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ABSTRACT
We study the time and space complexity of randomized Test-
And-Set (TAS) implementations from atomic read/write
registers in asynchronous shared memory models with n
processes. We present an adaptive TAS algorithm with
an expected (individual) step complexity of O(log∗ k), for
contention k, against the oblivious adversary, improving a
previous (non-adaptive) upper bound of O(log log n) (Al-
istarh and Aspnes, 2011). We also present a modified ver-
sion of the adaptive RatRace TAS algorithm (Alistarh et al.,
2010), which improves the space complexity from O(n3) to
O(n), while maintaining logarithmic expected step complex-
ity against the adaptive adversary. We complement this up-
per bound with an Ω(logn) lower bound on the space com-
plexity of any TAS algorithm that has the nondeterministic
solo-termination property (which is a weaker progress condi-
tion than wait-freedom). No non-trivial lower bounds on the
space requirements of TAS were known prior to this work.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems
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1. INTRODUCTION
In this paper we study the (randomized) time and space

complexity of Test-And-Set (TAS) implementations from
atomic registers in asynchronous shared memory systems
with n processes. The TAS object is a fundamental synchro-
nization primitive. It has been used in algorithms for classi-
cal problems such as mutual exclusion and renaming [3, 9].

A TAS object stores a bit, whose value is initially 0. It
allows a single operation, TAS(), which sets the bit and re-
turns its previous value. TAS objects are among the simplest
natural primitives which have no deterministic wait-free lin-
earizable implementations from atomic registers, even in sys-
tems with only two processes. In fact, in systems with two
processes, a consensus protocol can be implemented deter-
ministically from a TAS object and vice versa.

For randomized shared-memory algorithms, adversary
models are used to describe how the scheduling is influenced
by the random decisions made by processes. The strongest
reasonable adversary is the adaptive adversary, which bases
scheduling decisions on the entire past history of events in-
cluding coin flips made by processes. An efficient random-
ized implementation of a TAS object from O(n) registers
dates back to 1992: Afek, Gafni, Tromp, and Vitányi [1]
gave an algorithm with an expected (individual) step com-
plexity of O(logn), which means that the maximum number
of steps taken by any process has expectation O(logn). Re-
cently, Alistarh, Attiya, Gilbert, Giurgiu, and Guerraoui [3]
presented an adaptive algorithm called RatRace, in which
the expected step complexity is logarithmic in k, the total
number of processes accessing the TAS object. The space
requirements of RatRace are higher, though, as Θ(n3) reg-
isters are needed.

Even though non-trivial lower bounds are not known, no
TAS algorithm with a sub-logarithmic expected step com-
plexity (against the adaptive adversary) has been found, yet.
The adaptive adversary, however, seems to be too strong in
many cases to model realistic system behavior. Motivated
by the fact that consensus algorithms benefit from weaker
adversary models, Alistarh and Aspnes [2] devised a very
simple but elegant TAS algorithm with an expected step
complexity of O(log log n) for the oblivious adversary model,
where the adversary has to make all scheduling decisions at
the beginning of the execution. In the following we denote
this algorithm by AA-algorithm. Although not explicitly
mentioned in the paper, the AA-algorithm even works for a
slightly stronger adversary, the so-called R/W-oblivious ad-



versary. An R/W-oblivious adversary can take all past oper-
ations, including coin-flips, of processes into account when
making scheduling decisions, but it cannot see whether a
process will read or write in its next step, if that decision
is made by the process at random. Since the AA-algorithm
uses RatRace, its space complexity is also dominated by the
Θ(n3) registers from the RatRace implementation.

Motivated by their result, Alistarh and Aspnes asked
whether any better TAS algorithm exists for the oblivious or
even stronger adversary models. We answer this question in
the affirmative: We present an adaptive algorithm that has
expected step complexity of O(log∗ k) against the oblivious
adversary, where k is the maximum contention. In fact, our
result holds for the slightly stronger location-oblivious adver-
sary. This adversary makes scheduling decisions based on
all past events (including coin-flips), but it does not know
which registers processes will access in their next step, if
those decisions are made at random. Further, our algorithm
is the first one with sub-logarithmic expected step complex-
ity that needs only O(n) registers.

However, our algorithm is not efficient against the R/W-
oblivious adversary. Instead, we present a modification of
the AA-algorithm that needs only O(n) registers and is
adaptive, i.e., its expected step complexity is O(log log k)
if the contention is bounded by k.

The AA-algorithm has the nice property that its perfor-
mance degrades gracefully when the adversary is not R/W-
oblivious, and against the adaptive adversary it still achieves
an expected step complexity of O(logn). This is a desirable
property, as one does not need to rely on the system not to
behave like an adaptive adversary. In its simple form, our
adaptive algorithm with expected step complexity O(log∗ k)
does not exhibit this behavior—an adaptive adversary can
find a schedule where processes need Ω(k) steps to com-
plete their TAS operation (where k is the maximum con-
tention). However, we present a general method to combine
any TAS algorithm A with RatRace, so that the combined
algorithm inherits the “best” complexity from both models.
I.e., if A has expected step complexity C(k) against an R/W-
oblivious or location-oblivious adversary, then the combined
algorithm has expected step complexity O(C(k)) against the
same adversary, while at the same time it achieves O(log k)
expected step complexity if the adversary is adaptive.

We complement our algorithms with lower bounds. First,
we show that at least Ω(logn) registers are needed for any
randomized TAS implementation (from atomic registers)
that satisfies the progress condition nondeterministic solo-
termination [10], which is strictly weaker than wait-freedom.
This is the first non-trivial lower bound on the space com-
plexity of randomized TAS implementations.

Finally, we show for any randomized TAS implementation
for two processes, that the oblivious adversary can schedule
processes in such a way that for any t > 0 with probability
at least 1/4t one of the processes does not finish its TAS()

method call within fewer than t steps. This result imme-
diately implies the same lower bound on 2-process consen-
sus, complementing a lower bound by Attiya and Censor-
Hillel [6]. The authors showed for some constant c that
with probability at least 1/ct any randomized f -resilient
n-process consensus algorithm does not terminate within
t(n−f) steps. However, their lower bound proof only works
for n ≥ 3 processes. Our lower bound thus fills in the miss-
ing 2-process case.

Preliminaries
We consider an asynchronous shared memory model where
up to n processes communicate by reading and writing to
shared atomic multi-reader multi-writer registers. Processes
may fail by crashing at any time. Algorithms are random-
ized and can use local coin-flips to make random decisions.
The scheduling and process crashes are controlled by an ad-
versary, who at any point of an execution decides which
process will take the next step. An adversary is adaptive
if a scheduling decision is based on the entire past execu-
tion, including the results of local coin-flips. An adversary
is location-oblivious [4] if a scheduling decision is based on
any shared memory steps processes have taken in the past,
and the type and argument of pending write operations (but
not the register on which the operation will occur). An ad-
versary is R/W-oblivious if a scheduling decision is based
on any shared memory steps processes have taken in the
past, and the locations of pending shared memory opera-
tions. While the R/W-oblivious adversary “knows” which
register R a process is going to access in its next step, it can-
not take into account whether the process reads or writes R.

We say that a randomized algorithm A has expected step
complexity t, if for the random execution obtained by a
scheduling of the“worst”adversary from a given set of adver-
saries, the maximum number of steps taken by any process
has expectation t. The contention of an execution, usually
denoted k, is the maximum number of processes taking at
least one step in that execution. If the expected step com-
plexity t is a function of k (instead of n) then we say that
the algorithm is adaptive.

A Leader Election object, LeaderElect, provides a
method elect(), which every process can call at most once
and which returns a binary value. If some processes call
elect() then at most one such call can return the value
True, and if no process crashes then exactly one elect()

call returns True. If a process’ elect() call returns True or
False, then we say the process wins resp. loses the Leader
Election. It is not hard to see that any (randomized or de-
terministic) implementation of a LeaderElect object can be
used together with one shared atomic register to implement
a linearizable TAS object [11]. In this implementation, a
TAS() method call consists of at most one call of elect()

and in addition one read- and possibly one write-operation.
Therefore, in this paper we will implement LeaderElect ob-
jects, and we don’t have to worry about linearizability.

In order to implement Leader Election, we use several
other objects as building blocks. One building block is a
randomized 2-process LeaderElect object which uses only a
constant number of registers, and where the elect() method
has constant expected step complexity. Such an imple-
mentation was proposed by Tromp and Vitányi [13]. An-
other building block is a (deterministic) splitter object [12],
Splitter, which provides the method split(). The method
takes no parameters and returns a value in {L,R, S}. If a
process’ split() call returns S, we say that the process wins
the splitter. If k processes call split(), at most k−1 receive
the return value L, at most k − 1 receive the value R, and
at most one receives the value S. Thus, if only one process
calls split(), the method returns S. A randomized splitter
object [7], RSplitter, has the last two properties above, i.e.,
at most one split() call returns S, and if split() is called
only once then it returns S. But now, if a split() call does
not return S, it returns L or R independently with proba-



bility 1/2—thus it is possible that all calls return the same
value in {L,R}. Deterministic and randomized splitters can
both be implemented from O(1) atomic registers such that
any call to split() takes only a constant number of steps.

2. FAST LEADER ELECTION
In Section 2.1, we introduce the Group Election primi-

tive, and present an implementation of a Leader Election
object from Group Election objects. Then, in Sections 2.2
and 2.3, we describe randomized implementations of Group
Election from registers, for the location-oblivious and the
R/W-oblivious adversary models.

2.1 Leader Election from Group Election
A Group Election object, GroupElect, provides the

method elect(), which takes no parameters and returns
either True or False. We say that the processes whose
elect() call return True get elected. If some processes call
elect(), then at least one process must get elected. The
performance of a GroupElect object is measured by the to-
tal number of processes that get elected. We define the
performance parameter of a GroupElect object to be the
smallest function f : {1, . . . , n} → [1, n] such that the ex-
pected number of processes that get elected is at most f(k),
when k ∈ {1, . . . , n} processes call elect().

We now describe an implementation of a LeaderElect ob-
ject from n GroupElect objects GE1, . . . , GEn. The imple-
mentation uses also n Splitter objects SP1, . . . , SPn, and n
2-process LeaderElect objects LE1, . . . , LEn. Each process
participates in a series of Group Elections on GE1, GE2, . . .
If a process does not get elected in one of the Group Elections
it participates in, then it immediately loses the implemented
Leader Election. If a process gets elected in the Group
Election on GEi, then it tries to win splitter SPi. If its
SPi.split() call returns L, then the process loses the Leader
Election. If it returns R, then the process continues with the
next Group Election, on GEi+1. Finally, if the process wins
SPi, then it does not participate in other Group Elections,
instead it participates in a series of 2-process Leader Elec-
tions, on objects LEi, LEi−1, . . . , LE1, until it either loses
one of these elections or wins all of them. In the latter case,
it wins the implemented LeaderElect object, and otherwise
it loses it.

The proof of correctness of the implementation is straight-
forward, so we just present a sketch. First observe that at
most n− i+1 processes call GEi.elect(), and thus no more
than n LeaderElect objects are needed: If j > 0 processes
callGEi.elect(), then at most j processes call SPi.split(),
at most j− 1 of them receive the value R, and thus at most
j − 1 call GEi+1.elect(). Next we observe that each 2-
process LeaderElect object LEi is indeed accessed by at
most two processes: the winner of SPi and the winner of
LEi+1 (if i < n). The winner of the implemented Leader-

Elect object is the winner of LE1, thus at most one process
wins LeaderElect. Finally, if no process crashes then some
process wins: To show this we use that at least one of the
processes that call GEi.elect() gets elected, and at least
one of the processes that call SPi.split() receives a return
value other than L.

To bound the step complexity of the implementation we
will use the following terminology. Let M = (M0,M1, . . . )
be a Markov chain with state space {0, . . . , n} that is non-
increasing. The rate of M is the function r : {1, . . . , n} →

Class GroupElect

/* Let ` = dlogne */

shared:
int R[1 . . . (`+ 1)] = [0 . . . 0]
int flag = 0

Method elect()

1 if flag.Read() = 1 return False

2 flag.Write(1)
3 Choose an integer x ∈ {1, . . . , `} independently at

random s.t. Pr(x = i) = 1/2i, for 1 ≤ i < `, and
Pr(x = `) = 1/2`−1

4 R[x].Write(1)
5 if R[x+ 1].Read() = 0 return True

6 return False

Figure 1: Group Election implementation for the
location-oblivious adversary.

[0, n] such that r(j) = E[Mi+1 | Mi = j], for 1 ≤ j ≤ n.
For any non-decreasing r : {1, . . . , n} → [0, n], we denote
by ∆r(n) the maximum (expected) hitting time hn,0 over
all non-increasing Markov chains on {0, . . . , n} with rate at
most r.

Suppose now that the performance parameter of Group-

Elect objects GEi is bounded by a non-decreasing function
f . Let Ni be the number of processes that call GEi.elect(),
and let i∗ = max{i : Ni > 0} be the total number of Group
Elections executed. (Clearly, i∗ is also a bound on the num-
ber of 2-process Leader Elections). If Ni > 0 then Ni+1

is the number of processes that get elected on GEi mi-
nus the number of processes whose call SPi.split() returns
a value in {L, S}. The latter number is at least one, so
E[Ni+1 | Ni = j] ≤ f(j) − 1, for j > 0. It follows that
E[i∗] ≤ ∆f−1(k), and thus, the expected step complexity of
the implementation is O(∆f−1(k)).

Thus, the following statement holds.

Lemma 2.1. There is a randomized implementation
of a LeaderElect object with expected step complexity
O(∆f−1(k)), from n GroupElect objects with performance
parameter at most f , and O(n) registers.

2.2 Location-Oblivious Adversary
We now present a randomized implementation of a Group

Election object for the location-oblivious adversary.

Lemma 2.2. The construction in Figure 1 implements a
GroupElect object with step complexity O(1), space complex-
ity O(logn), and performance parameter f(k) ≤ 2 log k + 6
against the location-oblivious adversary.

Proof. Let A be a location-oblivious adversary and con-
sider a random execution E obtained by A. Let i∗ be the
largest index such that some process p writes to R[i∗] in
line 4. Then p reads values 0 from R[i∗ + 1] in the next
line, and thus returns True. Hence, at least one process gets
elected.

In the rest of the proof we show the upper bound on f .
Let k′ ≤ k be the number of processes that read register
flag in line 1 before some process writes flag in the next
line. The number of processes elected depends only on k′



(and not on k), and k′ is fixed as soon as the first process
writes flag (that is, before any random choices are made).
Thus, we can assume w.l.o.g. that k is fixed in advanced and
k′ = k.

Let p1, . . . , pk be the k processes participating in E in the
order in which they perform their write operation in line 4,
and let `1, . . . , `k be the respective locations in array R that
they write to, i.e., process pj writes to register R[`j ]. Since
A is location-oblivious, it does not know `j before pj writes
to R[`j ]. Thus, by the principle of deferred decisions, we can
assume that only after the adversary has decided the order
p1, . . . , pj does pj choose `j . Let Xj be the 0/1 random
variable with Xj = 1 if and only if pj reads a ‘0’ in line 5,
and thus gets elected. Let Yj be the 0/1 random variable
with Yj = 1 if and only if none of the processes p1, . . . , pj−1

writes to register R[`j + 1] (i.e., `j′ 6= `j + 1, for all j′ < j).
Clearly, Xj ≤ Yj . Then,

f(k) = E

 ∑
1≤j≤k

Xj

 =
∑

1≤j≤k

E[Xj ] ≤
∑

1≤j≤k

E[Yj ].

We have

E[Yj ] = Pr

 ∧
1≤j′<j

`j′ 6= `j + 1


=
∑

1≤i≤`

Pr (`j = i ∧ `1 6= i+ 1 ∧ · · · ∧ `j−1 6= i+ 1)

=
∑

1≤i≤`

Pr(`j = i)

j−1∏
j′=1

Pr(`j 6= i+ 1)

=
∑

1≤i<`

1

2i

(
1− 1

2i+1

)j−1

+
1

2`−1
.

Thus,

f(k) ≤
∑

1≤j≤k

 ∑
1≤i<`

1

2i

(
1− 1

2i+1

)j−1

+
1

2`−1


=
∑

1≤i<`

1

2i

∑
1≤j≤k

(
1− 1

2i+1

)j−1

+
∑

1≤j≤k

1

2`−1

=
∑

1≤i<`

1

2i
·

1−
(
1− 1

2i+1

)k
1/2i+1

+
k

2`−1

= 2
∑

1≤i<`

(
1−

(
1− 1

2i+1

)k)
+

k

2`−1
.

We upper-bound the sum in the last line by observing that
each term is at most 1, and also the i-th term is at most
1 −

(
1− k

2i+1

)
= k

2i+1 , by the known inequality (1 − ε)k ≥
1− kε. Thus,

f(k) ≤ 2
∑

1≤i<log k

1 + 2
∑

log k≤i<`

k

2i+1
+

k

2`−1

≤ 2(log k + 1) + 2
k

2log k
+

k

2`−1
≤ 2 log k + 6,

since ` = dlogne ≤ log k.

For f(k) ≤ 2 log k + 6, we have ∆f−1(k) = O(log∗ k).
Thus, by Lemmas 2.1 and 2.2, we can combine the Leader

Election implementation in Section 2.1 with the Group
Election implementation in Figure 1, to obtain a Leader
Election implementation that has expected step complex-
ity O(log∗ k), from O(n logn) registers. We can improve the
space complexity to O(n) by observing that with probabil-
ity 1 − 1/n only the first O(logn) GroupElect objects are
used, and thus we can replace the remaining ones by dummy
GroupElect objects in which all participating processes get
elected.

Theorem 2.3. There is an adaptive randomized imple-
mentation of a LeaderElect object from O(n) registers that
has expected step complexity O(log∗ k) against the location-
oblivious adversary.

2.3 R/W-Oblivious Adversary
Alistarh and Aspnes [2] presented a randomized imple-

mentation of Leader Election withO(log logn) expected step
complexity against an R/W-oblivious adversary. At the
heart of their implementation is a simple Group Election
algorithm, which they referred to as sifting. Each process
participating in this Group Election either writes or reads
a shared register. It writes with probability π (which is a
parameter) and reads with probability 1− π, independently
of other processes. A process gets elected if and only if
it writes, or it reads before any process writes. The first
part of the Leader Election implementation in [2] consists of
O(log logn) rounds of sifting, in which only processes that
get elected in a round continue to the next one. The authors
show that if the probability parameter π for each round is
carefully chosen, then the number of processes that continue

after round i, is at most n(1−ε)i , with high probability.
We can use the above Group Election implementation to-

gether with the implementation in Section 2.1, to obtain
a Leader Election implementation that has expected step
complexity O(log logn) and uses O(n) registers. This im-
plementation is not adaptive. However we can use a col-
lection of non-adaptive LeaderElect objects implemented
in that way, to obtain an adaptive implementation, as we
sketch now. The main idea is to use dlog log logne such
objects LE0, LE1, . . . of increasing size, such that LEi is

for ni = 222i

processes (except for LEdlog log logne, which is
for n processes). In each LEi, processes participate only
in the first Θ(log logni) = Θ(2i) Group Elections, and
after that, all processes that have not lost and have not
won any Splitter object yet proceed to the next object
LEi+1. The winner of each LEi participates in a chain of
2-process LeaderElect objects which determines the final
winner. The expected step complexity of this implementa-
tion is O(log log k). The intuition is that after Θ(log log k)
steps a process ends up in an object LEi of the ‘right’ size,
such that log logni = Θ(log log k).

Theorem 2.4. There is a randomized implementation of
an adaptive LeaderElect object from O(n) registers that
has expected step complexity O(log log k) against the R/W-
oblivious adversary.

3. SPACE-EFFICIENT ADAPTIVE AD-
VERSARY LEADER ELECTION

We describe a Leader Election implementation for the
adaptive adversary model, that has step complexity O(log k)
both in expectation and w.h.p. (i.e., with probability



1− 1/kΩ(1)), and uses Θ(n) registers. It is a modification of
the RatRace algorithm proposed by Alistarh et al. [3], which
has the same asymptotic step complexity, but uses Θ(n3)
registers.

3.1 Overview of RatRace
RatRace [3] uses two shared memory structures, a primary

tree and a backup grid.
The primary tree is a complete binary tree of height

3 logn, where each node v is associated with an RSplitter

(randomized splitter) object SPv, and with a randomized
3-process LeaderElect object LEv (implemented from two
2-process LeaderElect objects.)

Each process p starts at the root of the primary tree
and moves downwards, towards the leaves, until it wins an
RSplitter object, or it falls off the tree (which happens with
low probability). Precisely, when at node v, process p calls
SPv.split(). If the call returns L or R then p moves to
the left or the right child of v, respectively, provided that v
is not a leaf; if v is a leaf, then the process proceeds to the
backup grid as we will explain later. If p wins SPv then it
stops moving downwards, and begins to move upwards to-
wards the root, along the same path. At each node v that
p visits on its path to the root (including the node at which
p won the RSplitter object), the process tries to win the
LeaderElect object LEv. If p loses LEv then it immediately
loses the implemented LeaderElect object; if it wins LEv
then it moves to the parent of v in the tree. The process that
wins the LeaderElect object at the root competes against
the winner of the backup grid.

The backup grid is an n×n square grid, where each node
v = (i, j) ∈ {1, . . . , n}2 is associated with a (deterministic)
Splitter object, and a randomized 3-process LeaderElect

object. By convention, the left and right children of node
(i, j) are nodes (i + 1, j) and (i, j + 1), respectively. Each
process that falls off the primary tree, starts at node (1, 1)
of the grid, and proceeds in the same way as in the primary
tree: first it tries to win a Splitter object, moving from a
node to one of its children when it fails, and then tries to
move back to node (1, 1) along the same path, by winning
all the LeaderElect objects along the way. The properties
of deterministic splitters guarantee that the process wins a
splitter before it falls off the grid.

Finally, the winners of the LeaderElect objects at node
(1, 1) of the backup grid and at the root of the primary tree
participate in a randomized 2-process LeaderElect object,
which determines the winner of RatRace.

3.2 Improving the Space Complexity
RatRace needs Θ(23 logn) = Θ(n3) registers for the pri-

mary tree of height 3 logn, and Θ(n2) registers for the
backup n× n grid. To reduce the space complexity we will
use the following structure, which we call elimination path.
It is similar to the backup grid, but uses fewer registers.

An elimination path of length ` is an `-node path where
each node i ∈ {1, . . . , `} is associated with a deterministic
Splitter object SPi, and a randomized 2-process Leader-

Elect object LEi. A process p starts at node i = 1, and
tries to win SPi. If p’s SPi.split() call returns L then p
loses and takes no more steps; if it returns R then p moves
to the right, i.e., it moves to node i + 1 if i < `, or it falls
off the path if i = `. Finally, if p wins SPi then it stops
moving to the right, and starts moving to the left towards

node 1. From node i > 1, it moves to i − 1 only if it wins
LEi, otherwise, it loses and stops taking steps. The winner
of the elimination path is the process that wins LE1. The
next claim follows from properties of deterministic splitters.

Claim 3.1. If at most ` processes enter an elimination
path of length `, then no process falls off the right end of the
path.

We replace the backup grid of RatRace by an elimina-
tion path of length n, which has the same asymptotic step
complexity as the backup grid, but uses only Θ(n) registers.

Further, we replace RatRace’s primary tree of height
3 logn, by a structure consisting of a smaller primary tree, of
height logn, and n/ logn elimination paths EPi, for 1 ≤ i ≤
n/ logn, where each path EPi has length 4 logn. The total
number of registers used is Θ(2logn + (4 logn) · n/ logn) =
Θ(n). The smaller primary tree is used in the same way
as before, but now any node that falls off enters one of the
elimination paths EPi instead of the backup grid. Precisely,
a process that falls off the j-th leaf from the left (of the n
leaves in total) moves to the beginning of path EPdj/ logne.
The winner of each path EPi moves back to the primary
tree, at leaf i, and from that leaf it tries to reach the root
as in the original RatRace algorithm. Any process that falls
off a path EPi proceeds to the elimination path of length n
that replaced the backup grid. Finally, similarly to RatRace,
the winner of that path and the winner of the primary tree
compete against each other to determine the winner of the
implemented LeaderElect object.

The step complexity of the implementation for the case of
log k ≤ (logn)/3 follows from the analysis of RatRace. For
the analysis of the complementary case, log k > (logn)/3, we
need the simple claim below, which guarantees w.h.p. that
the number of processes that access any given path EPi is no
greater than the length of the path. Thus, by Claim 3.1, we
have w.h.p. that no process enters the backup elimination
path of length n, which yields an O(logn) = O(log k) bound
on the step complexity.

Claim 3.2. For any fixed set of logn leaves, with proba-
bility 1− 1/n2 at most 4 logn processes reach those leaves.

Proof. The number of processes that reach the logn
leaves is dominated by the number of balls that fall in a
fixed set of logn bins in the classic bins-and-balls model
with n balls and n bins, in which every ball is placed in a
bin chosen independently and uniformly at random: We can
assume that each process p comes with a uniformly random
bit-string of length logn. If p tries to win an RSplitter ob-
ject of a node at distance i− 1 from the root but fails, then
the i-th bit in the bit-string determines whether p’s split()
call returns L or R. Hence, the random bit-string uniquely
determines the leaf that p will reach, if it does not win any
RSplitter object along the way.

The claim then follows by applying standard Chernoff
bounds.

4. ADVERSARY INDEPENDENCE
The Leader Election implementation for the adaptive ad-

versary presented in Section 3 has the same step complexity,
Θ(log k), even if the adversary is an oblivious one. On the
other hand, the implementations in Section 2, which assume
a weaker adversary, may need up to Θ(k) steps in expec-
tation when scheduled by an adaptive adversary. In this



section we describe how we can combine these implementa-
tions to obtain one that has the step complexity of RatRace
against an adaptive adversary, and the step complexity of
the algorithms in Section 2 against a weak adversary.

Theorem 4.1. For any Leader Election implementa-
tion A for the location-oblivious (resp. R/W-oblivious) ad-
versary, there is a Leader Election implementation that
has the same asymptotic step complexity as A against the
location-oblivious (resp. R/W-oblivious) adversary, and it
has step complexity O(log k) (both in expectation and w.p.
1−1/k) against the adaptive adversary. The space complex-
ity of this implementation is Θ(n) plus the space complexity
of A.

Combining Theorem 4.1 with Theorems 2.3 and 2.4, yields
the following.

Corollary 4.2. There is a Leader Election implementa-
tion that has an expected step complexity of O(log∗ k) (resp.
O(log log k)) against the location-oblivious (resp. R/W-
oblivious) adversary, and a step complexity of O(log k) (both
in expectation and w.p. 1−1/k) against the adaptive adver-
sary. The space complexity is Θ(n).

We now present an implementation that achieves the step
and space complexity prescribed in Theorem 4.1. The imple-
mentation runs both RatRace and A in parallel, in a round
robin fashion. Precisely, each process executes a step of Ra-
tRace in every odd step, and a step of A in every even step.
A natural way to combine the two interleaved executions
would be that each process takes steps until it either wins
or loses in one of the two executions; if it loses it also loses
in the combined implementation, and if it wins it competes
against the winner of the other execution. This approach,
however, could yield a combined execution where no process
wins. For instance, suppose that A is also RatRace. Then it
is possible that a process p loses against some process q on
one of the LeaderElect objects in the one execution, and
at the same time q loses against p on a LeaderElect ob-
ject in the other execution; thus both processes lose in the
combined execution.

To solve this problem we impose the rule that if a pro-
cess loses in A when it has already won a (deterministic
or randomized) splitter object in RatRace, then the process
continues to execute RatRace. Precisely, we use the follow-
ing rules to combine the two executions with the help of an
auxiliary LeaderElect object LEtop.

1. If a process wins in either RatRace or A then it stops
taking steps in the other execution, and it tries to win
LEtop; if it wins LEtop then it wins the implemented
LeaderElect object, otherwise it loses.

2. If a process loses in RatRace then it stops taking steps
inA, and it loses the implemented LeaderElect object.

3. If a process loses in A and it has not yet won any of
the Splitter or RSplitter objects in RatRace, then
it stops taking steps in RatRace, and it loses the im-
plemented LeaderElect object.

We sketch the proof of the claim that it is not possible to
have a failure-free execution of this combined implementa-
tion in which no process wins. First we consider the case
when no process wins a splitter object in RatRace. Then no

processes wins or loses in RatRace, and thus RatRace has
no effect on A’s execution. Since A is executed without any
interference, exactly one process wins A. This process will
also win LEtop, since no process wins RatRace, and thus no
other process participates in LEtop.

Now suppose that at least one process p wins a splitter ob-
ject in RatRace but no process wins the implemented leader
election. In particular, p does not win the implemented
leader election, so it loses a LeaderElect object in RatRace.
If this happens then some other process q wins that Leader-
Elect object, which implies that q won some splitter object
before. Similarly to p, q can lose only if it loses a Leader-

Elect object in RatRace. Further, if the LeaderElect object
that p lost is in a node at distance ` from the root, then q
can only lose a LeaderElect object at distance at most `−1
from the root. By iterating this argument, we obtain that
some process w wins RatRace. By Rule 1, process w stops
A and tries to win LEtop. Thus, there will be some process
that wins LEtop (either w or the winner of A) and thus some
process wins the implemented leader election.

Next we sketch the proof of the step complexity of the
implementation. First we consider an adaptive adversary.
We can view the processes that stop in RatRace because
they win or lose in A, as crashed by a (randomized) adap-
tive adversary. (This adversary runs A in order to decide
which processes to stop and when.) Since each process that
wins or loses in RatRace stops taking steps in A, it follows
that the step complexity of the implementation is bounded
asymptotically by the step complexity of RatRace (plus the
step complexity of LEtop).

We now consider the location-oblivious (resp. R/W-
oblivious) adversary. We treat the processes that stop in A
because of winning or losing RatRace, as crashed by a (ran-
domized) location-oblivious adversary (resp. R/W oblivious
adversary).1 Unlike in the previous case, now we cannot
immediately claim that the step complexity of the imple-
mentation is bounded by the step complexity of A, because
a process that loses in A may continue to take steps in Ra-

tRace. Let t be the maximum number of steps of A that any
process takes. Then, t is bounded by the step complexity
of A. Moreover, by Rule 3, any process that loses in A but
continues to take steps in RatRace must have won a splitter
object at some node at distance at most t from the root.
Then, from the analysis of RatRace it follows that the extra
steps that those processes take are O(t) in expectation and

also w.p. 1− 1/2Ω(t). It follows that the step complexity of
the implementation is asymptotically bounded by that of A.

5. A SPACE LOWER BOUND
We prove a space lower bound of Ω(logn) registers for any

Leader Election algorithm, and thus for the implementation
of TAS objects.

An algorithm satisfies nondeterministic solo-termination,
if for any configuration and any process p, there is an execu-

1For this argument it is important that A works against
a location- or R/W-oblivious adversary, rather than just
against the adaptive adversary. We cannot view stopped
processes as crashed by a randomized oblivious adversary,
because the processes stopped and the time at which they
stop may depend on random choices of A: these choices af-
fect which processes lose in A and thus which processes stop
in RatRace, and this in turn affects which processes lose in
RatRace and thus stop in A.



tion in which no process other than p takes any steps, and p
finishes its method call within a finite number of steps [10].
Hence, a process is guaranteed to finish its method call with
positive probability, whenever there is no interference from
other processes. For deterministic algorithms, nondetermin-
istic solo-termination is the same as obstruction-freedom and
weaker than wait-freedom.

Theorem 5.1. Any nondeterministic solo-terminating
Leader Election algorithm requires Ω(logn) registers.

5.1 Proof Overview
We consider a Leader Election algorithm that satisfies

nondeterministic solo-termination. Since we prove a space
(and not a time) lower bound, we can fix the random deci-
sions made by processes.

The idea is to use a covering argument (as introduced by
Burns and Lynch [8]). Suppose n processes run a Leader
Election algorithm, where n is a power of two. We let each
process take steps until it is poised to write to a register (we
say it covers that register). Now we schedule processes in
rounds. Our goal is to ensure that after the k-th round every
register is covered by at most n−k processes. In particular,
after n− 4 rounds every register will be covered by at most
4 processes. When we schedule processes, some processes
may see others, and then they can decide to lose their Leader
Election. We try to maintain as many “undecided” processes
as possible. We will manage to have Ω(logn) undecided
processes at the end of the n − 4 rounds, and all of them
are covering registers. Since every register is covered by at
most 4 processes, the space lower bound follows.

In order to make this work, we have to be careful how to
schedule processes in each round. We maintain the invari-
ant that after the k-th round no process has ever written
to a register that is covered by fewer than n − k processes.
Now consider some set R = {r1, . . . , r`} of registers, such
that each register rj , 1 ≤ j ≤ `, is covered by exactly n− k
processes. For each register rj we choose one process qj
that covers rj , and let it write to rj . This way, all regis-
ters that stored any useful information will get overwritten
by processes q1, . . . , q`. Since registers in R have not yet
been written at all in the entire past execution, processes
q1, . . . , q` will not gain any additional information (except
about themselves) when only they take additional steps. It
follows that if we let these processes run solo, one after the
other, then one of them, say q1, must win. Since all registers
in R are covered by other processes, q1 must write to a reg-
ister not in R before it can win. We stop q1 when it is poised
to write for the first time to a register that is not in R. This
way, we now have increased the number of processes cover-
ing registers outside of R by one and at the same time every
register in R is only covered by n−k−1 processes. We may
have reduced the number of “undecided” processes, because
q2, . . . , q` may have lost their Leader Election already.

Note that if not all of them have lost their Leader Election,
then the assumption that no process knows about any other
process that has not yet lost might not strictly be true any-
more. We deal with this problem by grouping all processes
that know about each other together, and we count always
only one representative from each group when we determine
the number of processes that cover a register. Whenever
the representative overwrites a register at the beginning of
the round, and then proceeds to take steps, we let its entire
group also take steps. This way, we can maintain the invari-

ant that one of the processes in such a group writes outside
of R.

5.2 Proof of the Space Lower Bound
This section is devoted to the proof of Theorem 5.1.
We let P denote a set of n processes in the system, and
R the set of registers of the system. We assume w.l.o.g.
that n is a power of two. A configuration C is a tuple
(s1, . . . , sn, v1, v2, . . . , v|R|), denoting that the i-th process
is in state si, and the j-th register has value vj . Con-
figurations will be denoted by capital letters, and the ini-
tial configuration is denoted Cinit. Two configurations C =
(s1, . . . , sn, v1, . . . , vm) and C′ = (s′1, . . . , s

′
n, v
′
1, . . . , v

′
m) are

indistinguishable to the i-th process in P, if si = s′i and
vj = v′j for all j ∈ {1, . . . ,m}. Configurations C and C′ are
indistinguishable to a set Q of processes, if they are indis-
tinguishable to every process q ∈ Q.

A schedule σ is a (possibly infinite) sequence of processes.
An execution E(C, σ) is a sequence of steps beginning in con-
figuration C and moving through successive configurations
one at a time. At each step, the next process pi indicated in
the schedule σ, takes the next step in its program. Since our
computation model is nondeterministic, we fix the nonde-
terministic decisions made by processes in our lower bound
proof. We use an arbitrary (but fixed) one that guarantees
that each process pi terminates within a bounded number
of steps if it runs solo. If σ is a finite schedule, the final
configuration of the execution E(C, σ) is denoted σ(C) or
C
(
E(C, σ)

)
. If σ and π are finite schedules then σπ denotes

the concatenation of σ and π; similarly, we can concatenate
execution by letting E(C, σ) · E

(
σ(C), π

)
= E(C, σπ). Let

Q be a set of processes, and σ a schedule. If only processes
in Q appear in σ, then σ is a Q-only schedule and E(C, σ)
is a Q-only execution.

We say that in configuration C a process p covers a reg-
ister r, if the state of p as determined by C is such that in
its next step p will write register r. We assume w.l.o.g. that
whenever a process writes a value to a register, that value is
a pair (x, ID), where ID is the process’ identifier. Initially,
the second component of every pair stored in a register is
⊥. We say process q is visible on register r in some con-
figuration, if r’s value is (x, q) for some x. (Thus, initially
no process is visible on any register.) We say process p sees
process q in some step of an execution, if in that step p reads
a register on which q is visible. Every execution E defines
a relation “↔E” over the set P of processes, where p↔E q,
if p = q or during E either p sees q or q sees p. Then ↔E

is reflexive and symmetric. Let ≡E be the transitive closure
of ↔E , thus ≡E is an equivalence relation over P.

Claim 5.2. Let E be some execution starting in the initial
configuration Cinit, and Q ⊆ P the set of processes that finish
their Leader Election algorithm during E. If Q 6= ∅ is closed
w.r.t. ≡E, then exactly one process in Q wins during E.

Proof. Remove from E all steps by processes in Q and
denote D the resulting execution. Then configurations C(E)
and C(D) are indistinguishable to all processes in Q. It
follows that during D all processes in Q finish their Leader
Election with the same result as in E. Since only processes
from Q take steps during D, exactly one of them wins.

Claim 5.3. Let R = {r1, . . . , r`} ⊆ R, R′ =
{r`+1, . . . , rv} ⊆ R − R, and let E be an execution starting



in Cinit, such that in C(E) no process is visible on any reg-
ister in R. Further, let Q ⊆ P be a set that is closed w.r.t.
≡E. Suppose in C = C(E), every register rj ∈ R ∪ R′,
1 ≤ j ≤ v, is covered by some process pj ∈ Q, and every
register ri ∈ R, 1 ≤ i ≤ `, by some process qi ∈ Q. Then
there exists a Q-only schedule β such that during E(C, β)
at least one process writes to a register in R ∪R′, and no
process in Q sees a process in Q.

Proof. Let σ be the Q-only schedule where each pro-
cess qj , 1 ≤ j ≤ `, takes exactly one step, and σ′ the
Q-only schedule such that during the execution E(C, σσ′)
every process in Q finishes its algorithm. Nondeterministic
solo-termination guarantees that such a schedule σ′ exists.
Let β = σσ′ and E′ = E(C, β). For the purpose of a con-
tradiction, suppose that during E′ no process writes to a
register in R ∪R′.

During E′, all register contents of registers in R are over-
written by processes in Q. Thus, throughout E′, no process
in Q is ever visible on any register, and thus no process in Q
sees a process in Q. Since in addition processes in Q take no
steps during E′, set Q is closed w.r.t. ≡E′ . By assumption,
it is also closed w.r.t. ≡E , and thus w.r.t. ≡E·E′ .

By the assumption that no process writes to a register in
R ∪R′ during execution E′, in configuration C′ = C(E′),
no process is visible on a register in R ∪R′. Consider a Q-
only execution E′′ that starts in configuration C′, and where
first all processes p1, . . . , pv take exactly one step, and then
we let all processes that haven’t finished their algorithm,
yet, run to completion. Since the algorithm satisfies non-
deterministic solo-termination, such an execution E′′ exists.
Since in E′′ processes p1, . . . , pv first overwrite all registers
in R ∪ R′, no process in Q sees any process in Q during
E′′. Trivially, no process in Q sees any process in Q. Thus,
Q is closed w.r.t. ≡E′′ . Since Q is closed w.r.t. ≡E·E′ , it
is also closed w.r.t. ≡E·E′·E′′ . This implies that Q is also
closed w.r.t. ≡E·E′·E′′ . Since all processes in Q and in Q
finish their algorithm during E · E′ · E′′, we conclude from
Claim 5.2 that some process in Q and some process in Q
wins—a contradiction.

Recall that we assumed that n is a power of two.

Lemma 5.4. For every k ∈ {0, . . . , n− 1}, there exists

• a schedule αk, defining execution Ek = E(Cinit, αk)
and configuration Ck = C(Ek);

• a partition (Q1, . . . , Qmk ) of P; and

• mk processes qj ∈ Qj, 1 ≤ j ≤ mk;

such that in configuration Ck

(a) every process qj, 1 ≤ j ≤ mk, covers some register;

(b) no register is covered by more than n − k processes in
{q1, . . . , qmk};

(c) if a process is visible on a register r, then r is covered
by n− k processes in {q1, . . . , qmk};

(d) each set Qj, 1 ≤ j ≤ mk, is closed w.r.t. ≡Ek ; and

(e) m0 = n and mk ≥ mk−1 − bmk−1/(n − k + 1)c + 1 for
k > 0.

Proof. We prove the lemma by induction on k.
First consider the base case, k = 0. If we let a process p

run solo when no process is visible on any register, p must
win the Leader Election (by Claim 5.2). This requires that
p writes to at least one register, or else some other process
will win the Leader Election in a solo-run that follows p’s.
Hence, we can let each process run solo as long as it doesn’t
write to a register and stop the process when it is poised
to write to a register for the first time. Thus, eventually
all processes are poised to write, while at the same time no
process is visible on any register. Let α0 be the schedule
that results in such an execution E0 = E(Cinit, α0), where
no process writes and where in C0 = C(E0) every process
is poised to write to a register. Further, let m0 = n and
qi the i-th process in P and Qj = {qj} for 1 ≤ j ≤ n. In
C0 all processes cover some register, no register is covered
by more than n − 0 processes, no process is visible on any
register, the sets Q1, . . . , Qn are equivalence classes of ≡E0 ,
and m0 = n. Hence, the induction hypothesis is true for
k = 0.

Now assume the hypothesis is true for some integer k ∈
{0, . . . , n− 2}. Let αk, mk, Q1, . . . , Qmk and q1, . . . , qmk be
given such that (a)-(e) are satisfied. Let R = {r1, . . . , r`}
be the set of registers that are covered by exactly n − k
processes in {q1, . . . , qmk} in configuration Ck. If R = ∅,
we let αk+1 = αk, and the claim for k′ = k + 1 follows
immediately from the induction hypothesis for k.

Now suppose that R 6= ∅. Choose some indices i1, . . . , i` ∈
{1, . . . ,mk} such that process qij , 1 ≤ j ≤ `, covers regis-
ter rj and let Q = Qi1 ∪ · · · ∪ Qi` . Assume w.l.o.g. that
(i1, . . . , i`) = (mk − ` + 1, . . . ,mk). The set Q is closed
w.r.t. ≡Ek because all sets Qj , mk − ` + 1 ≤ j ≤ mk, are
closed w.r.t. ≡Ek .

Now let R′ be the set of registers covered by exactly
n− k − 1 processes in {q1, . . . , qmk}. By definition, no pro-
cess in Q covers a register in R′, and since n − k − 1 ≥ 1,
every register in R′ is covered by at least one process in Q.
Moreover, since n− k ≥ 2, every register in R is covered by
exactly two processes in {q1, . . . , qmk} out of which exactly
one is in Q. Hence, every register in R is covered by one
process in Q and by at least one process in Q. Finally, by
induction hypothesis (c), in Ck no process is visible on any
register in R.

Thus, we can apply Claim 5.3. It follows that there exists
a Q-only schedule βk such during E(Ck, βk) at least one
process writes to a register in R ∪R′, and no process in Q
sees a process in Q. We let β′k be the longest prefix of βk
such that in E(Ck, β

′
k) no process writes to a register in

R ∪R′. Thus, at the end of E(Ck, β
′
k) some process q ∈ Q

is poised to write to a register in R ∪R′. We let αk+1 =
αkβk, Ek+1 = Ek · E(Ck, β

′
k) = E(Cinit, αk+1), and Ck+1 =

C(Ek+1). Moreover, let mk+1 = mk − ` + 1, Qmk+1 = Q,
q′mk+1

= q, and for 1 ≤ j < mk+1 let Q′j = Qj and q′j = qj .

Then processes in Q′1∪· · ·∪Q′mk+1−1 take no steps during

E(Ck, β
′
k), so in Ck+1 every process q′j , 1 ≤ j < mk+1 cov-

ers some register. By construction, at the end of execution
E(Ck, β

′
k) process q′mk+1

is poised to write, so it also covers
some register. This proves (a).

A process in {q′1, . . . , q′mk+1−1} takes no step during

E(Ck, β
′
k), so in configuration Ck+1 it covers exactly the

same register as in configuration Ck. Now consider some
register r. If r ∈ R, then in configuration Ck register r is
covered by exactly n − k processes in {q1, . . . , qmk}. Ex-



actly one of these n− k processes is in {qmk−`+1, . . . , qmk},
and thus not in {q′1, . . . , q′mk+1−1}. Thus, exactly n− k − 1

processes in {q′1, . . . , q′mk+1−1} cover register r in configura-

tion Ck+1. If r ∈ R′, then in configuration Ck register r
is covered by exactly n − k − 1 processes in {q1, . . . , qmk},
none of whom takes a step in E(Ck, β

′
k). Hence, in Ck+1

every register r ∈ R ∪ R′ is covered by exactly n − k − 1
processes in {q′1, . . . , q′mk+1−1}. Moreover, in Ck+1 process

q′mk+1
covers a register from R ∪R′, so r ∈ R∪R′ is covered

by exactly n− k− 1 processes in {q′1, . . . , q′mk+1
}. Now sup-

pose r ∈ R ∪R′, so in Ck register r is covered by at most
n − k − 2 processes in {q1, . . . , qmk}. By construction of
β′k, during E(Ck, β

′
k) exactly one processes, namely q′mk+1

,

becomes poised to write to a register in R ∪R′. Hence, in
Ck+1 register r ∈ R ∪R′ is covered by at most n − k − 1
processes in {q1, . . . , qmk}, and thus also by at most n−k−1
processes in {q′1, . . . , q′mk+1

}. This proves (b).
Now consider a register r on which some process is visible

in configuration Ck+1. In configuration Ck, no process is
visible on a register in R, and in execution E(Ck, β

′
k) no

process writes to a register in R ∪R′. Hence, r ∈ R ∪ R′.
As argued above in the proof of part (b), in Ck+1, every
register in R ∪ R′ is covered by exactly n− k − 1 processes
in {q′1, . . . , q′mk+1−1}. This proves (c).

By construction and Claim 5.3, no process in Q sees any
process in Q during execution E(Ck, β

′
k). Since that ex-

ecution is Q-only, no process in Q sees any process dur-
ing that execution. It follows that each of the sets Q′1 =
Q1, . . . , Q

′
mk+1−1 = Qmk+1−1 (which is are subsets of Q) is

closed w.r.t. ≡E(Ck,β
′
k

). By the induction hypothesis each of

those sets is closed w.r.t. ≡Ek , so they are also closed w.r.t.
≡Ek+1 . Similarly, Q = Q′mk+1

is closed w.r.t. ≡E(Ck,β
′
k

),

and since Q is the union of sets which are closed w.r.t. ≡Ek ,
Q is closed w.r.t. ≡Ek+1 . This proves (d).

By construction, in configuration Ck every register in R
is covered by at least n− k processes from {q1, . . . , qmk}, so
|R| ≤ bmk/(n− k)c. Moreover,

mk+1 = mk − |R|+ 1 ≥ mk −
⌊
mk

n− k

⌋
+ 1.

This proves (e).

Define

f(0) = n and

f(k + 1) = f(k)−
⌊
f(k)

n− k

⌋
+ 1 for k ≥ 0.

Further, let for k ≥ 1

δ(k + 1) = f(k)− f(k + 1) =

⌊
f(k)

n− k

⌋
− 1.

Claim 5.5. For an integer s ≥ 0 and k ∈ I(s) :={
n− n

2s
, . . . , n− n

2s+1
− 1
}

,

(a) f(k) = n · s+ 1

2s
− s ·

(
k − n+

n

2s

)
, and

(b) δ(k + 1) = s.

Proof. We first argue that statement (a) implies state-
ment (b). Let d = k − n + n/2s and suppose (a) is true.

Then

δ(k + 1) + 1 =

⌊
f(k)

n− k

⌋
=

⌊
n s+1

2s − s ·
(
k − n+ n

2s

)
n− k

⌋

=

⌊
n s+1

2s − s · d
n− (d+ n− n/2s)

⌋
=

⌊
n s+1

2s − s · d
n/2s − d

⌋
=

⌊
s+ 1− s · d · 2s/n

1− d · 2s/n

⌋
=

⌊
s(1− d · 2s/n) + 1

1− d · 2s/n

⌋
=

⌊
s+

1

1− d · 2s/n

⌋
= s+ bζc, (1)

where

ζ =
1

1− d · 2s/n =
n

n− d · 2s .

Since n− n/2s ≤ k ≤ n− n/2s+1 − 1, we have

0 ≤ d ≤ n− n/2s+1 − 1− n+ n/2s = n/2s+1 − 1, (2)

and thus

1 ≤ ζ ≤ n

n− (n/2s+1 − 1) · 2s =
n

n/2 + 2s
< 2.

Thus, bζc = 1, so from (1) we obtain δ(k + 1) + 1 = s + 1,
which proves (b).

We now prove statement (a) by induction on k. If k = 0,
then k ∈ I(0) and (a) is true. Thus, suppose that (a) and
thus also (b) hold for some value of k. Then

f(k+ 1) = f(k)− δ(k+ 1) = n
s+ 1

2s
− s
(
k − n+

n

2s

)
− s

= n
s+ 1

2s
− s

(
k + 1− n+

n

2s

)
. (3)

If k < n − n/2s+1 − 1, then k + 1 ∈ I(s) and the claim is
proven. Now suppose k = n−n/2s+1−1, i.e., k+1 ∈ I(s+1).
Then from (3) we get

f(k + 1) = n · s+ 1

2s
− s

(
n− n

2s+1
− n+

n

2s

)
= n · 2s+ 2

2s+1
− s · n

2s+1
= n · s+ 2

2s+1
.

This proves (a).

Proof of Theorem 5.1. We can assume w.l.o.g. that n
is a power of two. Also, since we want to prove a space
lower bound, we can fix arbitrary random choices by the al-
gorithm, and thus the algorithm becomes deterministic and
obstruction free.

Let k = n−4. By Lemma 5.4, there exists an execution Ek
that starts in configuration Cinit and ends in configuration
Ck, such that in Ck at least mk processes cover registers,
but no register is covered by more than n−k = 4 processes.
This implies that there must be at least dmk/4e registers.

Note that from part (e) of Lemma 5.4 and the definition
of f , we immediately get mk ≥ f(k). Since k = n − 4,
we have k = n− n/2logn−2. By the definition of I(s) from
Claim 5.5, k ∈ I(logn− 2). Thus, by that same claim,

mn−4 ≥ f(n− 4)

= n · logn− 1

n/4
− (logn− 2)

(
n− 4− n+

n

n/4

)
= 4(logn− 1).

Hence, at least logn−1 registers are covered in configuration
Cn−4.



6. A 2-PROCESS TIME LOWER BOUND

Theorem 6.1. For any randomized TAS implementation
that can be accessed by two processes, and any integer t > 0,
there is a schedule (determined by an oblivious adversary)
such that with probability at least 1/4t some process does
not finish its TAS() method within fewer than t steps.

Proof. The proof is by Yao’s Min-Max Lemma [14]. Let
At denote the set of all deterministic TAS algorithms for
two processes in which no process takes more than t steps.
Under the (standard) assumption that the domain of values
for each register is countable, we have that the set At is also
countable.2 Let St denote the set of all possible schedules
(i.e., sequences of process IDs) for two processes, in which
each process appears exactly t times. Then,

|St| =

(
2t

t

)
≤ 22t. (4)

For any A ∈ At and S ∈ St, we denote by c(A,S) the
indicator function that is 1 if and only if at least one of
the two process in algorithm A takes t steps under schedule
S. Let R be any randomized TAS implementation for two
processes, and let Rt be the same algorithm except that
processes are stopped after they execute their t-th step (if
they have not finished before that step). We can view Rt
as a probability distribution over the countable set At. The
probability that at least one process takes t or more steps
in R under schedule S is then equal to E[c(Rt, S)], where
c(Rt, S) is now a 0/1 random variable depending on the
random choices of the randomized algorithm Rt. Therefore,
the probability that at least one process takes t or more
steps in R for some schedule is

max
S∈St

E[c(Rt, S)].

By Yao’s Min-Max Lemma, for any probability distribution
Dt over the (finite) set of schedules St,

max
S∈St

E[c(Rt, S)] ≥ min
A∈At

E[c(A,Dt)].

We observe that for any A ∈ At we have c(A,S) = 1 for at
least one S ∈ St because of the impossibility of determin-
istic wait-free implementations for TAS. Thus, by choosing
Dt to be the uniform distribution over St, we obtain that
for any A ∈ At, E[c(A,Dt)] ≥ 1/|St|. Therefore, by (4)
maxS∈St E[c(Rt, S)] ≥ 1/|St| ≥ 1/22t. And since this is true
for an arbitrary randomized TAS implementation R for two
processes the theorem follows.

Conclusion
In this paper we devised several improved randomized TAS
algorithms. Most importantly, we have shown that the
randomized expected step complexity of TAS is O(log∗ k)
(where k is the contention) against the oblivious and some
slightly stronger adversary models. The progress in im-
proving randomized TAS algorithms is mirrored by recent
progress on randomized consensus algorithms. Just this
year, Aspnes [5] devised a randomized binary consensus

2This assumption allows us to apply Yao’s Min-Max Lemma
in a straight-forward way. However, with a slightly more
technical argument, a variant of the Min-Max Lemma can
be used even if At is not countable.

algorithm that has O(log log n) expected step complexity
against an oblivious adversary. This algorithm is based
on the sifting technique from [2]. It would be interesting
to know whether techniques similar to those presented here
can be used to find further improvements on the randomized
complexity of consensus.

Several other important problems remain open. For ex-
ample even for the oblivious adversary it is still not known,
whether a TAS implementation with constant expected step
complexity exist. No non-trivial lower bounds on the ex-
pected step complexity of Leader Election are known, not
even in the adaptive adversary model. Finally, there is still
an exponential gap between the lower bound of Ω(logn) and
the upper bound of O(n) for the number of registers that are
required for randomized or obstruction-free TAS algorithms.

7. REFERENCES
[1] Y. Afek, E. Gafni, J. Tromp, and P. M. B. Vitányi.
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