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Abstract

We analyze decentralized routing in small-world netwoheat tombine a wide variation in node degrees
with a notion of spatial embedding. Specifically, we cons@eariation of Kleinberg’'s augmented-lattice
model (STOC 2000), where the number of long-range contactedch node is drawn from a power-law
distribution. This model is motivated by the experimentadervation that many “real-world” networks have
power-law degrees. In such networks, the expomenf the power law is typically between 2 and 3. We
prove that, in our model, for this range of valugsy « < 3, the expected number of steps of greedy routing
from any source to any target@;(log“‘1 n) steps. This bound is tight in a strong sense. Indeed, we prove
that the expected number of steps of greedy routing for aotmif/-random pair of source—target nodes is
Q(log™ ' n) steps. We also show that far < 2 or o > 3, greedy routing performs i (log” n) expected
steps, and forr = 2, ©(log' © n) expected steps are required, whef8 < ¢ < 1/2.

To the best of our knowledge, these results are the first tondbly quantify the effect of the power-law
degree distribution on the navigability of small worlds. tdover, they show that this effect is significant. In
particular, asy approaches 2 from above, the expected number of steps afygreeting in the augmented
lattice with power-law degreeapproaches the square-root of the expected number of dtgpsaaly routing
in the augmented lattice witfixed degreesalthough both networks have the saaverage degree

1 Introduction

1.1 Navigability of small worlds

It has been observed that many “real-world” networks, suchogial, information, technological, and biological
networks, exhibit thesmall-world property; i.e., they are locally clustered, and (yet) sipaths exist between
almost all pairs of nodes (see [2, 9, 19] and the referenagsitl). It is also well-established that many small-
world networks (e.g., the network of acquaintances betvirrdimiduals) are easy tnavigate provided that the
nodes are able to estimate the distances to other nodesesjihat to some underlying metric (e.g., geography,
professions, etc.) [8, 18Navigabilityrefers to the ability of nodes to route messages efficienttydecentralized
manner, using local information only. The most promineraragle of such a routing schemeggeedyrouting:

a node handling a message destined to some target node dsrthar message to its neighbor that is closest to
the target, according to the underlying metric. The firstfak analysis of greedy routing in a plausible model
of small worlds was presented in [13]. The model studiedetiveas theaugmented latticeConsider the:-node
d-dimensional lattice that wraps around, whdrée> 1. A node has links to it@d lattice-neighbors, and also
to £ > 1 other nodes, itéong-range contactsEach of the long-range contacts of a nadiss chosen using an

*Both authors are supported by the ANR project ALADDIN, andhy INRIA project GANG.



independent random trial following thEharmonic distribution: the probability that nodas chosen in a given
trial is
Pup X 1/(dist(u, v))4, (1.1)

where distu, v) is the lattice-distance betweerandv. In [13] it was shown that, in this model, greedy routing
requireso(% log? n) expected number of steps, for any source—target pair. Cmgplexity was later shown to
be tight [17].) It was also shown thahy decentralized routing algorithm performs poorly if #eimensional
lattice is augmented using titeharmonic distribution, for any # d. Specifically,Q2(n") expected steps are
required, for some > 0 that depends oh andd.!

Despite its simplicity, the augmented-lattice model se@rapture successfully the small-world and navi-
gability properties of real-world networks. Note that ire #firdimensional lattice thd-harmonic distribution is
equivalent to the “natural” distributiop,, , o< 1/|B,,(dist(u, v))|, whereB,,(r) is the ball centered at of radius
r; this latter distribution was used in [10, 23] to extend theults of [13] to graphs of bounded ball growth,
and to graphs of bounded doubling dimension. Also,df#earmonic distribution is equivalent in the lattice to
the rank-based distributiop, , < 1/7,(v), wherer,(v) is the rank ofv when nodes are sorted in increasing
distance from node; this latter distribution was used in [15] to extend the fessaf [13] to non-uniform pop-
ulation densities. In fact, it was experimentally demcetsid that two-thirds of friendships are geographically
distributed this way: the probability of befriending a pewtar person is inversely proportional to the number of
people closer to you [16]. Finally, it was recently shownt i d-harmonic distribution of the long-range links
might as well be an inherent byproduct of node mobility [4keSalso [6, 20] for other dynamics yielding the
d-harmonic distribution in the lattice. Therefore, ther@dsv a consensus that the augmented-lattice model is an
appropriate framework for analyzing small-world navidipi

1.2 Power-law degree distribution

The augmented-lattice model, however, fails to capturéhema@ommonly observed property of real-world net-
works, theheavy-tailed degree distributiorfsuch a distribution is well approximated byawer law

Pr[deg(u) = k] o< 1/k%, (1.2)

where« is a real, typically between 2 and 3 [2, 9, 19]. Neverthelési straightforward to reconcile the
augmented-lattice model with a power-law distribution loee node degrees, simply by drawing the number of
long-range links added to each node independently at raridmoma power-law distribution [14]. It is reason-
able to expect that this modification would reduce the lemgthshortest paths between nodes and the network
diameter, since the (few) high-degree nodes should prahdet-cuts between most nodes. This is typically the
case in networks with power-law degree sequences [3, 5].edewyit is unclear how decentralized routing could
benefit from the existence of these high-degree nodes [14].

Utilizing the heavy-tailed degree distribution in the dgsof decentralized routing algorithms was suggested
in[1, 11, 12, 21]. In all these works, the routing algorithardy have access to information about the degrees of
neighboring nodes, not to any embedding of the graph. Ath@ome performance improvements are observed
compared to routing algorithms oblivious to the node degrdee expected number of steps remains polynomial
in the network size. Also, [22] proposed a heuristic deegiated algorithm for routing in a variance of the
augmented lattice where nodes have widely varying degiides.heuristic assumes that nodes have access both
to the locations of theirs neighbors, and to their degreasul&tions showed that this algorithm performs better
than decentralized algorithms using only one of these twoces of information. However, no formal analysis
was provided.

It was recently shown [7] that faf = 1, the augmentation using the 1-harmonic distribution igesally optimal in the sense that
for anyaugmentation distribution with expectedong-range contacts per node, greedy routing reqlﬂr(eglog2 n) expected steps.
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Figure 1: Summary of the results.

1.3 Our framework

We consider the following variance of the augmented-lattitodel. As in the original model, the long-range
links are drawn independently at random according the haierdistribution with exponent equal to the dimen-
sionality of the lattice (cf. Eg. 1.1). Unlike the originalagtel, however, the number of long-range contacts each
node has is not fixed, but it is drawn independently at randam fthe power-law distribution with exponent

a > 0 (cf. Eq. 1.2). This distribution is scaled so that its exp#@oh is constant and each node has at least
one long-range contaét\We then remove the orientation of each of the long-rangesliokget a non-directed
network. We study the performance of greedy routing in thkisvork.

1.4 Our results

In this section, we ignor®(log log n) multiplicative factors in the statement of the asymptotimids. The
precise bounds are described in Section 2.3.

We prove that for2 < o < 3, which is the case for most real-world networks, the exgeciember of
steps of greedy routinfjom any source to any targé O(log® ' n) steps. Thus, for this range of values far
the effect of the power-law degree distribution is significaln particular, whernx approaches 2, the expected
number of steps of greedy routing in the augmented lattitk power-law degreeapproaches the square-root
of the expected number of steps of greedy routing in the antgddattice withfixed degregsalthough both
networks have the sanaverage degreeFor botha < 2 anda > 3, we show that the expected number of steps
of greedy routing from any source to any targeDidog? n) steps, which is the same order of magnitude as the
performance of greedy routing in the augmented lattice fuithd degrees. For the critical valae= 2, we prove
that the expected number of steps of greedy routing from aunkce to any target i@(log3/ 2 n) steps.

All these upper bounds are tight (but, perhaps,dce 2). Fora > 2, the upper bounds are even tight in a
strong sense. Indeed, we prove that the expected numbepsf st greedy routing for aniformly-randompair
of source—target nodes §log® ! n) steps if2 < a < 3, andQ(log? n) steps ifa > 3. Fora < 2, we prove
that there exists a source—target pair for which greedyrmguequires(log” n) expected steps. For = 2, we
show that the expected number of steps for a uniformly-randource—target pair @(log4/ 3n).

We formally prove the above results for the case of the 1-dsiomal lattice, i.e., the ring. Nevertheless,
none of the arguments we use is specifically tied to the rind,theexactsame results can be easily shown for

Fora > 2, even without the scaling, the expectation is constantwiit constant probability, each node has at least one lange
contact. So, the scaling makes a difference onlyfot 2.



d-dimensional lattices, for constant valuesdofNote that unlike the results in [13], where the criticalugbf
the exponent depends on the dimensionalitf the lattice, our results do not dependdn

To the best of our knowledge, these results are the first todlly quantify the effect of the power-law degree
distribution on the navigability of small worlds.

The following picture emerges from our analysis. kop 3, almost all nodes are of small degree, and the
nodes of higher degree are too few to contribute signifigaritlence greedy routing performs essentially the
same as when the degrees are fixed.

For2 < a < 3, there are still very few nodes of high degree. However, safalegree roughlog n are
relatively abundant, and there are more and more such nedesgproaches 2. It is the contribution of these
nodes that reduces the routing time friwp? n to log® ! n.

The casex = 2 is special. All “degree scales” are present, and each islligdikzly to contribute. On the
one hand, this results in greater routing speed than in the2ca « < 3 when the current node is far from the
target, since there are many high-degree nodes betweenrtieattcnode and the target in the lattice. On the other
hand, the balance in the degree scales means that as weggttoldthe target the number of high-degree nodes
available decreases faster than in the case o < 3; and when we get at distance sub-polynomial from the
target (essentially at distance less thm), greedy routing performs the same as when the degrees age fix

Finally, for o < 2, there are many nodes of high degree, and the role of thefcptiot £, of the power
law becomes critical. We assumed that,, ~ n”, for some0 < v < 1. In this setting, only the contribution
of nodes with degree close g, is significant. However, when the current node is at distdese thank,,,..«
from the target, it is very likely that greedy routing will tiind a node of such degree, and from that distance it
starts performing the same as when the degrees are fixedtidotoro < 2, nodes that are further away from
the target may, in expectation, require fewer steps to rdeeharget than nodes closer to the target, which is not
the case when: > 2.

2 Model and main results

2.1 Network model

We will use the notatiori..j] = {k € Z : i < k < j} and[i..j) = [i..j — 1], fori,j € Z. (If i > j then
[i..7] = 0.) Also, whenever we treat a real numheas an integer we will meaj: |.

In our analysis we will focus on the 1-dimensional latticeealetG,, be the class of all directed graphs
with set of node$0..n) that contain as a subgraph thenodering, i.e., the graph with set of nodés.n), and set
of edges{(u,u + 1 mod n) : u € [0..n)}.2 Let G be a graph irG,,, andE be the set of edges ¢. Theout-
neighbors(in-neighbor3 of a nodeu of G are all nodes such thatu,v) € E ((v,u) € E). More specifically,
the nodes: + 1 mod n are called theing-neighborsof «, and the remaining out-neighbors (in-neighbors). of
are itsout-contactgin-contact3. For any two subsets of nodesand B, we will write A — B to denote that a
node inB is an out-contact of a hode i (or, equivalently, a node id is an in-contact of a node iB). When
|A| =1, sayA = {a}, we will often writea — B, instead; and the same convention is used wWhgn= 1. The
ring-distancebetween nodes andv, denotedi(u, v), is the minimum number of ring edges between them in
either clockwise or counter-clockwise direction, i.e.,

0(u,v) = min{u — v mod n, v — u mod n}.

So, if v is a ring-neighbor of. thend(u,v) = 1, and if it is an in-contact or out-contact efthend(u,v) > 2.
We will write ||u|| to denotej(u, 0).

Random-graph models: We study two random-graph models. Each of them is parametehy the sizex of
the graph, and the exponent> 0 of a power-law distribution. In the first model, denot@@h, «), a random

3For a graph inG,,, the underlying ring will be used to compute distances betwedes. Also, when we refer to nodes we will mean
their integer labels.



element ofG,, is generated by choosing the out-contacts of the nodeslaw$olFor each node, we draw an
integerD,, from [1..knax] independently at random, such that

(1) Pr[D, = k] x 1/k%, fork #1, and (2) E[D,]=2.

We assume that the “cut-off point’, .« of the power-law distribution i®(n"), for some constart < v < 1.
Then, we performD,, independent identical random trials, such that in eachdrizodev # u is chosen with
probability

x 1/6(u,v).

The out-contacts af are all thedistinctnodes chosen by thegg, trials that are not ring-neighbors of formally,

if v; is the node chosen in thieth trial then the out-contacts efare the elements of the dett ., {vi} \ {u=+

1 mod n}. The second random-graph model we consider, deiéteda), is the model in which a random graph
is obtained by first generating a random grap@i (n, «), and then taking its underlyingndirected graphin fact,
for each (directed) edge 6f(n, «) we also add its opposite-directed edge, if it does not ayreadst. Formally,

if Eis the set of edges ifi(n, «) then the set of edges U(n, «) is {(u,v) : (u,v) € Eor(v,u) € E}.

Discussion: Recall that the long-range contacts of a nodé (n, «) are selected using independent triaigh
replacement This assumption simplifies the analysis, but it has the sftit that the out-degreP; of node
u in G(n,a) can be smaller tha®,,, and also the distribution dD;" is notexactlya power law. Nevertheless,
the use of trials with replacement gives essentially theesernults as the trialwithout replacement This is
because the discrepancy betwdepi and D, is significant only for large values db, (e.g., of orde)(y/n)).
And our analysis shows that the effect of such high-degrees s negligible when > 2; while for o < 2 our
proof actually holds even if trials are without replacemétar the in-degre®;, of v in G(n, «), it is easy to see
that its distribution is close to a Poisson with constanteekgtion (see the Appendix); so, the distribution of the
(total) degreeD; + D, of uin U(n, ) is essentially the same as that/ef for all but very small values.

Next, recall thatD,, < kpax = O(n?) andD,, # 0. Fora > 2, the exact same asymptotic results hold with
or without these constrains. The rest of the discussionrighfo casex < 2. Note that it must bé.x < oo,
otherwise the expectation éf, is co. Also, a value fok,,,, that is polynomial im is consistent with real-world
networks. It can be shown that#f,, . is poly-log inn then greedy routing performs in logarithmic time. On the
lower side, a minimum value is imposed By, because otherwisB,, would be0 with overwhelming probability.
It can be shown that, in that case, greedy routing would reqaolynomial time ifa. < 2, and poly-log time if
a =2,

2.2 Greedy routing

We consider the following routing algorithm for graphs@h,. When a node: receives a message for a target
nodet # u, u forwards the message to an out-neighbor that is closestth respect to the ring-distance. We
call this routing algorithmGREEDY. We are interested in the performanceGsEEDY in G(n, «) andU (n, «).
Specifically, we study two performance measures: gkgected delivery timef GREEDY, and theGREEDY
diameter Let !, , be theexpectedength of theGREEDY routing path fromu to v in the random graph. The
expected delivery tims theaverageof [, ,,, taken over all possible source—target pairs, i.e.,

. . 1
Expected delivery time 06REEDY = — > Iy,
n

u,v
The GREEDY diameteris the correspondinghaximumi.e.,

GREEDY diameter= max/y, ,,.
u,v

Note that theGREEDY diameter is always greater or equal to the correspondingateg delivery time. All the
lower bounds we prove, except for the motiéh, o) with o < 2, are for the expected delivery time GREEDY;
whereas all the upper bounds are for @reEDY diameter.

5



Throughout our analysis ®REEDY in G(n, «) andl{(n, ), we will assume that the target node is ndde
We can make this assumption without loss of generality mxafithe symmetry of the random-graph models.
Also, for the analysis i#/(n, o), instead of considering the graptin, «) directly, we will considelG(n, «), and
for the purposes of routing we will ignore the direction of tmks. So, whenever we refer to the in-/out-contacts,
in-/out-links, etc., of a node, we will mean §(n, «); the same convention is used for thenotation.

In G(n, ), theGREEDY path from a fixed source to a fixed target is a Markov chain; ¢xé node in the path
depends only on the last node visited. However, this is ret#se i/ (n, o)), where the next node depends on
all the previously visited nodes, and also on their in- andiols. Specifically, if(Y, Y1, ...) is the routing path
from nodeY} to 0 then for any node with ||v ,Yi_1}; hence, the values &fy, ..., Y;_1
affect the distribution of the out-contacts @f More importantly, the distribution of the out-contactsgfis
affected by whethey;_; — Y; or not; e.g., ifY; 1 /4 Y; andY; is not a ring-neighbor of;_; thenY; — Y;_1,
which, for some values af, changes the a-priory distribution of the out-degre&;adignificantly.

2.3 Statement of the results

In all the results below, the asymptotic notation iswas> oo, anda is not a function ofa.
Theorem 2.1. The expected delivery time GREEDY in G(n, a) is Q(In” n).

Theorem 2.2. TheGREEDY diameter oiG(n, a) is O(In? n).

Theorem 2.3. The expected delivery time GREEDY in U (n, a) is

Q(In*3 n), if o = 2;
Q(In*"1tn), if 2 <a<3;
Q(ln n/lnlnn), if a=3;
Q(In%n), if > 3.

Also, for0 < o < 2, theGREEDY diameter is(In” n).

Theorem 2.4. TheGREEDY diameter o/ (n, «) is

O(In?n), if0<a<2;
O(In®2 n), if o =2;
O(ln® !nlnlnn), if2<a<3;
O(In?n), if a > 3.

3 Definitions and basic facts

3.1 Distribution of out-contacts

Recall that the out-contacts of a noden G(n, «) are chosen using independent identical trials, such that, i
each trial, node # w is picked with probabilityx 1/§(u,v). So, the probability that is picked in a given trial
is

1
RO wherey = ZW =2Inn + O(1).

Also, the numbetD,, of trials used is chosen independently at random ffonk,,.«|, wherek,.x = ©(n?),
such thatPr[D,, = k] « 1/k%, for k # 1, andE[D,] = 2. Let

- if k£ 1;
qk:]Plr[Du:k]:{ﬁk ’ _ #1;



wheref is the normalizing factor such th&i[D,,| = >, kg = 2. Itis easy to see that

L e if o > 2;
B=) o ={6un), fa=2
k Ok2:0), f0<a<2

Also, the probability thaD,, = 1isq; = O(1),if « > 2,andg; =1 —0(1),if0 < a < 2.

3.2 Simple facts abouG(n, )

We now state some simple facts that we use repeatedly in #igsés1 Their proofs can be found in the Appendix.
In all these facts, the underlying graphién, o) andu, v € [0..n).

Fact3.1. If U C [0..n) andp = Pr[u — U | D,, = 1] then
tmin{1, kp} < Pr{u — U|D, = k] < min{1, kp}.
Fact 3.2. If v is not a ring-neighbor of.* then

L~ < Prju— ] <

1 _2
vé(u,v) vé(uw)

Fact3.3.1f U = {u+dmodn : d € [a..b]} orU ={u—dmodn : d € [a..b]}, where2 < a < b < n/2,
then

N

lanTl <Prju—U|D,=1] < %lnafbl.
Fact3.4.1f Uy, Uy C [On) andU; N Uy = ( then

_ Prfu— Ui | D, = K]

Priu — Uy [{Dy =k} N {u 4 Us}]

For the next fact we need to introduce some notation, whiclalee use throughout the analysis. &t be
the set of all nodes at ring-distance at mo$tom 0; i.e.,

Ry =A{u : Jul] <z}

By H, we denote the set of all set C [0..n) \ R, such that for any two distinat;, vo € H, [[v1]| # [[va]|.
Note that for any graph ifx,, and nodes, every prefix path of the routing path frogrio 0 that contains no nodes
in R, belongs toH,,.

Fact3.5.1f H € H, andd = min,cy 6(u,v) then (@)Pr[u — H | D, = k] < Pr[0 — [d..d+ |H|) | Dy = k|;
(b) Pru /4 H|D, = k] > 1/2%; and (c)Prfu A H] > q/2.

4 Proof of the lower bounds

We begin with an auxiliary lemma that bounds from below therage length of any process that approaches 0
with jumps that follow a distribution of a specific form. Weeuthis result in the proofs of all the lower bounds.
We prove the lower bound fof(n, «) in Section 4.1, and fo#/(n,«) with & > 2, @ < 2, anda = 2in
Sections 4.2-4.4, respectively.

The next lemma provides a lower bound on the expected nunfis¢éems of an arbitrary process on the non-
negative integers, which is non-increasing, and the lenfjthe jump in each step is bounded by a distribution
of a certain form. We will use this result in the proofs of aktower bounds.

“If v is a ring-neighbor of; thenPr[u — v] = 0, by the definition of .
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Lemma4.1.If (Xy, X1, ...) isanon-increasing, non-negative, integer-valued rangoogess withXy > p > 1,
such that for allj with p < j < Xj,

ULSif 0 < j/ < j—2;
Pr(Xip = j' | X; = j) < { P00 00 =0T (4.1)
Cm, |f j/ = 0,

where0 < e < 1, then the expected number of steps to reach 0 is at {&aki(X,/p), whered = ¢/(c,€) > 0.

The proof of Lemma 4.1 is similar to the proof of the lower bduor the augmented lattice with fixed
degrees, described in [17] (Theorem 7). Roughly, we conghiee sequence dh X;, show that the average
reduction in each step is at mastc, ¢) /p, and use an expectation argument to obtain the lower boumel full
proof can be found in the Appendix.

4.1 Proof of Theorem 2.1

It is a straightforward application of Lemma 4.1. L&, Y3,...) be the routing path frony; to 0 in G(n, a).
For allu, v with ||v]| < |lul| — 2,

IP]I'[Y;'+1 = ’U‘Y; = u] < IPH‘[U’ - U] < y5(iv)’

by Fact 3.2. From this and Lemma 4.1, appliedsigd < Xy < n/2, p = v, e = 0, andX; = ||Y;||, we obtain
that the expected length of the routing path frarto 0 isQ(vInn) = Q(Inn), for all u with |ju|| > n/4; the
theorem then follows.

4.2 Proof of Theorem 2.3 case: > 2

We describe a random proce§§ which we prove approaches zero faster tb®EEDY (Section 4.2.1), and we
derive a lower bound on its expected length (Section 4.Z2)nbining these two results we obtain the theorem
(Section 4.2.3). UnlikesREEDY, N is a Markov chain, so, it is easier to analyze.

4.2.1 ProcessV

Process\V is parameterized by, «, ands, wheres € [0..n), and it resemblesREEDY routing inl/(n, «) from
sources to target 0. Roughly speakingy” differs from GREEDY mainly in that: (1) each time the message is
forwarded to arin-contact saywv, of the current node, the message is next forwarded toudimeighborof v
closest to 0, and theswo forwardings count as single step of A/; and (2) the random graph is regenerated in
each step of\. In addition, instead of the contacts of the current nodgusdhe out-contacts of a node and
the in-contacts of a (possibly different) nodg are used to determine the next node. Theare functions on
u, havella;|| > ||u||, and they are such that they minimize the expected lengttf.ofVe introduce\ because
its expected length is a lower bound for the expected st&EEDY takes to route a message fronto 0, and
becauseV is a Markov chain, hence, it is easier to analyze taageDY. Another useful property ol is that
its expected length is (provably) a non-decreasing funatio|s||.

We now define\ formally. Leta; : [0.n) — [0..n), A; : [0.n) — 200" a5 : [0..n)% — [0..n), and
Aj : 0..n)? — 2[0-") be functions such that for all nodesr,

”al(u)H 2 Hu”7 Al(u) S Ha1(u)a
||CL2(’LL,’I")H > H’LLH, AQ(U,T‘) € HaQ(u,r)'
Recall from Section 3.2 that for any graph@, and node.’, H, contains every prefix path of the routing path

from «’ to O such that no node in this prefix path isfy, = {v : v < ||u||}. Thea; and4; should also satisfy
an additional condition, which we specify later.



Let u # 0 be the current node V. (Initially u = s, and finishes when: = 0.) The next node, denoted
N,, is a node closest to 0 among the two ring-neighbors, @nd the noded',, 1, N, » which are determined as
follows. First we choose the out-contactsaaf{u) as inG(n, «), conditioned on the evediu; (u) /4 Ai(u)}.
We let N,, ; be an out-contact of; (u) that is closest to O; or, if; () has no out-contactsy,, ; is a randomly
chosen node among and the ring-neighbors af (this ensures thaPr([N, ; = v] > 0, for all v). Suppose
that N1 = 7. N,z is then chosen as follows. We choose the out-contacts ofdtesninR)j,, (,,,)|—1 as in
G(n, ), conditioned on the eveRt|q, (-1 7 A2(u,7)}. (If a1(u) € Ry, (-1 then the out-links ofi; (u)
generated earlier to determig, ; are deleted, and replaced by new ones.) Zdte the set of the in-contacts
of a(u,r) that are inkR)j,,(,,r)—1 and are closest to O (< |Z| < 2). If Z =0, Ny 2 = az(u,7); if Z = {0},
N2 = 0; otherwise,N,, » is a node closest to 0 among the out-neighbors of the nodgs in

Functionsa;, A; should satisfy the following optimization condition. Rdug speaking, this condition says
that given the values af; and A; for all u with ||u|| < |v||, their values for, = v are such that they minimize
the expected length df” when starting frons = «. Formally, IetL{}/ denote the expected number of stepd/of
for s = u. The condition is described inductively as: for|| = 1,2, ...,

(4.2)

for all 7, ag (u, ) and Ay (u, ) are such that they minimiz8[LY | N, ; = r];
a1(u) and A; (u) are such that they minimizZ&[L?].

The next two lemmata state the two properties\ofwve described at the beginning, tHEtL/s‘f | is a non-
decreasing function dfs||, and it is a lower bound for the expected value of the numbsetegfsL, thatGREEDY
requires to route a message frerto 0. The proofs are by induction, and can be found in the Agpen

Lemma 4.2. If ||u]| > ||u/|| thenE[LY] > E[LV].
Lemma 4.3. E[LY] < E[L,].

4.2.2 Expected length of\/
The next lemma provides lower bounds on the expected lerigth, or oo > 2.
Lemma 4.4.

(@) If > 3thenE[L /4] Q(n?n).

(b) If a = 3 thenE[LY),] = ()

Inlnn/"

«@

(€) If2 < a < 3then forx = ™ "7 B[LY] = Q(RI_n),

Inlnn

Proof. (a) We show below that for all, j such thad) < j < ||u|| — 2,
Pr([|[Nu|| = j] = O(m) (4.3)

From this and Lemma 4.1, applied f&iy = n/4, X;11 = ||Nx,|, p = v, ande = 0, it follows thatE[L /4]
Q(In?n). We now prove (4.3).

Pr{|Ny[| = 5] < Pr([[Nuall = j] + max Pr[[|Nya| = j | Nua = 7]. (4.4)

Below we will write a; and A; instead ofa; (u) and A; (u), respectively.

. _ Prlay = (n = )] _ (__1
Pr|Nurl| =1 < Px [or = (Gin =} /> ] < =R =0 (G ). @)

by Facts 3.2 and 3.5(c). Next we bound the second term on ghéltand side of (4.4). We will need the
following definitions. LetS,, for v # 0, be anout-neighborof v in G(n, ) that is closest to 0 (there may be two

9



such nodes); andy = 0. Let alsoZ, be the set of thén-contactsof v that are inR,,_; and are closest to 0
0< 2y £2).

Pr[|Nysll = j | Nuy =]
< > Do Prlfve Zu)n{lSll =5 n{Du = k} | Rjay-1 A~ A2, (4.6)
v:j<[oll<llazl| &
where again we writa, and A, instead ofas (u, ) and As (u, ), respectively. Foj + 2 < [jv]] < ||az
Pr [[|So]l = j [ {v € Zay} N {Dy = k} N {Rjjay) 1 7> A2}]

=DPr [”Sv” :j‘{Dv =k— l}ﬂ {v ad A2}]
<Prlo—{j, n—j}[{Ds =k~ 1}N{v £ As)]
_ Prv—{j,n—j}|Dy=k—1]
B Prjv 4 Ay | D, = 1]

k—1
=0|——=); 4.7)
<V(HvH —J))
where the second-to-last line was obtained using Fact 8c4ihee last using Facts 3.1 and 3.5(b); also,
Pr [v € Zay | {Dy = k} N {R}jay—1 7> A2}] < Pr [v — az |[{Dy = k} N {v A As}]

k
= (Sl =) (*.8)

similarly to (4.5); and
Pr [DU =k ‘ R||a2||_1 7L> AQ] =Pr [DU =k | v 7L> AQ] = O(qk), (49)
by Fact 3.5(c). Combining (4.6)—(4.9), we obtain

' k2—a 1
PVl =il N =r=0( ¥ Yoo v )

g2 o & POl = ) Weal = o) " vAlaal =)

_ O<ln(lla2\| —J) 1 ) _ O(ﬁ)' (4.10)

v (llazll = 5) — v(llazll - 5) lasl| —j
Applying (4.5) and (4.10) to (4.4), yields (4.3).
(b) We consider an “early-stopping” variance ®f that differs fromA as follows: Letu # 0 be the current
node, suppos#&/,,; = r, and letZ be the set of the in-contacts @f(u, r) that are inR)q, ,,,)|—1 and are closest
to 0 (see the definition ol in Section 4.2.1); ifD, > In?n for somev € Z then the process jumps to node
0 in the next step. Leb/, denote the next node after noden this new process, and be the number of

steps to reach 0 from. Clearly, E[LY] > E[LY], so, it suffices to bounE[Lﬁ%]. We show that for alt: with

Inn
Inlnn?’

[ull = p=
O () 1f0<i < full -2
O (5mm): if j=0.

, ande = 0, it follows thatIE[Lfy/A =

(4.11)

Pr(|M.] = j] = {

From this and Lemma 4.1, applied féfy = n/4, X;11 = ||Mx,

Q(lgfnﬁl). The proof of (4.11) is similar to that of (4.3), and can berfdin the Appendix.
(c) We show that for all, with v < [ju|| < A,
O™y if 0 < j < [lul| — 2;
Pr[[|Nu|| = j] = (”(”1“”"’ ) o= el (4.12)

From this and Lemma 4.1, applied f&fy = \, X;11 = || Nx,|, p = v, ande = 3 — q, it follows thatE[L)] =
Q(rIn\) = Q(In®"! n). The derivation of (4.12) is similar to that of (4.3) — but remomputationally involved.
The main difference is that a more accurate bound is usecdaepf (4.7). The details are in the Appendill
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4.2.3 Putting the pieces together

If & > 3 then, by Lemmata 4.4(a), 4.2, and 4EL,] > E[LY] = Q(In% n), for all w with |lu|| > n/4. Hence,
the expected delivery time i3(In? n). For the casea = 3 and2 < « < 3 the theorem follows similarly, using
Lemmata 4.4(b) and 4.4(c), respectively, in place of Lemmiéad.

4.3 Proof of Theorem 2.3 case < 2

The theorem follows from the fact that for somehat is polynomial inn, with probability ©(1), all nodesu
with ||u|| < A have out-degree (at most) 1. Specifically, the probabitigt D,, = 1 is
1-0(1/k2.%), ifl<a<2;
@ =<{1—-0(nn/knax), ifa=1; (4.13)
1 —0(1/knax), if0<a<l.

Let A\ = min{%, =}, and€ = (,cp, {Du = 1}. Then,Pr(&] = M = 0(1). Let (Yo, Yr,...) be the
routing path from\ to 0. If ||v]| < |lu| — 2,

Pr(Yip = v [{Yi =} n {(¥;)/Zh = H} N €]
<Pr{u —v}U{v —u}|{u,v A H}N{D, =D, =1}] = O(m),
by Fact 3.5(b). This and Lemma 4.1, applied for v, e = 0, andX; = Y| | £, yieldSE[L) | £] = Q(v1In \).
By (4.13) and the fact that,,,, is polynomial inn, In A = O(In kyay) = O(Inn), S0, E[Ly |E] = Q(In?n).
And sincePr[€] = (1), E[L,] > E[Ly | £] - Pr[€] = (Inn); hence, thesREEDY diameter i (In? n).
4.4 Proof of Theorem 2.3 case = 2

The proof consists of two parts, which are roughly as followgst we show that for any and nodes with
||s|| > A, with probability ©(1), the routing path frons to 0 contains some node such that\'/3 < |ju|| < A

andu has a small expected out-degree. Next, we show thatife™* 7 then the expected number of remaining
steps fromu to 0 isQ(In*/? n). The two lemmata we state below correspond to these two. pat£Yy, Y7, . . .)
be the routing path from nods, to O.

Lemma4.5. If |Yo|| > A = w(1) and K = min{i : ||Y;|| < A} then
Pr [{||[Yxll > X3} 0 ({Yi / Yi—1} U{Dy, = 1})] = ©(1).
Lemma 4.6. For A = ¢i"/* 7 and allu with A1/3 < ||u|| < A,

E [Ly,

Yo, Yien, {Yi = ud 0 ({Yi A Yiea }U{Dy;, = 1})] = Q(In** n).

Let€ = {||Yk| > AY3}n ({Yk # Yg_1} U{Dy, = 1}). We prove Lemma 4.5 by showing th&t
occurs with probabilityd(1), for any fixed K andYp, ..., Yx_1, and conditionally on the event that for all
with [|v]| > A, D, < |jv||. Since this last event occurs with probabilt(1), the lemma follows. The proof of
Lemma 4.6 is analogous to that of Lemma 4.4(b). We analyzedy-stopping variation o6REEDY, where if
in some step we visit a nodec R, that has an in-contaet € Rjy|—1 with D,y > 1 then we jump to O in the
next step. The full proofs of Lemmata 4.5 and 4.6 can be foonla Appendix.

The theorem now follows easily. Far= ¢™"/°* K as in the statement of Lemma 4.6, ahds above,
E[Ly,] > E[Ly, | €] - Pr[€] > E[Ly, | ] - Pr[€] = Q(In*/3n),

by Lemmata 4.5 and 4.6.
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5 Proof of the upper bounds

As in the proof of the lower bounds in Section 4, we start widinaple lemma that bound from above the length
of any process that approaches 0 with jumps that follow aildigion of a specific form. In Section 5.1, we
show thatO(In? n) steps are required in all models. In Sections 5.2 and 5.3, rexegighter upper bounds for
U(n,a), for2 < o < 3anda = 2, respectively.

Lemma 5.1(a) below is an analogue of Lemma 4.1, and we wilitusehe proofs of all the upper bounds.
Lemma 5.1(b) provides a with-high-probability bound foe tength of the process; we will use it in Sections 5.2
and 5.3. The proof is straightforward and can be found in thpehdix.

Lemma 5.1. If (Xo, X1,...) is a non-increasing, non-negative, integer-valued rangwatess, such that for all
G Pr[Xip1 <5/2| Xo,..., Xio1,{Xi = j}] > 1/p, then fork = log(Xo + 1)1,

(a) The expected number of steps to reach 0O is at mast
(b) The number of steps to reach 0 is greater than 4p~ with probability at most ™ .
We will also use the following simple fact; its proof is in tAgpendix.
Fact 5.2. If Q1,Q>,..., Q. are independent 0—1 random variables aRd= ). Q; then (a)Pr[Q = 0] <
e~ ElQ): and (b) if for all i, E[Q;] < 1/2 thenPr[Q = 0] > ¢ 2 B9,

5.1 Proof of anO(In* n) bound for all models

Let (Yo, Y1, ...) be the routing path from nodg, to 0 inG(n, a) orU(n, ). We will show that for alk:,
Pr(||Yiqall < flull/2]Y0,. .., Yier, {Yi = u}] = Q(1/v). (5.1)

From this and Lemma 5.1(a), applied f&F = ||Y;|| andp = O(v), we obtain that the expected length of the
routing path fromYy to 0 is O(v In(||Yp|| + 1)) = O(In?n). We now prove (5.1). Fojtu| < 2, it obviously
holds; so, suppose thgt|| > 2.

e In g(’I’L, Oé), the left-hand side of (5.1) equd]%zr[u — RHUH/z] >q IPIF[’LL — RH“H/z |Du = 1] = Q(l/]/),
by Fact 3.3.

e InU(n,a), we have
Pr{[|Yia |l < llull/2[{Yi = u} N {(Y;)!2( = H}] > Pr[Ryy) 2 — u| Ryuy2 #~ H. (5.2)
But for anyv € Ry /2,

Prlv — u| Ry 2 /» H] = Prlv — u|v /A H| > Pr[{v — u} N{v /4 H}|
> Pr[{v - u}N{D, =1}] = ¢ Prjv — u| D, = 1]
>N
— 2w[ull

So,zveRHu”/Q Prv — w| Ry 2 #~ H] > - and since the even{® — u} are independent (condition-

ally OnRHuH/2 7L> H), we have, by Fact5.2(a), thBﬁI'[RHuH/Q — U | RH“H/2 > H] > 1—6_4% = @(1/1/)
Combining this and (5.2) yields (5.1).
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5.2 Proof of Theorem 2.4 casé < a < 3
We will use the following result, which is analogous to Lemma(a).

Lemma 5.3. If (X,, X1,...) is a non-increasing, non-negative, integer-valued rangwatess withX, > A >
1, such that for all j with\ < j < X,

Pr{X;1 <35/2| X0, ., Xic1, {X; = j}] > 182 (5.3)

then the expected number of steps until the process’ vathees to at most is at mosto(In log Xy + 1).

Proof. Let T}, for k > 0, be the number of steps until the process’ value is reduceat toost2k)\; i.e.,
T, = min{i : X; < 2¥\}. (Note that smallek correspond to largefy,.) To prove the lemma we must show
thatE[Ty] < p(Inlog X + 1). Fork > log Xg —log A\, T, = 0. For0 < k < log Xy — log A,
IPE[TK =1+ 1|X07 7XZ'>{T]€+1 <i< Tk}]
= Pr{Xip1 < 2°A[ Xo, ..., X5, {24 < X; <2FP1A}] > et

by (5.3). So,T} — Ty, is stochastically smaller than a geometric random varialile probability parameter
W. Therefore,

log Xo—log A—1 log Xo—log A—1 P
E[Ty =E T, — T, < ——— < p(lnlog Xy + 1). |
m=B| S GeTe|s X o <smesxos

Roughly, the proof of the theorem proceeds as follows. Wevdhat in every three steps GiREEDY the
ring-distance to 0 is halved with probabili@(%), provided that we are not too close to 0 and not too
many steps have been taken so far. Also, by the analysis io8édt1, the ring-distance to 0 is halved with
probability Q(1/1nn) in each step, independently of the previous steps. By camitihese two results and
applying Lemmata 5.1 and 5.3 we obtain the theorem.

The next lemma gives a lower bound on the speedr¥EDY when the length of the prefix of the routing
path so far is much smaller than the current ring-distan¢bedarget. Two steps at a time are considered instead
of just one. Interestingly, this bound is obtained by caumtonly the contribution of nodes with out-degree

O©(Inn). Let (Yp, Y7,...) be the routing path from nods, to 0.
Lemma 5.4. If ||lu|| > 8(i® + 1) then

In ul
Pr(|Yirall < lull/2] Yo, Yis, (¥ = up 01 {¥;  Yia}) = (21 -).

Proof. We describe an everdt such that if€ occurs andy; = u then||Y; 12| < |ju|/2, and we bound'’s
conditional probability instead. Informally, & N {Y; = u} occurs then the following statements are true about
Y;11: (1) itis an in-contact of;; (2) it has out-degre®(Inn); (3) |lul|/2 < ||Yiz1]| < [Jul — |ju|'/?; and (4) at
least one of its out-contacts is &, o. Formally, we define the following four events. Let

€o={u 7> Ry juyrr2}-
Define the set&' = Ry, _ /2 \ B2 @ndC* ={v € C : v < D, < 2v}, and let
E1={C" —u}, & ={Rjy-1\C" A u}.

Last, if &, occurs, letZ be the in-contact of; in C* that is closest to O (if there are two such nodes tAés the
one thatcREEDY would choose), and let

& ={Z — Ry 2}
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We define
E=ENE NENEs.

Itis easy to see that N {Y; = u} C {||Yi+2| < |lu||/2}. So, to prove the lemma it suffices to show that

Prle [ {(Y;)i2h = H} N {Y; = u} n{Y; £ Yi1}] = Q(ralsl ).

In

But the left-hand side is equal (€ | R, /4 H]; so, we will show thatPr[€ | Ry, A~ H] = Q( In Jul ).
Let A = {R, # H}. Since, is independent of the other three events,

]Plr[é’ ‘ A] = ]Plr[g() ’ A] . ]Plr[51 ’A] . ]PI['[EQ ’51 N A] . IPIl“[gg ’ E1Né&nN .A] (5.4)
We compute lower bounds for the four probabilities on thatrigand side.
IPII‘[EQ ’A] > IPII‘[U 7L> RH“H—||“H1/2 U H]
> g1 Pr{0 — [2..]|ul[Y?)| Do = 1] + g1 Pr[0 — [|H| + 2..0/2 — |[u]]]| Do = 1]

2 — ||lu| +1
oY | /2 4 1"/—
LY e )

=Q(1). (5.5)
The third relation was obtained using Fact 3.5(a); the stt¢orast was obtained using Fact 3.3; the last using
= |H|. Next we boundPr[&; | A]. Let D, denote the event
{v < D, <2v}, andQ, be the indicator random variable of the evéntn {v — u}. Forallv € C,
Pr{v 4 H | D,]
Pr{v /4 H]

EQ, | A] = Prlv — u| D, 1 {v 4 H}] Px[D,] = Q(%) (5.6)

vo=1§(u,v
where the last relation holds becaum[v —u|Dy,N{v A H}] > Prjv — u|D, =v] = @(m) and

Prjv — H|D,] < |H]| - W < \/5, sincel|ul| > 8|H[*; andPr[D,] = O (52=1). S0, forQ =3, Qu,

BQ A= Y BlQ, |4 = o201,

a—1
veC

And since theQ; are independent (conditionally oA), we have, by Fact 5.2(a), th&tr[@Q # 0|A] > 1 —
() = q(lul) Finally, sinces, = {Q # 0},

po—1

Prl&; | Al = (2. (5.7)

Next,
Pr[& | &1 N A] = Pr[& | Al > Pr[Ryy -1 7 u| Al = 6(1), (5.8)

where the last relation is obtained as follows. Fowadl R, _1,
Prjv — u|A] = Prjv —» u|v /A H| = O(Prv — u]),

by Fact 3.5(c); soEUeRHu”i1 Prjv — u|A] = O, Prjv — u]) = O(1), since the expected number of
in-contacts a node has is constant; and since the efents «} are independent, we have, by Fact 5.2(b), that
Pr[Ry, -1 # u| Al > e=9) = ©(1). The last bound we need is

Pr[&s| & NENA] > Prlu— R||u||/2 | D, = v] =0O(1), (5.9)

by Facts 3.1 and 3.3. Combining (5.4), (5.5), (5.7), (5.8} €.9), yieldsPr[¢ | A] = (=4, (]
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a—

We will now use Lemma 5.4 to show that]jfi| > A = ™" * " andi = o(A1/2) then

Pr||Yigsl| < |ull/2] Yo, ..., Yie1, {Vi = u}] = (2l (5.10)

o

By Lemma 5.4, it suffices to show that
Pr(|[Yigsl < [[ull/2] Yo, ..., Vi, {¥; = u} 0 {¥; — Vi 1}] = ().
Let H be theo-algebra generated B, ..., Y;—1,{Y; = u} N{Y; — Y;_1 }.
Pr{||Yits| < [Jull/2]|H]

> Pr [|[Vigs|| < lull/2| 7, {Yig1 4 Yi}] - Pr[Yiq £ Vil H]

> Pr [[|Yigs|l < llull/2| H, {Yis1 7 Y} 0 {1 Y]l > [ull/2}] - Pr[Ryyj-1 # u|H]

- (sl
because in the second-to-last line, the first probabilit@l@ h(llﬁ”/j)), by Lemma 5.4, and the second@g1),
similarly to the last relation in (5.8). We can now obtain theorem as follows:

e If Yy < Athen, by (5.1) and Lemma 5.1(a), applied fy = ||Y;|| andp = ©O(Inn), we haveE[Ly,| =
O(lnnlnX) = O(In®"1n).

o If Yy > A, letTy be the number of steps frolj until we reach a node within ring-distanéeof 0, and
T be the number of remaining steps to 0. Similarly to the désec A, E[Ty] = O(lna_l n); SO, we
just need to show thdE[T}] = O(In® ! nlnlnn). By (5.1) and Lemma 5.1(b), applied féf; = ||Y;]],

p = O(lnn), andt = 4plnn, we have thalPr|[T} > In3 n] < 1/n. Also, by (5.10) and Lemma 5.3,
applied forX; = ||Ya|, if i < In®>n/3, X; = 0, if i > In®>n/3, andp = O(In*"' n), we get that
E[min{T},In®n}] = O(n®"'nlnlnn). From this,E[T} |T) < In®n] = E[min{T},n3n}|T; <
In®n] < Emin{T1,1n®*n}] = O(In®"! nlnlnn). Therefore,

E[T1] = E[T1 | T) < In®n] - Pr[T} < 1In®n] + BT} | Ty > In®n] - Pr[T; > In®n]
< E[T}|T1 < In®n] +nPr[Ty > In®n]

O(In®“'ninlnn).

5.3 Proof of Theorem 2.4 case = 2

It is similar to the proof of case < « < 3. The next two lemmata are the analogues of Lemmata 5.3 and 5.4
respectively. Their proofs are can be found in the Appendix.
Lemma 5.5. If (Xy, X1,...) is a non-increasing, non-negative, integer-valued rangwatess withX, > A >
. 2
2, such that for allj with A < j < Xo, Pr[X;11 < 57¢| Xo,..., Xi_1,{X; = j}] > IOgTJ, where0 < € < 1,
then the expected number of steps until the process’ vatliees to at most is at mostc@;—x wherec = ¢(e).

Let (Yp, Y3, .. .) be the routing path frorj to O.
Lemma 5.6. If ||u|| > 45(i% + 1) then

n2 u
Pr{|[Visal| < [l [, ., Yict, ¥ = u} 0 {¥; £ Yia}] = (25kdy,

Note that, unlike in case < a < 3 where only nodes of out-degré®(Iln n) contribute to routing signifi-
cantly, now the contribution of nodes with out-degrees in@ewrange is significant.

The rest of the proof is completely analogous to that of @agea < 3. Instead of (5.10), we show (using
Lemma 5.6) that ifju|| > A\ = e¥V'®™ andi = o(A!/) then

1’12 u
Prf[|Vigs|| < [[ul*? | Yo, Vi1, i = u}) = Q(2ful);

In“n

and instead of Lemma 5.3, we use Lemma 5.5pfer ©(In? n) ande = 1/3.
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Appendix
A Appendix of Sections 2 and 3

A.1 In-degree distribution
Let D~ denote the in-degree of a nodedfn, «). Then,

- _ 1
LemmaA.l. Pr[D~ =k] < DR

Proof. Let X, be the indicator random variable of the evént— 0}. The in-degreeD~ of 0 is thenD~ =
>, Xu. Note thatX,, is stochastically smaller that a poisson random vari&blé¢;.,,) with expectatiory,,, such
thatPr[Poi(u,) = 1] > E[X,]. And sincePr[Poi(u,) = 1] = p,e "+ and

2
E[X,] = Pr[u — 0] < ,
vllull
by Fact 3.2, we can set, = ﬁ So, since theX, are independentD~ is stochastically smaller that

>, Poi(x,), which is also a poisson random variable with expecta}ion..,, = 3. Hence,
_ _ . 3, 3 [3e\F
Pr[D™ =k < Pr[D™ > k] < Pr[Poi(3) > k] =Y Se << (),
— 4l k! k
Jj>k
where the second-to-last relation follows by simple corapobs, and the last is obtained using the fact that
ek =3 kil > KR k. [
The following result is immediate from Lemma A.1.

Corollary A.2. If a > 2 then
O(qk), ifk=0(1);
o(qr), fFk=w(l).

Also, there is a constamtsuch that ifa. = 2 thenlPr[D~ = k] = o(q), for k > clnlnn; and if0 < « < 2 then
Pr[D~ = k] = o(qx), fork > clnn.

Pr[D™ =k] = {

A.2 Proofs of Facts 3.1-3.5

Proof of Fact 3.1.The right relation follows from the union bound. For the lkeflation, we have

1—6_12%, if kp>1,;
kp — (k§)2 > %, if kp<1/2,

IPE[”_’U|Du:k]:1—(1—p)k21—6_kp2{

where the second relation was obtained using the factithat < e*; and the second case of the third relation

using the fact that for > 0,e™* < 1 — x + 22/2. ]
Proof Sketch of Fact 3.2The left relation holds becaud&r[u — v| > Pr[u — v| D, = 1], sinceD,, > 1. The
right relation holds becauger|u — v] < 2Pr[u — v | D, = 1], sinceE[D,] = 2. |
Proof of Fact 3.3.By direct computation. Note that, by symmetry, the two cdse#’ are equivalent. |
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Proof of Fact 3.4.By Baye'’s rule, the left-hand side equals

Prfu /4 Us |{D, =k} N{u — U1}]

]PE[UHUl‘Du:k] IP]I'[U7L>U2|D :k] )

and
Pr{u 4 Uy |{Dy =k} n{u—Ui}] Prlus Us|D,=k—1] 1

Prlu /4 Uz | Dy = K] Prju 4 Uy| Dy =k — Prlus/ Uy| D, =1]

where the last relation holds becal®e[u 4 Us | D, = k] = Prju /4 Uz | D, = k — 1] - Pr[u 4 U2 | D, =
1]. [ |

Proof Sketch of Fact 3.5t is easy to show, by induction anthat if v; is the (unique)-th furthest from 0 node
in H thend(u,v;) > d+ i — 1. Assume without loss of generality that< n/2. Then, by replacing); by
u+1+14,fori=1,... |H|, we obtain

Prju— H|D, =k| <Prfu— [u+d.u+d+H)|D, =k]=Pr[0— [d.d+ |H|)| Dy = k].
We can now derive (b) and (c) as follows.
Pr[u /4 H|D, = k] > Pr[0 4 [d..d + |H|) | Dy = k] > Pr[0 4 [2..n/2]| Dy = k] < 1/2F,
sincePr[0 — [2..n/2]| Dy = 1] < Pr[0 — [1..n/2 — 1] | Dy = 1] < 1/2, by symmetry. And

Prlu 4 H| > ¢ Prju H|D, =1] > q1/2. |

B Appendix of Section 4

B.1 Proof of Lemma 4.1

Let
K =min{i : X; < p}.

We show thatE[K] > ¢ pln(X,/p), for somed’ = (¢, e) > 0. And sinceK is upper bounded by the number
of steps until the process reaches 0, the lemma follows.(ligt 117, . ..) be the sequence obtained by taking
the logarithms ofX,, ..., X, and lettinglV; = W, for j > K. Formally, fori > 0,

W; = Inmax{X;, Xg, 1},
where the ‘1’ is needed for the case whéfg = 0. We first show that for all,
E[W; — Wii1] < e1/p, wherec; = ¢i(c,¢€). (B.1)

SinceE[W; — W, 41 | X; < p] = 0, it suffices to show thak[W; — W, | X; = j] < ¢1/p, forp < j < Xp.

E(W; = Wipt | Xi =41 <Inj-Pr(Xip = 0| X; =41+ Y I Pr(Xi = /| Xi = j]
1<j/<j~2

+n—2 - Pr{Xp = — 1] X = j],

so, by (4.1),

. clnj ¢ j i /)€ j c c 1
EW, = Wi | Xi=j] < j.-l—— Z 1n]7' (]/’]), +1In .'7 < —+—-cae) + -
plnj —p, = 7 (=7 i=17p »p P
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where the last relation holds becatseZ; < -1y <1, and
. © e I\e -/ I\e . YAYS .
Z ln% : (]/’7 ?, = (j/] ?, 111'77 + Z (]/j ?, ln%
S P L VR o Bl L LS AN el A
<J'<i 1<5'<j/2 3/2<5'<j=2
2 1, 2 j—j
S Z TID%"i' Z '—'/'] '/‘7
v R L N Rl | J
1<5'<j/2 3/2<5'<5 -2
< ea(e)

Therefore, E[W; — Wi1] < ¢i/p, fore; = ¢- (1 + ¢2) + 1. We can now boundE[K] as follows. Let
K= o-(In Xo — Inp).

Pr[K < k] = Pr[X, < p| = Pr[W, <lnp|] = Pr[Wy — W, > In Xy — Inp],

so, by Markov’s inequality,

k—1 - .
Pr[K < k] < E[Wo — W] _ B 0 (Wi = Wi)] < Kci/p _ l
InXg—1Inp InXg—1Inp InXg—Inp 2
From that, X
1
E[K] > k- Pr[K > k] > - dpin 22 ford = —.
2 1% 461

B.2 Proof of Lemma 4.2

We prove the following more general version of Lemma 4.2.
Lemma B.1. If ||u|| > ||| and||7|| > min{||7||, [|«|| — 1} then

E[L) | Nyy =] > E[LY | Ny i = 7], (B.2)
E[L)] > E[LY]. (B.3)

Proof. We prove the two results simultaneously by inductiorjjefi. Clearly, both results hold if’ = 0. Below
we assume that’ # 0 and, thusu # 0. The induction hypothesis is that for allv’ with ||u]| > ||| > |||,
and for allw, w’ such that|w|| > min{|[«w’||, [|[v'|| — 1},

(H1): BIL) [N,y =w] > BLY [Ny =w/] and  (H2): E[L)] > B[L)].
From this hypothesis it is immediate that
(IHY): B[L) | Noy =w] =B[L) |Nyy = |jwl]  and  (IH2): B[L)] = BIL])].
We derive (B.2) as follows. By (IH2,

BILY | Ny =] =14 D BIL g1 o] - PrNu2 = 0| Nuy =171,
v

Given thatN,,; = 7/, suppose that we compuiegf using as(u,r) and As(u,r) in place ofay(u/,r") and
Ay (u',r"), respectively, and let/ be the resulting quantity. By the optimality of the and A, (condition (4.2)),

ElLy | Ny =] SBM | Nyg =1"1= 14+ By gw-ve o) - PrNw2 = 0| Nug = 7).
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Combining the above two results and applying (IH2), we ob{Bi.2). We now derive (B.3).

E[L)] = E[L) | Nu1 = r]- Pr[Ny; =r].

Suppose that when computirig! we replacen; (u') and A; (u') by a1 (v) and A; (u), respectively, and e/’
denote the resulting quantity. By the optimality of theand A, and (IHZ) (for v = /),

E[LY) < B[M') = Y B[LY | Ny s =] - Pr[Nyy =7].
Combining the above two results and applying (IH1) (foe u), yields (B.3). |

B.3 Proof of Lemma 4.3
We show that iff, H' € H,, then

E[L, |{u /A H} N {R)y-1 /~ H'}] > E[L)]. (B.4)

The lemma follows then by taking = s and H, H' = (). We prove (B.4) by induction offu||. In the induction
we also show that if: # 0 then

E[Ly [ {Sy =} N {Ryuy_1 £ H}| > BILY | Nyx = 1), (B.5)

whereS,, for v # 0, is theout-neighborof v in G(n, «) that is closest to 0 (if there are two such out-neighbors
then S, is the one thaGREEDY would choose); and, = 0. Clearly, (B.4) holds ifu = 0; so, suppose that
u # 0. Let(, be thein-contactof v that is in R, _; and is closest to 0; ang) = v, if no such node exists.
(Again if there are two candidate nodés,is the one thaGREEDY would use.) Defin€ = { R, -1 # H}.

ElLy [{Su =r}NE]
> 14+ E[Le [ {IGull > [Irll} 0 €1 Pr{l|Cull > {Ir] ] €]
+ > E[Ly | {Cu = v} N {Sy = v'} NE] - Pr[{¢ = v} N {S, = v} | €]

vt <ol <r
+ min { E[L, [{r # u} 0 {[|Gull = I7][} N E] - Prl[Cull = [I7]l [ €],
S EL {6 =} n{S, = '} NE] - Prl{¢, = v} N {S, = '} | €],

vl || <[l =l

E[Ly [{r 7 u} 0 {{IGull = [I7l} 0 €] - Pr{{[ICull = I} 0 {Cu # 7} [ €]
+ Y EBIL {6 =rIn{s =v}Inel - Pr{{¢, = r} 0 {S, = '} €]},

o<
(The termmin{-} is a bound for the casg,| = ||r||.) But
E[L [ {IGull > 71} N €] = BlLy | {r / HU{u}} N {Ryy_1 4 HU {u}}] > B[],

by the induction hypothesis, and, similarl§{L, | {r 4 u} 0 {||C.]| = ||7]|} N E] > B[LY]. Also, for ||| <
[oll < [l

E[Ly, [ {¢u = v} N {Sy = 0"} NE] = B[Ly [ {Sy = v'} N {Ryy—1 /& H U {u}}]
> E[LY | N,1 = o] > EB[LY],

20



where the first inequality in the second line holds becaudbefnduction hypothesis, and the second follows
from (B.2). By combining all the above and then applying (Bv@e obtain

E[L, | {Su =} NE > 1+ E[LM] - Pr|Cul| > |I7]| | €]
+ 3 B -Pr{{llca < 7y n {Se, = '} €]
o [ || < |7l

Let Z, be the set of all thén-contactsof v that are inR,—; and are closest to O (< |Z,| < 2). Usingu and
H in place ofay(u, ) and Az (u, r), respectively, when computingﬁf, and using also (B.3), we get

B(LY | Nuy =] < 1+ B[LY] - Pr[min [|Sul] > [Ir] €] + %E[LJN | Prlmin [|Sul| = j}|€]
1<]||r
<1+ E[LY]-PrllGul > Il €]+ D BT Pr{licull < I} 0 {lISc. )l = 7} €]
g<lir|

We obtained the last relation by decreasing the probagslinside the sum, and respectively increasing the
probability by WhichIE[L{}/] is multiplied. Combining the last two results and applyilg3), yields (B.5). We
now derive (B.4).

E(Ly [{u 4 HY N {Ryy-1 # HY =D BlLu[{Su = r} N {Ryjy-1 / H'} - Pr[Sy = r|u 4 H].

Usingu and H in place ofa;(u) and A, (u), respectively, when computingﬁf, and using also (B.2), we get

E[LY] <> E[LY | Nug =] Pr[S, = r|u /4 H].
Combining the two results above and using (B.5), we obtaid)B

B.4 Proof of Lemma 4.4(b)

We consider an “early-stopping” variation &f that differs from the original process as follows. ket 0 be
the current node, suppose théf ; = r, and letZ be the set of the in-contacts @f(u, r) that are inRq, ()| -1
and are closest to 0 (recall the definition/gffrom Section 4.2.1). IZ # (), let D be the maximum number of
out-contacts that any element Bfhas, i.e.,.D = max,cz D,. If D > In?n then the process jumps to node 0
in the next step (and it finishes). We denoteMy the next node after nodein this new process, and by
the number of steps to reach 0 framClearly, E[Z2] > E[L}], so, to prove the lemma it suffices to show that
IE[L%M] = Q(In%? n/Inlnn). We will prove below that for all: with ||u|| > p = Inn/Inlnn,

O(smr=), f0<j<|lul-2;
Pr[Muj]{ é’“ | ”> (B.6)

A=), =0

From this and Lemma 4.1, applied f6fy = n/4, X;+1 = ||[Mx,||, ande = 0, it follows thatIE[L%ﬂ =
Q(In?n/Inlnn). We prove (B.6) similarly to (4.3).

e CASE: j #0.
Pr{| M|l = j] < Pr[Nua|| = j] + max Pr[{|[Nuz] = j} 0 {D <In’n} [ Nyg =1].  (B.7)
Similarly to (4.6),
Pr[{||[Nuz2ll = j} N {D < In*n} | Nyy = 7]
< > > Pr[{v e Zo,} n{lISull = j} N {Dy = k} | Rjay)—1 # A2,

vij<[vl<flazl k<In®n
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so, asin (4.10),

Prl{[[Nuzl = j} N {D < In®n} | Ny = 1]

kL 1
O( PO D T <a2v>+u<a2j>)

v:jH2<|[v||<]|az]| k<InZn

=0 (= s =7) = (e =77) ©9
Combining (B.7), (4.5), and (B.8), yields the top part of@B.
e CASE: j = 0.
Pr{[| M, = 0] < PNy, = 0] + max Pr[D > In®n | Ny = ],
and

Pr(D>1n’n|Nyy=r]< Y > Pri{v—a} N{Dy, =k} |v A A

vi vl <llaz] k>In*n

< Y Y Zpef{o—a}n{D, =k

v:vf[<[laz]| k>In®n

_ In |]a2H>
=0 E , E ——— 1 =0 ( .
( ”aZH - U)) vin’n
v:|vl|<||laz|| k>1n? n

where for the second relation we used Fact 3.5(c), and fothihg Fact 3.1. From the above two results

and (4.5), 1 Injag] 1
o nflaz) 1
Prf||M, || = 0] = O <yHa1H * yln2n> =0 <Vﬂ> '

B.5 Proof of Lemma 4.4(c)

We show that for alt, with v < [ju|| < A,

O (Us™2) " if 0 < j < Jluf —2;
Pr{|No|| = j] = {O g (H1 [ J)) B (B.9)
Vln||u||>’ =5

From this and Lemma 4.1, applied fofy = A\, X;4y1 = ||Nx,|, p = v, ande = 3 — « it follows that
IE[L/AV] = Q(vln)) = Q(In“ ! n). The derivation of (B.9) is similar to that of (4.3) (througésults (4.4)—
(4.10)). Specifically, the only difference is that we use aemefined bound instead of (4.7), whe¢n# 0, and
we ensure that the probability bounds used in (4.10) do reeexk 1, whery = 0.

e CASE: j # 0. By replacing the upper bound in the third line of (4.7) by #ixact quantity, we have

r [”Sv” =] | {v € Za,} N{Dy =k} N {RHazH—l Y AZ}]
=Pr[{v—{j,n—j}}n{v Rj1}[{Ds =k —1} N{v £ As}]
= Pr [v— {j. n— 3} {Dy = k= 1} 1 {v £ As}]

Pr v Ri—1|[{Dy =k —2} N {v £ As}]

k-1 Lol + )’f
=0 - (1= ol , B.10
(u(\\vu—,n ( Tol -7 +1 (8:10
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where the last relation was obtained using Fact 3.3.~Let (1 — %ln |\1|;||7|J!}ri1)k_2- Similarly to (4.10),
but using (B.10) in place of (4.7),

N 1
PNzl = 71 Nus = O< 2 2p rvu—j T (Hazl!—j)>

v:j+2<]|vl[<[laz|| K

_ of /5>
B O< ol —7) ) (B.11)

because, as we show below,

> Z =0 ’ <M>3_a . (B.12)
([lv H—J |<12H—||U||) Jull =5\ J

vij<|[ol<llazll K

Combining (4.4), (4.5), and (B.11) yields the top part of9B.It remains to prove (B.12). For < j <

[o]] < llaz]l,
k-2

v < <1——1 _Naall >k_2<<1——j ) ’
- azll —j - [|az|]

where for the last relation we used the fact that + < e*. So, the left-hand side of (B.12) is at most

2 (1= j/llaa])"~ In(|as | S A
2 O ol el ~ o) O( o= 2k (1) )

vij<l|lol|<[az & k

O((””C”Q”)3 a) since only the firs©(x) terms of the sum are non-

= 1/2, 80,k ~ M Therefore, the left-hand side

. k-2
But -, k> (1 — j/llazll)

negligible, wheres is such that(1 — j/HCLQH) v
of (B.12) is

o (M () ) o (S () ) o (w5 (5D )

. . 3—a . .
where the first relation holds becau@é’# decreases as increases; and the second relation holds
becausén ||ul| <In\ = 2,

CAsE: j = 0. By rewriting the first relation in (4.10) so that the bound®di for the probabilities do not
exceed 1, we obtain

Pr{|[Nuz| = 0] Ny = 7]

. k 1 1
:O< > 3min{ton H}'mm{l’wuazu—uvu)}'k_“M)

vi2<|[of[<[laz|l k

1 1 1
~0 " —0(——), B.13
(vo“lHazHo“2 VHC@H) <V1nHUH> (B13)

where the first relation in the last line holds because théldosum in the middle line i) (ﬁlaaﬁ)
as it is easy to show. Combining (4.4), (4.5), and (B.13)dgi¢he bottom part of (B.9). ’
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B.6 Proof of Lemma 4.5
Let€ = {|[Vi| > A3} 0 ({Yi # Yi-1} U{Dy, = 1}), and

P= () {Ds < o]}

vE Ry

We will show thatPr[€ | P] = ©(1). This, together with the fact tha@tr[P] = ©(1), which is easy to show,
yields the lemma. To prove th@r[€ |P] = O(1) it suffices to show that for arbitrary and instantiation
<y0, - ,y,{_1> of (Y(), - ,Yﬁ_1>, and forH = {K = KJ} N {(Y(), - 7Yn—1> = <y0, c.. ,y,{_1>},

Pri€|HNP]=06(1). (B.14)
Define the set$;! = {u € R, : D, =1} andR7 ! = {u € R, : D, # 1}. Define the events

& = {R]" — Yi 1}, & ={Rys — Y1},
E3={Yr_1— Ry} N{Yr_1 7/ Yi_2}, Ex={Yx1— Ryus}tnN{Yxk_1— Yk 2}

Clearly€ C |J;_, &, so,
4
Pr[€ | HNP] < Z r[& | HNP). (B.15)

We now compute upper bounds for the four probabilities omitiie-hand side. Letl = { Ry /4 (o, .-, Yx—2)}-

IPII‘[FfZ\él — Yr—1 ’A]

P <P 71 Kk— K— = '
wlea [HOP] < PrBT = gt [ {Ba = i} N A = 5 —— =%

It is easy to show that for any € Ry, Pri[{u — ye_1} N{D, # 1}}|A] < Pr[{u — yu—_1} N{D, =
1}} | A], and, using this, thaPr[R]' — y. 1| Al < Pr[R5! — y._1| Al Also, Pr[Ry — y. 1| Al >
Pr[R.' — yo 1| Al + Pr[RY' — yo 1| Al — Pr[RL' — yo 1| Al - Pr[RY' — y,. 1| Al because of
the negative dependence betwe@®' — y. 1} and {R3! — y, 1}. Finally, Pr[Ry' — y. 1| Al =

O(ZIn IIy”fj;ﬁL) = O(£In\) = o(1). Combining all the above we obtain

Pr(€ | HNP] < 1/2 + o(1). (B.16)

Next,
IPII'[R)\l/B — Yr—1 ‘A]

IP]r[gz "H N P] < IPII“[RAl/S — Ys—1 ’ {R)\ - yﬁ_l} N A] - IPII"[R)\ — Yp—1 ‘A] ’

and since forn = X or A2, Pr[R,,, — ys—1| Al = O (L 1n %)

Pr[&|HNP] = o<ln";f> = 0(A"23) = o(1). (B.17)
n—A>\

LetB = {yn—l 7L> <y07"' 7yf€—2>} N {Dyn 1> ”yn 1H}

Prly.—1 — Ryi/s | B]
Pr[yﬁ—l — Ry | B] ’

Pri& | HNP] < Prly.—1 — Ry |[{ys—1 — RA} N B] =

and since form = A or A2, Prly, 1 — Ry | B] = O(Prlys 1 — Ryn]) = O (% In L),
Pr[& | HNP] = OA"2/3) = o(1), (B.18)
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as before. It remains to boutit-[€4 | HNP]. LetH = (yo, - . ., Yx—3), @ndC = {yx—1 — yx—2}N{yx—1 #~ H}.

IPIl“[y,.@_l — R)\1/3 ‘C N 77]

Pri& |HNP] < Prlyc—1 — Ry |[{ys—1 = RA\}NCNP] = Prly._1 — Ry\|CNP] °

Form = Aor A2, andk’ = min{||yx_1|), kmax }»

Pr{ys—1 — R |C NP
k/
=Y Prlyes = R |CN{Dy,_, = k}]-Pr[D,_, = k|CN{Dy,_, < llya-sl}]
k=2
k/
=" Prlya-1 — Ron | {1 > HY N {Dy,_, =k — 1}]

k=2
K Prys—1— Yu—2[{ys-1 # H} N {Dyn , =k} Prly.—1 /A H| Dy, , = k]
PriCN{Dy, , <llys-1l}]
— i: ]Pm[yl‘{/_l - Rm ‘ Dynfl = k - 1] . qk ]Pl[‘[y,{_l - yﬁ_2 ‘ Dynfl = ] IPE[yH 1 7L> H ‘ Dyl{ 1 k]
2 Prly.—1 7 H|Dy,_, =1] Prly.—1 /> H| Dy, , =1] - PrlCN{Dy,_, < |lys-1ll}] ~

where the last relation was obtained by applying Fact 3.dewso,Pr[E, | H N P] is at most
e ,32 Prlys—1 — Ryys | Dy, =k = 1] Prlye—1 = yu—2|Dy,_, = k] - Prlys—1 / H|D,,_, =K
Yohes g2 Prlye1 — By Dy, =k —1]-Prlys1 — ys2| Dy, , = k|- Prlys—1 / H| Dy, , = K]
Zk ZkIP]r[yH 1= Ryys | Dy, =k —1]
Sk Prlye—1 — Ry| Dy, , = k — 1]

by Fact B.2 below (it is easy to verify that the conditions ecEB.2 are met). Finally, it is not hard to show
that fraction in the last line is larger whé,.x > ||y.—1, and then the numerator {8/3 + o(1)) In A and the
denominator i1 + o(1)) In A. Therefore,

Pr[&s|HNP] <1/3+0(1). (B.19)
Combining (B.15)—(B.19) yield®r[€ | H] < 5/6 + o(1), which implies (B.14).

Fact B.2. Let {a;}} |, {z:}F_,, and {y;}%_, be non-increasing, positive sequences such {ﬁa}’f . Is non-
decreasing. Then

)

k k
i Gii < 2im1 Ti
Zf:l ayi Zf:lyi

Proof. Let
. .
4,0:2] ’  and iozmax{izﬂgcp}.
Zj Yj Yi
Note thatiy is well defined, sincey — =4%@3/%) ~ 25%@/W) _ 51 Normalize thes; such thata; > 1, if
T Y Y1

i < ig, anda; < 1,if i > iy. By the facts that for any, 3,~,6 > 0, if % > %then > %ig and |f°‘ < ¥ and

B> dtheng > 5=, we have

o> DT+ D, (@i — Dy Z i+ Dicip@i — Vi = 3opi (L~ ai)zi 37, aia

TV D<o (@i — Dy Z Vit 2iciolai — Dy — 2ins U — @)y 3o aiy:
(a;
1<ig

where the first relation holds becaus&if,_; (a; — 1)y; # 0 the %:' (a 1))y < % < ¢; and the second
= i<ig i Yig

Zi>i0(1_ai)xi > Tig+1 > > 2 9”1+ZL<LO(“2 Dz;
Zz‘>z‘0(1_ai)yi — Yip+1 > Z/H‘ZKLO(GZ Dy;

-1

T4

relation holds because f, —a;)y; # 0then

z>z)(
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B.7 Proof of Lemma 4.6

We consider an early-stopping variationGREEDY, where if in some step we visit a nodec R, that has anin-
contacty’ € R)jy|—1 with D, > 1 then we jump to O in the next step. Let, denote the number of steps it takes
in this process to reach 0 starting from nadeLet also(Y; = Yp, Y/, Y5, ...) be the sequence of nodes visited
when starting front;. Clearly,L,, > L/,, S0, to prove the lemma it suffices to show tRAL/, | H] = Q(In*/? n),
whereH is thes-algebra generated By, ..., Y/, {Y/ = u} N ({u /4 Y/} U{D, = 1}). We will show
below that for allj > i andv with v < |jo]| < ||u],

]PII"[Y/ — 1M N {Y/ =} = 0 ué(i,v’)) , If0< HU/H < lofl =2 (B.20)
ah ! O (sdpp) . e/ =0. '
From this and Lemma 4.1, applied fof, = ||Y/_ |||, p = v, ande = 0, it follows that B[L; |H] =

Q(vIn\) = Q(In*/3n). We now prove (B.20).
e CASE: v/ # 0. The left-hand side of (B.20) is at most

1
g Felo = 1o ]+ g Pl — 010/ £ =0 (i)

by Facts 3.2 and 3.5(c).
e CASE: v/ = 0. The left-hand side of (B.20) is at most

P 0 H Pr[0 H
Jnax rlv = 0|v 4 ]+H§Ig< [0 — v |v' A H]

+ fax Pr({r — v} N {D; # 1}|r /> H] = <;>

vin |v]]
TER|y| -1

because the first two terms a(De(V”vH) as before, and, by Fact 3.5(c), the third term is

o( > Pr[{rﬁv}ﬂ{Dr#l}D:O( > quIPrr[rHMDT:kr])

r€R|v) -1 rER)v) -1 k#l

( > Y g mn{l ué(lz,m}):‘)(lnigv”):O<u1n1||v||>’

rER| -1 k#1

where the last relation holds becaugd < A andjs = O(v).

C Appendix of Section 5

C.1 Proof of Lemmab.1

Let ); be the indicator random variable of the evgnf; < X;_;/2}. The number of steps to reach 0 is upper
bounded by’ = min{j : >7_, Q; > }, because it takes at mosthalvings” to get fromXj to 0. Also, since
IP]I'[XZ < j/2 | Xo,..., X, 9, {Xi—l = j}] > 1/p, E[Qz | Q1,... 7Qi—1] > 1/p Therefore,I" is stochastically
smaller than the sum of independent geometric random variables, each with prbtyaparameterl/p, and,
so, E[T] < kp. Hence, part (a) holds. For part (b), we observe thgt , Q; is stochastically larger than the
binomial random variabl®8(j,1/p); so,

t
Pr(T > t] = Pr [ZQZ < /{} < Pr[B(t,1/p) < k] < e 21 <o a0,
where the second-to-last relation is obtained using CHigsrmunds, and the last holds because 4pk.
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C.2 Proof of Fact 5.2
Since the); are independen®r[@ = 0] = [[,(1 — E[Q;]). So, by the fact that for alt, 1 — z < e,

]PII‘[Q = O] < H e~ BlQi] — o~ BlQ] e_]E[Q}’

and, by the fact that for alt < 1/2,1 — 2 > e=#~%",

Pr(Q = 0] > He—(lﬂE[QiDE[Qi] > He—%E[Qi] — oS TGEQI] — ,~5EQ]

C.3 Proof of Lemmab.5

It is similar to the proof of Lemma 5.3. L, = min{i : X; < X’k}, whereo = ﬁ We must show that

E[TO] < lanp)\' Fork > logU hlln)gxo » I, = 0. For0 <k < IOgo 1?n)§\o.

]PII‘[Tk :i+1‘X0,...,Xi,{Tk+1 §i<Tk}]
2k1 2
= Pr[Xi < A7 Xo,. . Xi (A7 < X, < ATy > 108 A
p

So, Ty — Ty Is stochastically smaller than a geometric random varialile probability parametefﬂllpﬁ.

Therefore,
P p
ED] = B[ 320 = Tya)] €3 oy < o)y
k k

C.4 Proof of Lemma 5.6

It is similar to the proof of Lemma 5.4. We defigesuch that if€ N {Y; = u} occurs then: (1};,; is an in-
contact ofY;; (2) it has out-degree between roughily||'/? and|ju'/2; (3) [|ul|?/? < ||YVie1 | < |Jul — [Jul?/?;
and (4) some of the out-contactsgf; ; is in Ryy)j2/s- Formally, let

C = Ry jufors \ Bjujers,  C*={v € C: wlful* < Dy <wljul '},
define&y, &, Z, and&s as in the proof of Lemma 5.4 (using the above valuefty, and let
Eo = {u 7> Ry puprs -
Again we havef = £ N & NE NEyandE N{Y; = u} C {||Yira| < |Ju]?/?}, and we show thaPr[€ | A] =
2
Q(M) whereA = { R, /» H}. Equation (5.4) still applies and we bound the probabdite its left-hand

Inn
side. Similarly to (5.5), (5.8), and (5.9), we have that

PH‘[EO ’A], PH‘[EQ ’51 N A], ]1311"[53 ’51 Né&yN A] S @(1) (C.H

Also, similarly to (5.6), ifv € C and@, is the indicator random variable of the event — u} N {v|ju|'/? <
D, < v|ul/*/?} then

vlul|t/?
= rjiv — — .IP]I'[U7L>H|DU:]<;]'
E[Qu| Al = k:%l/gp [v— u|{Dy =k} N {v A H}] Prio 5o W
v]ul|t/2
= B 1N g
o 3 ) )
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where the second-to-last relation holds becaiizgy — w|{D, = k} N {v 4 H}] > Pr{v — u|D, = k] =
@(—V(;('Zv)), sincek < vé(u,v); andPrjv — H|D, = k] < |H|- —2&

S S 1/2, sincek < vllu||/2 and
l[ul| > 4%i% = 45| H|%. SO,E[>",cc Qu | A] = Q(%)’ and, similary 1o (5.7), we obtain

Applying (C.1) and (C.2) to (5.4) yieldBr[€ | A] = Q(jul),

In’n

(C.2)
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