Nu,1 = r] = O

(

∑

v : j+2≤‖v‖<‖a2‖

∑

k

k2−α

ν2(‖v‖ − j)(‖a2‖ − ‖v‖) +
1

ν(‖a2‖ − j)

)

= O
( ln(‖a2‖ − j)

ν2(‖a2‖ − j)
+

1

ν(‖a2‖ − j)

)

= O
( 1

ν(‖a2‖ − j)

)

. (4.10)

Applying (4.5) and (4.10) to (4.4), yields (4.3).

(b) We consider an “early-stopping” variance ofN that differs fromN as follows: Letu 6= 0 be the current
node, supposeNu,1 = r, and letZ be the set of the in-contacts ofa2(u, r) that are inR‖a2(u,r)‖−1 and are closest
to 0 (see the definition ofN in Section 4.2.1); ifDv > ln2 n for somev ∈ Z then the process jumps to node
0 in the next step. LetMu denote the next node after nodeu in this new process, andLM

u be the number of
steps to reach 0 fromu. Clearly,E[LN

u ] ≥ E[LM
u ], so, it suffices to boundE[LM

n/4]. We show that for allu with

‖u‖ ≥ ρ = lnn
ln lnn , Pr[‖Mu‖ = j] =

{

O
(

1
ρ(‖u‖−j)

)

, if 0 < j ≤ ‖u‖ − 2;

O
(

1
ρ lnn

)

, if j = 0.
(4.11)

From this and Lemma 4.1, applied forX0 = n/4, Xi+1 = ‖MXi‖, and ǫ = 0, it follows thatE[LM
n/4] =

Ω
(

ln2 n
ln lnn

)

. The proof of (4.11) is similar to that of (4.3), and can be found in the Appendix.

(c) We show that for allu with ν < ‖u‖ ≤ λ,Pr[‖Nu‖ = j] =

{

O
( (‖u‖j)3−α

ν(‖u‖−j)

)

, if 0 < j ≤ ‖u‖ − 2;

O
(

1
ν ln ‖u‖

)

, if j = 0.
(4.12)

From this and Lemma 4.1, applied forX0 = λ, Xi+1 = ‖NXi‖, ρ = ν, andǫ = 3 − α, it follows thatE[LN
λ ] =

Ω(ν ln λ) = Ω(lnα−1 n). The derivation of (4.12) is similar to that of (4.3) — but more computationally involved.
The main difference is that a more accurate bound is used in place of (4.7). The details are in the Appendix.�
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4.2.3 Putting the pieces together

If α > 3 then, by Lemmata 4.4(a), 4.2, and 4.3,E[Lu] ≥ E[LN
u ] = Ω(ln2 n), for all u with ‖u‖ ≥ n/4. Hence,

the expected delivery time isΩ(ln2 n). For the casesα = 3 and2 < α < 3 the theorem follows similarly, using
Lemmata 4.4(b) and 4.4(c), respectively, in place of Lemma 4.4(a).

4.3 Proof of Theorem 2.3 caseα < 2

The theorem follows from the fact that for someλ that is polynomial inn, with probability Θ(1), all nodesu
with ‖u‖ ≤ λ have out-degree (at most) 1. Specifically, the probability thatDu = 1 is

q1 =











1 − Θ(1/k2−α
max ), if 1 < α < 2;

1 − Θ(ln n/kmax), if α = 1;

1 − Θ(1/kmax), if 0 ≤ α < 1.

(4.13)

Let λ = min{n
2 , 1

1−q1
}, andE =

⋂

u∈Rλ
{Du = 1}. Then,Pr[E ] = q2λ+1

1 = Θ(1). Let 〈Y0, Y1, . . .〉 be the
routing path fromλ to 0. If ‖v‖ ≤ ‖u‖ − 2,Pr[Yi+1 = v | {Yi = u} ∩ {〈Yj〉i−1

j=0 = H} ∩ E ]

≤ Pr[{u → v} ∪ {v → u} | {u, v 6→ H} ∩ {Du = Dv = 1}] = O
(

1
νδ(u,v)

)

,

by Fact 3.5(b). This and Lemma 4.1, applied forρ = ν, ǫ = 0, andXi = ‖Yi‖ | E , yieldsE[Lλ | E ] = Ω(ν ln λ).
By (4.13) and the fact thatkmax is polynomial inn, ln λ = Θ(ln kmax) = Θ(ln n), so,E[Lλ | E ] = Ω(ln2 n).
And sincePr[E ] = Θ(1),E[Lλ] ≥ E[Lλ | E ] ·Pr[E ] = Ω(ln2 n); hence, theGREEDY diameter isΩ(ln2 n).

4.4 Proof of Theorem 2.3 caseα = 2

The proof consists of two parts, which are roughly as follows. First we show that for anyλ and nodes with
‖s‖ ≥ λ, with probabilityΘ(1), the routing path froms to 0 contains some nodeu such thatλ1/3 ≤ ‖u‖ ≤ λ

andu has a small expected out-degree. Next, we show that ifλ = eln1/3 n then the expected number of remaining
steps fromu to 0 isΩ(ln4/3 n). The two lemmata we state below correspond to these two parts. Let 〈Y0, Y1, . . .〉
be the routing path from nodeY0 to 0.

Lemma 4.5. If ‖Y0‖ > λ = ω(1) andK = min{i : ‖Yi‖ ≤ λ} thenPr [{‖YK‖ ≥ λ1/3} ∩
(

{YK 6→ YK−1} ∪ {DYK
= 1}

)]

= Θ(1).

Lemma 4.6. For λ = eln1/3 n and allu with λ1/3 ≤ ‖u‖ ≤ λ,E [LYi

∣

∣Y0, . . . , Yi−1, {Yi = u} ∩
(

{Yi 6→ Yi−1} ∪ {DYi = 1}
)]

= Ω(ln4/3 n).

Let E = {‖YK‖ ≥ λ1/3} ∩
(

{YK 6→ YK−1} ∪ {DYK
= 1}

)

. We prove Lemma 4.5 by showing thatE
occurs with probabilityΘ(1), for any fixedK andY0, . . . , YK−1, and conditionally on the event that for allv
with ‖v‖ > λ, Dv ≤ ‖v‖. Since this last event occurs with probabilityΘ(1), the lemma follows. The proof of
Lemma 4.6 is analogous to that of Lemma 4.4(b). We analyze an early-stopping variation ofGREEDY, where if
in some step we visit a nodev ∈ R‖u‖ that has an in-contactv′ ∈ R‖v‖−1 with Dv′ > 1 then we jump to 0 in the
next step. The full proofs of Lemmata 4.5 and 4.6 can be found in the Appendix.

The theorem now follows easily. Forλ = eln1/3 n, K as in the statement of Lemma 4.6, andE as above,E[LY0
] ≥ E[LY0

| E ] ·Pr[E ] ≥ E[LYK
| E ] ·Pr[E ] = Ω(ln4/3 n),

by Lemmata 4.5 and 4.6.
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5 Proof of the upper bounds

As in the proof of the lower bounds in Section 4, we start with asimple lemma that bound from above the length
of any process that approaches 0 with jumps that follow a distribution of a specific form. In Section 5.1, we
show thatO(ln2 n) steps are required in all models. In Sections 5.2 and 5.3, we prove tighter upper bounds for
U(n, α), for 2 < α < 3 andα = 2, respectively.

Lemma 5.1(a) below is an analogue of Lemma 4.1, and we will useit in the proofs of all the upper bounds.
Lemma 5.1(b) provides a with-high-probability bound for the length of the process; we will use it in Sections 5.2
and 5.3. The proof is straightforward and can be found in the Appendix.

Lemma 5.1. If 〈X0,X1, . . .〉 is a non-increasing, non-negative, integer-valued randomprocess, such that for all
j,Pr[Xi+1 ≤ j/2 |X0, . . . ,Xi−1, {Xi = j}] ≥ 1/ρ, then forκ = ⌈log(X0 + 1)⌉,

(a) The expected number of steps to reach 0 is at mostρκ.

(b) The number of steps to reach 0 is greater thant ≥ 4ρκ with probability at moste−
t
4ρ .

We will also use the following simple fact; its proof is in theAppendix.

Fact 5.2. If Q1, Q2, . . . , Qκ are independent 0–1 random variables andQ =
∑

i Qi then (a)Pr[Q = 0] ≤
e−E[Q]; and (b) if for all i,E[Qi] ≤ 1/2 thenPr[Q = 0] ≥ e−

3

2
E[Q].

5.1 Proof of anO(ln2
n) bound for all models

Let 〈Y0, Y1, . . .〉 be the routing path from nodeY0 to 0 inG(n, α) or U(n, α). We will show that for allu,Pr[‖Yi+1‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u}] = Ω(1/ν). (5.1)

From this and Lemma 5.1(a), applied forXi = ‖Yi‖ andρ = Θ(ν), we obtain that the expected length of the
routing path fromY0 to 0 isO(ν ln(‖Y0‖ + 1)) = O(ln2 n). We now prove (5.1). For‖u‖ ≤ 2, it obviously
holds; so, suppose that‖u‖ > 2.

• In G(n, α), the left-hand side of (5.1) equalsPr[u → R‖u‖/2] ≥ q1Pr[u → R‖u‖/2 |Du = 1] = Ω(1/ν),
by Fact 3.3.

• In U(n, α), we havePr[‖Yi+1‖ ≤ ‖u‖/2 | {Yi = u} ∩ {〈Yj〉i−1
j=0 = H}] ≥ Pr[R‖u‖/2 → u |R‖u‖/2 6→ H]. (5.2)

But for anyv ∈ R‖u‖/2,Pr[v → u |R‖u‖/2 6→ H] = Pr[v → u | v 6→ H] ≥ Pr[{v → u} ∩ {v 6→ H}]
≥ Pr[{v → u} ∩ {Dv = 1}] = q1Pr[v → u |Dv = 1]

≥ q1

2ν‖u‖ .

So,
∑

v∈R‖u‖/2
Pr[v → u |R‖u‖/2 6→ H] ≥ 1

4ν ; and since the events{v → u} are independent (condition-

ally onR‖u‖/2 6→ H), we have, by Fact 5.2(a), thatPr[R‖u‖/2 → u |R‖u‖/2 6→ H] ≥ 1−e−
1

4ν = Θ(1/ν).
Combining this and (5.2) yields (5.1).
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5.2 Proof of Theorem 2.4 case2 < α < 3

We will use the following result, which is analogous to Lemma5.1(a).

Lemma 5.3. If 〈X0,X1, . . .〉 is a non-increasing, non-negative, integer-valued randomprocess withX0 > λ ≥
1, such that for all j withλ < j ≤ X0,Pr[Xi+1 ≤ j/2 |X0, . . . ,Xi−1, {Xi = j}] ≥ log j

ρ (5.3)

then the expected number of steps until the process’ value reduces to at mostλ is at mostρ(ln log X0 + 1).

Proof. Let Tk, for k ≥ 0, be the number of steps until the process’ value is reduced toat most2kλ; i.e.,
Tk = min{i : Xi ≤ 2kλ}. (Note that smallerk correspond to largerTk.) To prove the lemma we must show
thatE[T0] ≤ ρ(ln log X0 + 1). Fork ≥ log X0 − log λ, Tk = 0. For0 ≤ k < log X0 − log λ,Pr[Tk = i + 1 |X0, . . . ,Xi, {Tk+1 ≤ i < Tk}]

= Pr[Xi+1 ≤ 2kλ |X0, . . . ,Xi, {2kλ < Xi ≤ 2k+1λ}] ≥ log λ+k
ρ ,

by (5.3). So,Tk − Tk+1 is stochastically smaller than a geometric random variablewith probability parameter
log λ+k

ρ . Therefore,E[T0] = E [ log X0−log λ−1
∑

k=0

(Tk − Tk+1)

]

≤
log X0−log λ−1

∑

k=0

ρ

log λ + k
≤ ρ(ln log X0 + 1). �

Roughly, the proof of the theorem proceeds as follows. We show that in every three steps ofGREEDY the
ring-distance to 0 is halved with probabilityΩ

( ln ‖u‖
lnα−1 n

)

, provided that we are not too close to 0 and not too
many steps have been taken so far. Also, by the analysis in Section 5.1, the ring-distance to 0 is halved with
probability Ω(1/ ln n) in each step, independently of the previous steps. By combining these two results and
applying Lemmata 5.1 and 5.3 we obtain the theorem.

The next lemma gives a lower bound on the speed ofGREEDY when the length of the prefix of the routing
path so far is much smaller than the current ring-distance tothe target. Two steps at a time are considered instead
of just one. Interestingly, this bound is obtained by counting only the contribution of nodes with out-degree
Θ(ln n). Let 〈Y0, Y1, . . .〉 be the routing path from nodeY0 to 0.

Lemma 5.4. If ‖u‖ ≥ 8(i2 + 1) thenPr[‖Yi+2‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u} ∩ {Yi 6→ Yi−1}] = Ω
( ln ‖u‖

lnα−1 n

)

.

Proof. We describe an eventE such that ifE occurs andYi = u then‖Yi+2‖ ≤ ‖u‖/2, and we boundE ’s
conditional probability instead. Informally, ifE ∩ {Yi = u} occurs then the following statements are true about
Yi+1: (1) it is an in-contact ofYi; (2) it has out-degreeΘ(ln n); (3) ‖u‖/2 < ‖Yi+1‖ ≤ ‖u‖ − ‖u‖1/2; and (4) at
least one of its out-contacts is inR‖u‖/2. Formally, we define the following four events. Let

E0 = {u 6→ R‖u‖−‖u‖1/2}.

Define the setsC = R‖u‖−‖u‖1/2 \ R‖u‖/2 andC∗ = {v ∈ C : ν ≤ Dv ≤ 2ν}, and let

E1 = {C∗ → u}, E2 = {R‖u‖−1 \ C∗ 6→ u}.

Last, if E1 occurs, letZ be the in-contact ofu in C∗ that is closest to 0 (if there are two such nodes thenZ is the
one thatGREEDY would choose), and let

E3 = {Z → R‖u‖/2}.
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We define
E = E0 ∩ E1 ∩ E2 ∩ E3.

It is easy to see thatE ∩ {Yi = u} ⊆ {‖Yi+2‖ ≤ ‖u‖/2}. So, to prove the lemma it suffices to show thatPr[E | {〈Yj〉i−1
j=0 = H} ∩ {Yi = u} ∩ {Yi 6→ Yi−1}] = Ω

( ln ‖u‖
lnα−1 n

)

.

But the left-hand side is equal toPr[E |R‖u‖ 6→ H]; so, we will show thatPr[E |R‖u‖ 6→ H] = Ω
( ln ‖u‖

lnα−1 n

)

.
LetA = {R‖u‖ 6→ H}. SinceE0 is independent of the other three events,Pr[E |A] = Pr[E0 | A] ·Pr[E1 | A] ·Pr[E2 | E1 ∩ A] ·Pr[E3 | E1 ∩ E2 ∩ A]. (5.4)

We compute lower bounds for the four probabilities on the right-hand side.Pr[E0 | A] ≥ Pr[u 6→ R‖u‖−‖u‖1/2 ∪ H]

≥ q1Pr[u 6→ R‖u‖−‖u‖1/2 ∪ H |Du = 1]

≥ q1Pr[0 → [2..‖u‖1/2) |D0 = 1] + q1Pr[0 → [|H| + 2..n/2 − ‖u‖] |D0 = 1]

= Ω
(1

ν
ln ‖u‖1/2 +

1

ν
ln

n/2 − ‖u‖ + 1

|H| + 1

)

= Ω(1). (5.5)

The third relation was obtained using Fact 3.5(a); the second-to-last was obtained using Fact 3.3; the last using
the facts that‖u‖ + |H| < n/2 + 1 and‖u‖ > i = |H|. Next we boundPr[E1 | A]. Let Dv denote the event
{ν ≤ Dv ≤ 2ν}, andQv be the indicator random variable of the eventDv ∩ {v → u}. For allv ∈ C,E[Qv | A] = Pr[v → u | Dv ∩ {v 6→ H}] · Pr[v 6→ H | Dv]Pr[v 6→ H]

·Pr[Dv ] = Ω
( 1

να−1δ(u, v)

)

, (5.6)

where the last relation holds because:Pr[v → u | Dv ∩ {v 6→ H}] ≥ Pr[v → u |Dv = ν] = Θ
(

1
δ(u,v)

)

; andPr[v → H | Dv ] ≤ |H| · 2ν
ν‖u‖1/2 ≤ 1√

2
, since‖u‖ > 8|H|2; andPr[Dv ] = Θ

(

1
να−1

)

. So, forQ =
∑

v∈C Qv,E[Q | A] =
∑

v∈C

E[Qv | A] = Ω
( ln ‖u‖

να−1

)

.

And since theQi are independent (conditionally onA), we have, by Fact 5.2(a), thatPr[Q 6= 0 | A] ≥ 1 −
e−Ω

(

ln ‖u‖

να−1

)

= Ω
( ln ‖u‖

να−1

)

. Finally, sinceE1 = {Q 6= 0},Pr[E1 | A] = Ω
( ln ‖u‖

να−1

)

. (5.7)

Next, Pr[E2 | E1 ∩ A] ≥ Pr[E2 | A] ≥ Pr[R‖u‖−1 6→ u | A] = Θ(1), (5.8)

where the last relation is obtained as follows. For allv ∈ R‖u‖−1,Pr[v → u | A] = Pr[v → u | v 6→ H] = O(Pr[v → u]),

by Fact 3.5(c); so,
∑

v∈R‖u‖−1
Pr[v → u | A] = O(

∑

v Pr[v → u]) = O(1), since the expected number of

in-contacts a node has is constant; and since the events{v → u} are independent, we have, by Fact 5.2(b), thatPr[R‖u‖−1 6→ u | A] ≥ e−O(1) = Θ(1). The last bound we need isPr[E3 | E1 ∩ E2 ∩A] ≥ Pr[u → R‖u‖/2 |Du = ν] = Θ(1), (5.9)

by Facts 3.1 and 3.3. Combining (5.4), (5.5), (5.7), (5.8), and (5.9), yieldsPr[E |A] = Ω
( ln ‖u‖

να−1

)

. �

14



We will now use Lemma 5.4 to show that if‖u‖ > λ = elnα−2 n andi = o(λ1/2) thenPr[‖Yi+3‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u}] = Ω
( ln ‖u‖

να−1

)

. (5.10)

By Lemma 5.4, it suffices to show thatPr[‖Yi+3‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u} ∩ {Yi → Yi−1}] = Ω
( ln ‖u‖

να−1

)

.

LetH be theσ-algebra generated byY0, . . . , Yi−1, {Yi = u} ∩ {Yi → Yi−1}.Pr[‖Yi+3‖ ≤ ‖u‖/2 |H]

≥ Pr [‖Yi+3‖ ≤ ‖u‖/2
∣

∣H, {Yi+1 6→ Yi}
]

·Pr[Yi+1 6→ Yi |H]

≥ Pr [‖Yi+3‖ ≤ ‖u‖/2
∣

∣H, {Yi+1 6→ Yi} ∩ {‖Yi+1‖ > ‖u‖/2}
]

·Pr[R‖u‖−1 6→ u |H]

= Ω
( ln ‖u‖

να−1

)

,

because in the second-to-last line, the first probability isΩ
( ln(‖u‖/2)

lnα−1 n

)

, by Lemma 5.4, and the second isΘ(1),
similarly to the last relation in (5.8). We can now obtain thetheorem as follows:

• If Y0 ≤ λ then, by (5.1) and Lemma 5.1(a), applied forXi = ‖Yi‖ andρ = Θ(ln n), we haveE[LY0
] =

O(ln n ln λ) = O(lnα−1 n).

• If Y0 > λ, let T1 be the number of steps fromY0 until we reach a node within ring-distanceλ of 0, and
T2 be the number of remaining steps to 0. Similarly to the caseY0 ≤ λ, E[T2] = O(lnα−1 n); so, we
just need to show thatE[T1] = O(lnα−1 n ln ln n). By (5.1) and Lemma 5.1(b), applied forXi = ‖Yi‖,
ρ = Θ(ln n), andt = 4ρ ln n, we have thatPr[T1 ≥ ln3 n] < 1/n. Also, by (5.10) and Lemma 5.3,
applied forXi = ‖Y3i‖, if i < ln3 n/3, Xi = 0, if i ≥ ln3 n/3, andρ = Θ(lnα−1 n), we get thatE[min{T1, ln

3 n}] = O(lnα−1 n ln ln n). From this,E[T1 |T1 < ln3 n] = E[min{T1, ln
3 n} |T1 <

ln3 n] ≤ E[min{T1, ln
3 n}] = O(lnα−1 n ln ln n). Therefore,E[T1] = E[T1 |T1 < ln3 n] ·Pr[T1 < ln3 n] +E[T1 |T1 ≥ ln3 n] ·Pr[T1 ≥ ln3 n]

≤ E[T1 |T1 < ln3 n] + nPr[T1 ≥ ln3 n]

= O(lnα−1 n ln lnn).

5.3 Proof of Theorem 2.4 caseα = 2

It is similar to the proof of case2 < α < 3. The next two lemmata are the analogues of Lemmata 5.3 and 5.4,
respectively. Their proofs are can be found in the Appendix.

Lemma 5.5. If 〈X0,X1, . . .〉 is a non-increasing, non-negative, integer-valued randomprocess withX0 > λ ≥
2, such that for allj with λ < j ≤ X0, Pr[Xi+1 ≤ j1−ǫ |X0, . . . ,Xi−1, {Xi = j}] ≥ log2 j

ρ , where0 < ǫ < 1,
then the expected number of steps until the process’ value reduces to at mostλ is at mostc ρ

log2 λ
, wherec = c(ǫ).

Let 〈Y0, Y1, . . .〉 be the routing path fromY0 to 0.

Lemma 5.6. If ‖u‖ ≥ 46(i6 + 1) thenPr[‖Yi+2‖ ≤ ‖u‖2/3 |Y0, . . . , Yi−1, {Yi = u} ∩ {Yi 6→ Yi−1}] = Ω
( ln2 ‖u‖

ln2 n

)

.

Note that, unlike in case2 < α < 3 where only nodes of out-degreeΘ(ln n) contribute to routing signifi-
cantly, now the contribution of nodes with out-degrees in a wider range is significant.

The rest of the proof is completely analogous to that of case2 < α < 3. Instead of (5.10), we show (using
Lemma 5.6) that if‖u‖ > λ = e

√
ln n andi = o(λ1/6) thenPr[‖Yi+3‖ ≤ ‖u‖2/3 |Y0, . . . , Yi−1, {Yi = u}] = Ω

( ln2 ‖u‖
ln2 n

)

;

and instead of Lemma 5.3, we use Lemma 5.5, forρ = Θ(ln2 n) andǫ = 1/3.
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Appendix

A Appendix of Sections 2 and 3

A.1 In-degree distribution

Let D− denote the in-degree of a node inG(n, α). Then,

Lemma A.1. Pr[D− = k] ≤ 1
(k/3e)k .

Proof. Let Xu be the indicator random variable of the event{u → 0}. The in-degreeD− of 0 is thenD− =
∑

u Xu. Note thatXu is stochastically smaller that a poisson random variablePoi(µu) with expectationµu, such
thatPr[Poi(µu) = 1] ≥ E[Xu]. And sincePr[Poi(µu) = 1] = µue−µu andE[Xu] = Pr[u → 0] ≤ 2

ν‖u‖ ,

by Fact 3.2, we can setµu = 3
ν‖u‖ . So, since theXu are independent,D− is stochastically smaller that

∑

u Poi(µu), which is also a poisson random variable with expectation
∑

u µu = 3. Hence,Pr[D− = k] ≤ Pr[D− ≥ k] ≤ Pr[Poi(3) ≥ k] =
∑

j≥k

3j

j!
e−3 ≤ 3k

k!
≤
(

3e

k

)k

,

where the second-to-last relation follows by simple computations, and the last is obtained using the fact that
ek =

∑

i k
i/i! ≥ kk/k!. �

The following result is immediate from Lemma A.1.

Corollary A.2. If α > 2 then Pr[D− = k] =

{

O(qk), if k = O(1);

o(qk), if k = ω(1).

Also, there is a constantc such that ifα = 2 thenPr[D− = k] = o(qk), for k ≥ c ln ln n; and if 0 ≤ α < 2 thenPr[D− = k] = o(qk), for k ≥ c ln n.

A.2 Proofs of Facts 3.1–3.5

Proof of Fact 3.1.The right relation follows from the union bound. For the leftrelation, we havePr[u → U |Du = k] = 1 − (1 − p)k ≥ 1 − e−kp ≥
{

1 − e−1 ≥ 1
2 , if kp ≥ 1;

kp − (kp)2

2 ≥ kp
2 , if kp < 1/2,

where the second relation was obtained using the fact that1 − x ≤ ex; and the second case of the third relation
using the fact that forx ≥ 0, e−x ≤ 1 − x + x2/2. �

Proof Sketch of Fact 3.2.The left relation holds becausePr[u → v] ≥ Pr[u → v |Du = 1], sinceDu ≥ 1. The
right relation holds becausePr[u → v] ≤ 2Pr[u → v |Du = 1], sinceE[Du] = 2. �

Proof of Fact 3.3.By direct computation. Note that, by symmetry, the two casesfor U are equivalent. �
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Proof of Fact 3.4.By Baye’s rule, the left-hand side equalsPr[u → U1 |Du = k] · Pr[u 6→ U2 | {Du = k} ∩ {u → U1}]Pr[u 6→ U2 |Du = k]
,

and Pr[u 6→ U2 | {Du = k} ∩ {u → U1}]Pr[u 6→ U2 |Du = k]
=
Pr[u 6→ U2 |Du = k − 1]Pr[u 6→ U2 |Du = k]

=
1Pr[u 6→ U2 |Du = 1]

,

where the last relation holds becausePr[u 6→ U2 |Du = k] = Pr[u 6→ U2 |Du = k − 1] · Pr[u 6→ U2 |Du =
1]. �

Proof Sketch of Fact 3.5.It is easy to show, by induction oni, that if vi is the (unique)i-th furthest from 0 node
in H thenδ(u, vi) ≥ d + i − 1. Assume without loss of generality thatu ≤ n/2. Then, by replacingvi by
u + 1 + i, for i = 1, . . . , |H|, we obtainPr[u → H |Du = k] ≤ Pr[u → [u + d..u + d + H) |Du = k] = Pr[0 → [d..d + |H|) |D0 = k].

We can now derive (b) and (c) as follows.Pr[u 6→ H |Du = k] ≥ Pr[0 6→ [d..d + |H|) |D0 = k] ≥ Pr[0 6→ [2..n/2] |D0 = k] ≤ 1/2k,

sincePr[0 → [2..n/2] |D0 = 1] ≤ Pr[0 → [1..n/2 − 1] |D0 = 1] ≤ 1/2, by symmetry. AndPr[u 6→ H] ≥ q1Pr[u 6→ H |Du = 1] ≥ q1/2. �

B Appendix of Section 4

B.1 Proof of Lemma 4.1

Let
K = min{i : Xi ≤ ρ}.

We show thatE[K] ≥ c′ρ ln(X0/ρ), for somec′ = c′(c, ǫ) > 0. And sinceK is upper bounded by the number
of steps until the process reaches 0, the lemma follows. Let〈W0,W1, . . .〉 be the sequence obtained by taking
the logarithms ofX0, . . . ,XK , and lettingWj = WK , for j > K. Formally, fori ≥ 0,

Wi = ln max{Xi, XK , 1},

where the ‘1’ is needed for the case whereXK = 0. We first show that for alli,E[Wi − Wi+1] ≤ c1/ρ, wherec1 = c1(c, ǫ). (B.1)

SinceE[Wi − Wi+1 |Xi ≤ ρ] = 0, it suffices to show thatE[Wi − Wi+1 |Xi = j] ≤ c1/ρ, for ρ < j ≤ X0.E[Wi − Wi+1 |Xi = j] ≤ ln j ·Pr[Xi+1 = 0 |Xi = j] +
∑

1≤j′≤j−2

ln
j

j′
·Pr[Xi+1 = j′ |Xi = j]

+ ln
j

j − 1
·Pr[Xi+1 = j − 1 |Xi = j],

so, by (4.1),E[Wi − Wi+1 |Xi = j] ≤ c ln j

ρ ln j
+

c

ρ

∑

1≤j′≤j−2

ln
j

j′
· (j/j′)ǫ

(j − j′)
+ ln

j

j − 1
≤ c

ρ
+

c

ρ
· c2(ǫ) +

1

ρ
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where the last relation holds becauseln j
j−1 ≤ 1

j−1 ≤ 1
ρ , and

∑

1≤j′≤j−2

ln
j

j′
· (j/j′)ǫ

(j − j′)
=

∑

1≤j′≤j/2

(j/j′)ǫ

j − j′
ln

j

j′
+

∑

j/2<j′≤j−2

(j/j′)ǫ

j − j′
ln

j

j′

≤ 2

j1−ǫ

∑

1≤j′≤j/2

1

j′ǫ
ln

j

j′
+

∑

j/2<j′≤j−2

2ǫ

j − j′
· j − j′

j′

≤ c2(ǫ).

Therefore,E[Wi − Wi+1] ≤ c1/ρ, for c1 = c · (1 + c2) + 1. We can now boundE[K] as follows. Let
κ = ρ

2c1
(ln X0 − ln ρ).Pr[K ≤ κ] = Pr[Xκ ≤ ρ] = Pr[Wκ ≤ ln ρ] = Pr[W0 − Wκ ≥ ln X0 − ln ρ],

so, by Markov’s inequality,Pr[K ≤ κ] ≤ E[W0 − Wκ]

ln X0 − ln ρ
=
E[
∑κ−1

i=0 (Wi − Wi+1)]

ln X0 − ln ρ
≤ κc1/ρ

ln X0 − ln ρ
=

1

2
.

From that, E[K] ≥ κ ·Pr[K ≥ κ] ≥ κ

2
= c′ρ ln

X0

ρ
, for c′ =

1

4c1
.

B.2 Proof of Lemma 4.2

We prove the following more general version of Lemma 4.2.

Lemma B.1. If ‖u‖ ≥ ‖u′‖ and‖r‖ ≥ min{‖r′‖, ‖u′‖ − 1} thenE[LN
u |Nu,1 = r] ≥ E[LN

u′ |Nu′,1 = r′], (B.2)E[LN
u ] ≥ E[LN

u′ ]. (B.3)

Proof. We prove the two results simultaneously by induction on‖u‖. Clearly, both results hold ifu′ = 0. Below
we assume thatu′ 6= 0 and, thus,u 6= 0. The induction hypothesis is that for allv, v′ with ‖u‖ > ‖v‖ ≥ ‖v′‖,
and for allw,w′ such that‖w‖ ≥ min{‖w′‖, ‖v′‖ − 1},

(IH1): E[LN
v |Nv,1 = w] ≥ E[LN

v′ |Nv′,1 = w′] and (IH2): E[LN
v ] ≥ E[LN

v′ ].

From this hypothesis it is immediate that

(IH1′): E[LN
v |Nv,1 = w] = E[LN

v |Nv,1 = ‖w‖] and (IH2′): E[LN
v ] = E[LN

‖v‖].

We derive (B.2) as follows. By (IH2′),E[LN
u |Nu,1 = r] = 1 +

∑

v

E[LN
min{‖u‖−1,‖r‖,‖v‖}] ·Pr[Nu,2 = v |Nu,1 = r].

Given thatNu′,1 = r′, suppose that we computeLN
u′ using a2(u, r) and A2(u, r) in place ofa2(u

′, r′) and
A2(u

′, r′), respectively, and letM be the resulting quantity. By the optimality of thea2 andA2 (condition (4.2)),E[LN
u′ |Nu′,1 = r′] ≤ E[M |Nu′,1 = r′] = 1 +

∑

v

E[LN
min{‖u′‖−1,‖r′‖,‖v‖}] ·Pr[Nu,2 = v |Nu,1 = r].
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Combining the above two results and applying (IH2), we obtain (B.2). We now derive (B.3).E[LN
u ] =

∑

r

E[LN
u |Nu,1 = r] ·Pr[Nu,1 = r].

Suppose that when computingLN
u′ we replacea1(u

′) andA1(u
′) by a1(u) andA1(u), respectively, and letM ′

denote the resulting quantity. By the optimality of thea1 andA1, and (IH1′) (for v = u′),E[LN
u′ ] ≤ E[M ′] =

∑

r

E[LN
u′ |Nu′,1 = r] ·Pr[Nu,1 = r].

Combining the above two results and applying (IH1) (forv = u), yields (B.3). �

B.3 Proof of Lemma 4.3

We show that ifH,H ′ ∈ Hu thenE[Lu | {u 6→ H} ∩ {R‖u‖−1 6→ H ′}] ≥ E[LN
u ]. (B.4)

The lemma follows then by takingu = s andH,H ′ = ∅. We prove (B.4) by induction on‖u‖. In the induction
we also show that ifu 6= 0 thenE[Lu | {Su = r} ∩ {R‖u‖−1 6→ H}] ≥ E[LN

u |Nu,1 = r], (B.5)

whereSv, for v 6= 0, is theout-neighborof v in G(n, α) that is closest to 0 (if there are two such out-neighbors
thenSv is the one thatGREEDY would choose); andS0 = 0. Clearly, (B.4) holds ifu = 0; so, suppose that
u 6= 0. Let ζv be thein-contactof v that is inR‖v‖−1 and is closest to 0; andζv = v, if no such node exists.
(Again if there are two candidate nodes,ζv is the one thatGREEDY would use.) DefineE = {R‖u‖−1 6→ H}.E[Lu | {Su = r} ∩ E ]

≥ 1 +E[Lr | {‖ζu‖ > ‖r‖} ∩ E ] ·Pr[‖ζu‖ > ‖r‖ | E ]

+
∑

v,v′:‖v′‖<‖v‖<‖r‖
E[Lv | {ζu = v} ∩ {Sv = v′} ∩ E ] ·Pr[{ζu = v} ∩ {Sv = v′} | E ]

+ min
{E[Lr | {r 6→ u} ∩ {‖ζu‖ = ‖r‖} ∩ E ] ·Pr[‖ζu‖ = ‖r‖ | E ],

∑

v,v′:‖v′‖<‖v‖=‖r‖
E[Lv | {ζu = v} ∩ {Sv = v′} ∩ E ] ·Pr[{ζu = v} ∩ {Sv = v′} | E ],E[Lr | {r 6→ u} ∩ {‖ζu‖ = ‖r‖} ∩ E ] ·Pr[{‖ζu‖ = ‖r‖} ∩ {ζu 6= r} | E ]

+
∑

v′:‖v′‖<‖r‖
E[Lr | {ζu = r} ∩ {Sr = v′} ∩ E ] ·Pr[{ζu = r} ∩ {Sr = v′} | E ]

}

.

(The termmin{·} is a bound for the case‖ζu‖ = ‖r‖.) ButE[Lr | {‖ζu‖ > ‖r‖} ∩ E ] = E[Lr | {r 6→ H ∪ {u}} ∩ {R‖r‖−1 6→ H ∪ {u}}] ≥ E[LN
r ],

by the induction hypothesis, and, similarly,E[Lr | {r 6→ u} ∩ {‖ζu‖ = ‖r‖} ∩ E ] ≥ E[LN
r ]. Also, for ‖v′‖ <

‖v‖ ≤ ‖r‖, E[Lv | {ζu = v} ∩ {Sv = v′} ∩ E ] = E[Lv | {Sv = v′} ∩ {R‖v‖−1 6→ H ∪ {u}}]
≥ E[LN

v |Nv,1 = v′] ≥ E[LN
v′ ],
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where the first inequality in the second line holds because ofthe induction hypothesis, and the second follows
from (B.2). By combining all the above and then applying (B.3), we obtainE[Lu | {Su = r} ∩ E ] ≥ 1 +E[LN

r ] ·Pr[‖ζu‖ > ‖r‖ | E ]

+
∑

v′:‖v′‖<‖r‖
E[LN

v′ ] ·Pr[{‖ζu‖ ≤ ‖r‖} ∩ {Sζu = v′} | E ].

Let Zv be the set of all thein-contactsof v that are inR‖v‖−1 and are closest to 0 (0 ≤ |Zv| ≤ 2). Usingu and
H in place ofa2(u, r) andA2(u, r), respectively, when computingLN

u , and using also (B.3), we getE[LN
u |Nu,1 = r] ≤ 1 +E[LN

r ] ·Pr[ min
w∈Zu

‖Sw‖ ≥ ‖r‖ | E ] +
∑

j<‖r‖
E[LN

j ] ·Pr[ min
w∈Zu

‖Sw‖ = j} | E ]

≤ 1 +E[LN
r ] ·Pr[‖ζu‖ > ‖r‖ | E ] +

∑

j<‖r‖
E[LN

j ] ·Pr[{‖ζu‖ ≤ ‖r‖} ∩ {‖Sζu‖ = j} | E ].

We obtained the last relation by decreasing the probabilities inside the sum, and respectively increasing the
probability by whichE[LN

r ] is multiplied. Combining the last two results and applying (B.3), yields (B.5). We
now derive (B.4).E[Lu | {u 6→ H} ∩ {R‖u‖−1 6→ H ′}] =

∑

r

E[Lu | {Su = r} ∩ {R‖u‖−1 6→ H ′}] ·Pr[Su = r |u 6→ H].

Usingu andH in place ofa1(u) andA1(u), respectively, when computingLN
u , and using also (B.2), we getE[LN

u ] ≤
∑

r

E[LN
u |Nu,1 = r] ·Pr[Su = r |u 6→ H].

Combining the two results above and using (B.5), we obtain (B.4).

B.4 Proof of Lemma 4.4(b)

We consider an “early-stopping” variation ofN that differs from the original process as follows. Letu 6= 0 be
the current node, suppose thatNu,1 = r, and letZ be the set of the in-contacts ofa2(u, r) that are inR‖a2(u,r)‖−1

and are closest to 0 (recall the definition ofN from Section 4.2.1). IfZ 6= ∅, let D be the maximum number of
out-contacts that any element ofZ has, i.e.,D = maxv∈Z Dv. If D > ln2 n then the process jumps to node 0
in the next step (and it finishes). We denote byMu the next node after nodeu in this new process, and byLM

u

the number of steps to reach 0 fromu. Clearly,E[LN
u ] ≥ E[LM

u ], so, to prove the lemma it suffices to show thatE[LM
n/4] = Ω(ln2 n/ ln ln n). We will prove below that for allu with ‖u‖ ≥ ρ = ln n/ ln ln n,Pr[‖Mu‖ = j] =







O
(

1
ρ(‖u‖−j)

)

, if 0 < j ≤ ‖u‖ − 2;

O
(

1
ρ ln n

)

, if j = 0.
(B.6)

From this and Lemma 4.1, applied forX0 = n/4, Xi+1 = ‖MXi‖, and ǫ = 0, it follows thatE[LM
n/4] =

Ω(ln2 n/ ln ln n). We prove (B.6) similarly to (4.3).

• CASE: j 6= 0.Pr[‖Mu‖ = j] ≤ Pr[|Nu,1‖ = j] + max
r
Pr[{‖Nu,2‖ = j} ∩ {D ≤ ln2 n} |Nu,1 = r]. (B.7)

Similarly to (4.6),Pr[{‖Nu,2‖ = j} ∩ {D ≤ ln2 n} |Nu,1 = r]

≤
∑

v : j≤‖v‖<‖a2‖

∑

k≤ln2 n

Pr [{v ∈ Za2
} ∩ {‖Sv‖ = j} ∩ {Dv = k}

∣

∣R‖a2‖−1 6→ A2

]

,
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so, as in (4.10),Pr[{‖Nu,2‖ = j} ∩ {D ≤ ln2 n} |Nu,1 = r]

= O





∑

v : j+2≤‖v‖<‖a2‖

∑

k≤ln2 n

k−1

ν2(‖v‖ − j)(‖a2‖ − ‖v‖) +
1

ν(‖a2‖ − j)





= O

(

ln(‖a2‖ − j)

ν2(‖a2‖ − j)
ln ln n +

1

ν(‖a2‖ − j)

)

= O

(

ln ln n

ν(‖a2‖ − j)

)

. (B.8)

Combining (B.7), (4.5), and (B.8), yields the top part of (B.6).

• CASE: j = 0. Pr[‖Mu‖ = 0] ≤ Pr[|Nu,1‖ = 0] + max
r
Pr[D > ln2 n |Nu,1 = r],

and Pr[D > ln2 n |Nu,1 = r] ≤
∑

v : ‖v‖<‖a2‖

∑

k>ln2 n

Pr[{v → a2} ∩ {Dv = k} | v 6→ A2]

≤
∑

v : ‖v‖<‖a2‖

∑

k>ln2 n

2

q1
Pr[{v → a2} ∩ {Dv = k}]

= O





∑

v : ‖v‖<‖a2‖

∑

k>ln2 n

1

k3

k

ν(‖a2‖ − ‖v‖)



 = O

(

ln ‖a2‖
ν ln2 n

)

.

where for the second relation we used Fact 3.5(c), and for thethird Fact 3.1. From the above two results
and (4.5), Pr[‖Mu‖ = 0] = O

(

1

ν‖a1‖
+

ln ‖a2‖
ν ln2 n

)

= O

(

1

νρ

)

.

B.5 Proof of Lemma 4.4(c)

We show that for allu with ν < ‖u‖ ≤ λ,Pr[‖Nu‖ = j] =







O
(

(‖u‖j)3−α

ν(‖u‖−j)

)

, if 0 < j ≤ ‖u‖ − 2;

O
(

1
ν ln ‖u‖

)

, if j = 0.
(B.9)

From this and Lemma 4.1, applied forX0 = λ, Xi+1 = ‖NXi‖, ρ = ν, and ǫ = 3 − α it follows thatE[LN
λ ] = Ω(ν ln λ) = Ω(lnα−1 n). The derivation of (B.9) is similar to that of (4.3) (throughresults (4.4)–

(4.10)). Specifically, the only difference is that we use a more refined bound instead of (4.7), whenj 6= 0, and
we ensure that the probability bounds used in (4.10) do not exceed 1, whenj = 0.

• CASE: j 6= 0. By replacing the upper bound in the third line of (4.7) by theexact quantity, we havePr [‖Sv‖ = j
∣

∣ {v ∈ Za2
} ∩ {Dv = k} ∩ {R‖a2‖−1 6→ A2}

]

= Pr [{v → {j, n − j}} ∩ {v 6→ Rj−1}
∣

∣ {Dv = k − 1} ∩ {v 6→ A2}
]

= Pr [v → {j, n − j}
∣

∣ {Dv = k − 1} ∩ {v 6→ A2}
]

·Pr [v 6→ Rj−1

∣

∣ {Dv = k − 2} ∩ {v 6→ A2}
]

= O

(

k − 1

ν(‖v‖ − j)
·
(

1 − 1

ν
ln

‖v‖ + j

‖v‖ − j + 1

)k−2
)

, (B.10)
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where the last relation was obtained using Fact 3.3. Letγ =
(

1 − 1
ν ln ‖v‖+j

‖v‖−j+1

)k−2
. Similarly to (4.10),

but using (B.10) in place of (4.7),Pr[‖Nu,2‖ = j |Nu,1 = r] = O

(

∑

v : j+2≤‖v‖<‖a2‖

∑

k

k2−αγ

ν2(‖v‖ − j)(‖a2‖ − ‖v‖) +
1

ν(‖a2‖ − j)

)

= O

(

(‖u‖/j)3−α

ν(‖u‖ − j)

)

, (B.11)

because, as we show below,

∑

v : j<‖v‖<‖a2‖

∑

k

k2−αγ

(‖v‖ − j)(‖a2‖ − ‖v‖) = O

(

ν

‖u‖ − j

(‖u‖
j

)3−α
)

. (B.12)

Combining (4.4), (4.5), and (B.11) yields the top part of (B.9). It remains to prove (B.12). For0 < j <
‖v‖ < ‖a2‖,

γ ≤
(

1 − 1

ν
ln

‖a2‖
‖a2‖ − j

)k−2

≤
(

1 − j

‖a2‖

)
k−2

ν

where for the last relation we used the fact that1 − x ≤ ex. So, the left-hand side of (B.12) is at most

∑

v : j<‖v‖<‖a2‖

∑

k

k2−α (1 − j/‖a2‖)
k−2

ν

(‖v‖ − j)(‖a2‖ − ‖v‖) = O

(

ln(‖a2‖ − j)

‖a2‖ − j

∑

k

k2−α

(

1 − j

‖a2‖

)
k−2

ν

)

.

But
∑

k k2−α(1 − j/‖a2‖)
k−2

ν = O
((ν‖a2‖

j

)3−α)
, since only the firstΘ(κ) terms of the sum are non-

negligible, whereκ is such that
(

1 − j/‖a2‖
)

κ−2

ν = 1/2, so,κ ≈ ν‖a2‖
j . Therefore, the left-hand side

of (B.12) is

O

(

ln(‖a2‖ − j)

‖a2‖ − j

(

ν‖a2‖
j

)3−α
)

= O

(

ln ‖u‖
‖u‖ − j

(

ν‖u‖
j

)3−α
)

= O

(

ν

‖u‖ − j

(‖u‖
j

)3−α
)

,

where the first relation holds becauseln x·x3−α

x−j decreases asx increases; and the second relation holds

becauseln ‖u‖ ≤ ln λ = να−2.

• CASE: j = 0. By rewriting the first relation in (4.10) so that the bounds used for the probabilities do not
exceed 1, we obtainPr[‖Nu,2‖ = 0 |Nu,1 = r]

= O

(

∑

v : 2≤‖v‖<‖a2‖

∑

k

min
{

1,
k

ν‖v‖
}

· min
{

1,
k

ν(‖a2‖ − ‖v‖)
}

· 1

kα
+

1

ν‖a2‖

)

= O

(

1

να−1‖a2‖α−2
+

1

ν‖a2‖

)

= O

(

1

ν ln ‖u‖

)

, (B.13)

where the first relation in the last line holds because the double sum in the middle line isO
(

1
να−1aα−2

2

)

,

as it is easy to show. Combining (4.4), (4.5), and (B.13), yields the bottom part of (B.9).
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B.6 Proof of Lemma 4.5

Let E = {‖YK‖ ≥ λ1/3} ∩
(

{YK 6→ YK−1} ∪ {DYK
= 1}

)

, and

P =
⋂

v/∈Rλ

{Dv ≤ ‖v‖}.

We will show thatPr[E |P] = Θ(1). This, together with the fact thatPr[P] = Θ(1), which is easy to show,
yields the lemma. To prove thatPr[E |P] = Θ(1) it suffices to show that for arbitraryκ and instantiation
〈y0, . . . , yκ−1〉 of 〈Y0, . . . , Yκ−1〉, and forH = {K = κ} ∩ {〈Y0, . . . , Yκ−1〉 = 〈y0, . . . , yκ−1〉},Pr[E |H ∩ P] = Θ(1). (B.14)

Define the setsR=1
x = {u ∈ Rx : Du = 1} andR 6=1

x = {u ∈ Rx : Du 6= 1}. Define the events

E1 = {R 6=1
λ → YK−1}, E2 = {Rλ1/3 → YK−1},

E3 = {YK−1 → Rλ1/3} ∩ {YK−1 6→ YK−2}, E4 = {YK−1 → Rλ1/3} ∩ {YK−1 → YK−2}.

Clearly Ē ⊆ ⋃4
i=1 Ei, so, Pr[Ē |H ∩ P] ≤

4
∑

i=1

Pr[Ei |H ∩ P]. (B.15)

We now compute upper bounds for the four probabilities on theright-hand side. LetA = {Rλ 6→ 〈y0, . . . , yκ−2〉}.Pr[E1 |H ∩ P] ≤ Pr[R 6=1
λ → yκ−1 | {Rλ → yκ−1} ∩ A] =

Pr[R 6=1
λ → yκ−1 | A]Pr[Rλ → yκ−1 | A]

.

It is easy to show that for anyu ∈ Rλ, Pr[{u → yκ−1} ∩ {Du 6= 1}} |A] ≤ Pr[{u → yκ−1} ∩ {Du =

1}} |A], and, using this, thatPr[R 6=1
λ → yκ−1 | A] ≤ Pr[R=1

λ → yκ−1 | A]. Also, Pr[Rλ → yκ−1 | A] ≥Pr[R 6=1
λ → yκ−1 | A] + Pr[R=1

λ → yκ−1 | A] − Pr[R 6=1
λ → yκ−1 | A] · Pr[R=1

λ → yκ−1 | A], because of

the negative dependence between{R 6=1
λ → yκ−1} and {R=1

λ → yκ−1}. Finally, Pr[R=1
λ → yκ−1 | A] =

O
(

1
ν ln ‖yκ−1‖

‖yκ−1‖−λ

)

= O( 1
ν lnλ) = o(1). Combining all the above we obtainPr[E1 |H ∩ P] ≤ 1/2 + o(1). (B.16)

Next, Pr[E2 |H ∩ P] ≤ Pr[Rλ1/3 → yκ−1 | {Rλ → yκ−1} ∩ A] =
Pr[Rλ1/3 → yκ−1 | A]Pr[Rλ → yκ−1 | A]

,

and since form = λ or λ1/2,Pr[Rm → yκ−1 | A] = Θ
(

1
ν ln ‖yκ−1‖

‖yκ−1‖−m

)

,Pr[E2 |H ∩ P] = O

(

ln n
n−λ1/3

ln n
n−λ

)

= O(λ−2/3) = o(1). (B.17)

LetB = {yκ−1 6→ 〈y0, . . . , yκ−2〉} ∩ {Dyκ−1
≤ ‖yκ−1‖}.Pr[E3 |H ∩ P] ≤ Pr[yκ−1 → Rλ1/3 | {yκ−1 → Rλ} ∩ B] =

Pr[yκ−1 → Rλ1/3 | B]Pr[yκ−1 → Rλ | B]
,

and since form = λ or λ1/2,Pr[yκ−1 → Rm | B] = Θ(Pr[yκ−1 → Rm]) = Θ
(

1
ν ln ‖yκ−1‖

‖yκ−1‖−m

)

,Pr[E3 |H ∩ P] = O(λ−2/3) = o(1), (B.18)
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as before. It remains to boundPr[E4 |H∩P]. LetH = 〈y0, . . . , yκ−3〉, andC = {yκ−1 → yκ−2}∩{yκ−1 6→ H}.Pr[E4 |H ∩ P] ≤ Pr[yκ−1 → Rλ1/3 | {yκ−1 → Rλ} ∩ C ∩ P] =
Pr[yκ−1 → Rλ1/3 | C ∩ P]Pr[yκ−1 → Rλ | C ∩ P]

.

Form = λ or λ1/2, andk′ = min{‖yκ−1‖, kmax},Pr[yκ−1 → Rm | C ∩ P]

=
k′
∑

k=2

Pr[yκ−1 → Rm | C ∩ {Dyκ−1
= k}] ·Pr[Dyκ−1

= k | C ∩ {Dyκ−1
≤ ‖yκ−1‖}]

=

k′
∑

k=2

Pr[yκ−1 → Rm | {yκ−1 6→ H} ∩ {Dyκ−1
= k − 1}]

· qkPr[yκ−1 → yκ−2 | {yκ−1 6→ H} ∩ {Dyκ−1
= k}] ·Pr[yκ−1 6→ H |Dyκ−1

= k]Pr[C ∩ {Dyκ−1
≤ ‖yκ−1‖}]

=

k′
∑

k=2

Pr[yκ−1 → Rm |Dyκ−1
= k − 1]Pr[yκ−1 6→ H |Dyκ−1
= 1]

· qk Pr[yκ−1 → yκ−2 |Dyκ−1
= k] ·Pr[yκ−1 6→ H |Dyκ−1

= k]Pr[yκ−1 6→ H |Dyκ−1
= 1] ·Pr[C ∩ {Dyκ−1

≤ ‖yκ−1‖}]
,

where the last relation was obtained by applying Fact 3.4 twice. So,Pr[E4 |H ∩ P] is at most
∑k′

k=2
1
k2 Pr[yκ−1 → Rλ1/3 |Dyκ−1

= k − 1] ·Pr[yκ−1 → yκ−2 |Dyκ−1
= k] ·Pr[yκ−1 6→ H |Dyκ−1

= k]
∑k′

k=2
1
k2 Pr[yκ−1 → Rλ |Dyκ−1

= k − 1] ·Pr[yκ−1 → yκ−2 |Dyκ−1
= k] ·Pr[yκ−1 6→ H |Dyκ−1

= k]

≤
∑k′

k=2
1
k Pr[yκ−1 → Rλ1/3 |Dyκ−1

= k − 1]
∑k′

k=2
1
k Pr[yκ−1 → Rλ |Dyκ−1

= k − 1]
,

by Fact B.2 below (it is easy to verify that the conditions of Fact B.2 are met). Finally, it is not hard to show
that fraction in the last line is larger whenkmax ≥ ‖yκ−1‖, and then the numerator is

(

1/3 + o(1)
)

ln λ and the
denominator is(1 + o(1)) ln λ. Therefore,Pr[E4 |H ∩ P] ≤ 1/3 + o(1). (B.19)

Combining (B.15)–(B.19) yieldsPr[Ē |H] ≤ 5/6 + o(1), which implies (B.14).

Fact B.2. Let {ai}k
i=1, {xi}k

i=1, and{yi}k
i=1 be non-increasing, positive sequences such that{xi

yi
}k

i=1 is non-
decreasing. Then

∑k
i=1 aixi

∑k
i=1 aiyi

≤
∑k

i=1 xi
∑k

i=1 yi

.

Proof. Let

ϕ =

∑

j xj
∑

j yj
and i0 = max

{

i :
xi

yi
≤ ϕ

}

.

Note thati0 is well defined, sinceϕ =
∑

j yj(xj/yj)
∑

j yj
≥

∑

j yj(x1/y1)
∑

j yj
= x1

y1
. Normalize theai such thatai ≥ 1, if

i ≤ i0, andai ≤ 1, if i > i0. By the facts that for anyα, β, γ, δ > 0, if α
β ≥ γ

δ then α
β ≥ α+γ

β+δ , and if α
β ≤ γ

δ and

β > δ then α
β ≥ α−γ

β−δ , we have

ϕ ≥
∑

i xi +
∑

i≤i0
(ai − 1)xi

∑

i yi +
∑

i≤i0
(ai − 1)yi

≥
∑

i xi +
∑

i≤i0
(ai − 1)xi −

∑

i>i0
(1 − ai)xi

∑

i yi +
∑

i≤i0
(ai − 1)yi −

∑

i>i0
(1 − ai)yi

=

∑

i aixi
∑

i aiyi
,

where the first relation holds because if
∑

i≤i0
(ai − 1)yi 6= 0 then

∑

i≤i0
(ai−1)xi

∑

i≤i0
(ai−1)yi

≤ xi0
yi0

≤ ϕ; and the second

relation holds because if
∑

i>i0
(1 − ai)yi 6= 0 then

∑

i>i0
(1−ai)xi

∑

i>i0
(1−ai)yi

≥ xi0+1

yi0+1
> ϕ ≥

∑

i xi+
∑

i≤i0
(ai−1)xi

∑

i yi+
∑

i≤i0
(ai−1)yi

. �
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B.7 Proof of Lemma 4.6

We consider an early-stopping variation ofGREEDY, where if in some step we visit a nodev ∈ R‖u‖ that has an in-
contactv′ ∈ R‖v‖−1 with Dv′ > 1 then we jump to 0 in the next step. LetL′

w denote the number of steps it takes
in this process to reach 0 starting from nodew. Let also〈Y ′

0 = Y0, Y
′
1 , Y

′
2 , . . .〉 be the sequence of nodes visited

when starting fromY0. Clearly,Lu ≥ L′
u, so, to prove the lemma it suffices to show thatE[L′

u |H] = Ω(ln4/3 n),
whereH is theσ-algebra generated byY ′

0 , . . . , Y
′
i−1, {Y ′

i = u} ∩
(

{u 6→ Y ′
i−1} ∪ {Du = 1}

)

. We will show
below that for allj ≥ i andv with ν ≤ ‖v‖ ≤ ‖u‖,Pr[Y ′

j+1 = v′ |H ∩ {Y ′
j = v}] =







O
(

1
νδ(v,v′)

)

, if 0 < ‖v′‖ ≤ ‖v‖ − 2;

O
(

1
ν ln ‖v‖

)

, if v′ = 0.
(B.20)

From this and Lemma 4.1, applied forXı = ‖Y ′
i+ı‖ |H, ρ = ν, and ǫ = 0, it follows thatE[L′

u |H] =

Ω(ν ln λ) = Ω(ln4/3 n). We now prove (B.20).

• CASE: v′ 6= 0. The left-hand side of (B.20) is at most

max
H∈Hv

Pr[v → v′ | v 6→ H] + max
H∈Hv

Pr[v′ → v | v′ 6→ H] = O

(

1

νδ(v, v′)

)

,

by Facts 3.2 and 3.5(c).

• CASE: v′ = 0. The left-hand side of (B.20) is at most

max
H∈Hv

Pr[v → 0 | v 6→ H] + max
H∈Hv

Pr[0 → v | v′ 6→ H]

+
∑

r∈R‖v‖−1

max
H∈Hv

Pr[{r → v} ∩ {Dr 6= 1} | r 6→ H] = O

(

1

ν ln ‖v‖

)

,

because the first two terms areO
(

1
ν‖v‖

)

, as before, and, by Fact 3.5(c), the third term is

O

(

∑

r∈R‖v‖−1

Pr[{r → v} ∩ {Dr 6= 1}]
)

= O

(

∑

r∈R‖v‖−1

∑

k 6=1

qkPr[r → v |Dr = k]

)

= O

(

∑

r∈R‖v‖−1

∑

k 6=1

1

βk2
· min

{

1,
k

νδ(v, r)

}

)

= O

(

ln2 ‖v‖
νβ

)

= O

(

1

ν ln ‖v‖

)

,

where the last relation holds because‖v‖ ≤ λ andβ = Θ(ν).

C Appendix of Section 5

C.1 Proof of Lemma 5.1

Let Qi be the indicator random variable of the event{Xi ≤ Xi−1/2}. The number of steps to reach 0 is upper
bounded byT = min{j :

∑j
i=1 Qi ≥ κ}, because it takes at mostκ “halvings” to get fromX0 to 0. Also, sincePr[Xi ≤ j/2 |X0, . . . ,Xi−2, {Xi−1 = j}] ≥ 1/ρ, E[Qi |Q1, . . . , Qi−1] ≥ 1/ρ. Therefore,T is stochastically

smaller than the sum ofκ independent geometric random variables, each with probability parameter1/ρ, and,
so,E[T ] ≤ κρ. Hence, part (a) holds. For part (b), we observe that

∑j
i=1 Qi is stochastically larger than the

binomial random variableB(j, 1/ρ); so,Pr[T > t] = Pr [ t
∑

i=1

Qi < κ
]

≤ Pr[B(t, 1/ρ) < κ] ≤ e−
t
2ρ

(1− ρκ
t

)2 ≤ e−
t
4ρ ,

where the second-to-last relation is obtained using Chernoff’s bounds, and the last holds becauset ≥ 4ρκ.

26



C.2 Proof of Fact 5.2

Since theQi are independent,Pr[Q = 0] =
∏

i(1 −E[Qi]). So, by the fact that for allx, 1 − x ≤ e−x,Pr[Q = 0] ≤
∏

i

e−E[Qi] = e−
∑

iE[Qi] = e−E[Q],

and, by the fact that for allx ≤ 1/2, 1 − x ≥ e−x−x2

,Pr[Q = 0] ≥
∏

i

e−(1+E[Qi])·E[Qi] ≥
∏

i

e−
3

2
E[Qi] = e−

3

2

∑

iE[Qi] = e−
3

2
E[Q].

C.3 Proof of Lemma 5.5

It is similar to the proof of Lemma 5.3. LetTk = min{i : Xi ≤ λσk}, whereσ = 1
1−ǫ . We must show thatE[T0] ≤ cρ

ln2 λ
. Fork ≥ logσ

ln X0

lnλ , Tk = 0. For0 ≤ k < logσ
ln X0

lnλ ,Pr[Tk = i + 1 |X0, . . . ,Xi, {Tk+1 ≤ i < Tk}]

= Pr[Xi+1 ≤ λσk |X0, . . . ,Xi, {λσk
< Xi ≤ λσk+1}] ≥ σ2k log2 λ

ρ

So,Tk − Tk+1 is stochastically smaller than a geometric random variablewith probability parameterσ
2k log2 λ

ρ .
Therefore, E[T0] = E [∑

k

(Tj − Tj+1)
]

≤
∑

k

ρ

σ2k log2 λ
≤ c(σ)

ρ

log2 λ
.

C.4 Proof of Lemma 5.6

It is similar to the proof of Lemma 5.4. We defineE such that ifE ∩ {Yi = u} occurs then: (1)Yi+1 is an in-
contact ofYi; (2) it has out-degree between roughly‖u‖1/3 and‖u‖1/2; (3) ‖u‖2/3 < ‖Yi+1‖ ≤ ‖u‖ − ‖u‖2/3;
and (4) some of the out-contacts ofYi+1 is in R‖u‖2/3 . Formally, let

C = R‖u‖−‖u‖2/3 \ R‖u‖2/3 , C∗ = {v ∈ C : ν‖u‖1/3 ≤ Dv ≤ ν‖u‖1/2},

defineE1, E2, Z, andE3 as in the proof of Lemma 5.4 (using the above value forC∗), and let

E0 = {u 6→ R‖u‖−‖u‖2/3}.

Again we haveE = E0 ∩ E1 ∩ E2 ∩ E3 andE ∩ {Yi = u} ⊆ {‖Yi+2‖ ≤ ‖u‖2/3}, and we show thatPr[E |A] =

Ω
( ln2 ‖u‖

ln2 n

)

, whereA = {R‖u‖ 6→ H}. Equation (5.4) still applies and we bound the probabilities on its left-hand
side. Similarly to (5.5), (5.8), and (5.9), we have thatPr[E0 | A], Pr[E2 | E1 ∩A], Pr[E3 | E1 ∩ E2 ∩ A] ∈ Θ(1). (C.1)

Also, similarly to (5.6), ifv ∈ C andQv is the indicator random variable of the event{v → u} ∩ {ν‖u‖1/3 ≤
Dv ≤ ν‖u‖1/2} thenE[Qv | A] =

ν‖u‖1/2

∑

k=ν‖u‖1/3

Pr[v → u | {Dv = k} ∩ {v 6→ H}] · Pr[v 6→ H |Dv = k]Pr[v 6→ H]
· qk

= Ω

( ν‖u‖1/2

∑

k=ν‖u‖1/3

k

νδ(u, v)
· 1

βk2

)

= Ω
( ln ‖u‖

νβδ(u, v)

)

,
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where the second-to-last relation holds because:Pr[v → u | {Dv = k} ∩ {v 6→ H}] ≥ Pr[v → u |Dv = k] =
Θ
(

k
νδ(u,v)

)

, sincek < νδ(u, v); andPr[v → H |Dv = k] ≤ |H| · 2k
ν‖v‖2/3 ≤ 1/2, sincek ≤ ν‖u‖1/2 and

‖u‖ > 46i6 = 46|H|6. So,E[
∑

v∈C Qv | A] = Ω
( ln2 ‖u‖

νβ

)

, and, similarly to (5.7), we obtainPr[E1 | A] = Ω
( ln2 ‖u‖

νβ

)

= Ω
( ln2 ‖u‖

ln2 n

)

. (C.2)

Applying (C.1) and (C.2) to (5.4) yieldsPr[E |A] = Ω
( ln2 ‖u‖

ln2 n

)

.
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