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ABSTRACT
We analyze decentralized routing in small-world networks
that combine a wide variation in node degrees with a no-
tion of spatial embedding. Specifically, we consider a varia-
tion of Kleinberg’s augmented-lattice model (STOC 2000),
where the number of long-range contacts for each node is
drawn from a power-law distribution. This model is mo-
tivated by the experimental observation that many “real-
world” networks have power-law degrees. In such networks,
the exponent α of the power law is typically between 2 and
3. We prove that, in our model, for this range of values,
2 < α < 3, the expected number of steps of greedy routing
from any source to any target is O(logα−1 n) steps. This
bound is tight in a strong sense. Indeed, we prove that the
expected number of steps of greedy routing for a uniformly-
random pair of source–target nodes is Ω(logα−1 n) steps. We
also show that for α < 2 or α ≥ 3, greedy routing performs
in Θ(log2 n) expected steps, and for α = 2, Θ(log1+ε n) ex-
pected steps are required, where 1/3 ≤ ε ≤ 1/2. To the
best of our knowledge, these results are the first to formally
quantify the effect of the power-law degree distribution on
the navigability of small worlds. Moreover, they show that
this effect is significant. In particular, as α approaches 2
from above, the expected number of steps of greedy routing
in the augmented lattice with power-law degrees approaches
the square-root of the expected number of steps of greedy
routing in the augmented lattice with fixed degrees, although
both networks have the same average degree.
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1. INTRODUCTION

1.1 Navigability of small worlds
It has been observed that many “real-world” networks,

such as social, information, technological, and biological net-
works, exhibit the small-world property; i.e., they are locally
clustered, and (yet) short paths exist between almost all
pairs of nodes (see [2, 9, 19] and the references therein). It is
also well-established that many small-world networks (e.g.,
the network of acquaintances between individuals) are easy
to navigate, provided that the nodes are able to estimate the
distances to other nodes with respect to some underlying
metric (e.g., geography, professions, etc.) [8, 18]. Navigabil-
ity refers to the ability of nodes to route messages efficiently
in a decentralized manner, using local information only. The
most prominent example of such a routing scheme is greedy
routing: a node handling a message destined to some target
node forwards the message to its neighbor that is closest to
the target, according to the underlying metric. The first for-
mal analysis of greedy routing in a plausible model of small
worlds was presented in [13]. The model studied there was
the augmented lattice: Consider the n-node d-dimensional
lattice that wraps around, where d ≥ 1. A node has links
to its 2d lattice-neighbors, and also to k ≥ 1 other nodes,
its long-range contacts. Each of the long-range contacts of a
node u is chosen using an independent random trial follow-
ing the d-harmonic distribution: the probability that node
v is chosen in a given trial is

pu,v ∝ 1/(dist(u, v))d, (1.1)

where dist(u, v) is the lattice distance between u and v.
In [13] it was shown that, in this model, greedy routing re-
quires O

(
1
k

log2 n
)

expected number of steps, for any source–
target pair. (This complexity was later shown to be tight [17].)
It was also shown that any decentralized routing algorithm
performs poorly if the d-dimensional lattice is augmented
using the h-harmonic distribution, for any h �= d. Specif-
ically, Ω(nγ) expected steps are required, for some γ > 0
that depends on h and d.1

1It was recently shown [7] that for d = 1, the augmentation



Despite its simplicity, the augmented-lattice model seems
to capture successfully the small-world and navigability prop-
erties of real-world networks. Note that in the d-dimensional
lattice the d-harmonic distribution is equivalent to the “nat-
ural” distribution pu,v ∝ 1/|Bu(dist(u, v))|, where Bu(r) is
the ball centered at u of radius r; this latter distribution
was used in [10, 23] to extend the results of [13] to graphs
of bounded ball growth, and to graphs of bounded doubling
dimension. Also, the d-harmonic distribution is equivalent
in the lattice to the rank-based distribution pu,v ∝ 1/ru(v),
where ru(v) is the rank of v when nodes are sorted in in-
creasing distance from node u; this latter distribution was
used in [15] to extend the results of [13] to non-uniform
population densities. In fact, it was experimentally demon-
strated that two-thirds of friendships are geographically dis-
tributed this way: the probability of befriending a particu-
lar person is inversely proportional to the number of people
closer to you [16]. Finally, it was recently shown that the
d-harmonic distribution of the long-range links might as well
be an inherent byproduct of node mobility [4]. See also [6,
20] for other dynamics yielding the d-harmonic distribution
in the lattice. Therefore, there is now a consensus that the
augmented-lattice model is an appropriate framework for
analyzing small-world navigability.

1.2 Power-law degree distribution
The augmented-lattice model, however, fails to capture

another commonly observed property of real-world networks,
the heavy-tailed degree distribution. Such a distribution is
well approximated by a power law

��[deg(u) = k] ∝ 1/kα, (1.2)

where α is a real, typically between 2 and 3 [2, 9, 19]. Nev-
ertheless, it is straightforward to reconcile the augmented-
lattice model with a power-law distribution for the node
degrees, simply by drawing the number of long-range links
added to each node independently at random from a power-
law distribution [14]. It is reasonable to expect that this
modification would reduce the lengths of shortest paths be-
tween nodes and the network diameter, since the (few) high-
degree nodes should provide short-cuts between most nodes.
This is typically the case in networks with power-law degree
sequences [3, 5]. However, it is unclear how decentralized
routing could benefit from the existence of these high-degree
nodes [14].

Utilizing the heavy-tailed degree distribution in the de-
sign of decentralized routing algorithms was suggested in [1,
11, 12, 21]. In all these works, the routing algorithms only
have access to information about the degrees of neighboring
nodes, not to any embedding of the graph. Although some
performance improvements are observed compared to rout-
ing algorithms oblivious to the node degrees, the expected
number of steps remains polynomial in the network size.
Also, [22] proposed a heuristic decentralized algorithm for
routing in a variance of the augmented lattice where nodes
have widely varying degrees. This heuristic assumes that
nodes have access both to the locations of theirs neighbors,
and to their degrees. Simulations showed that this algo-
rithm performs better than decentralized algorithms using

using the 1-harmonic distribution is essentially optimal in
the sense that for any augmentation distribution with k ex-
pected long-range contacts per node, greedy routing requires
Ω

(
1
k

log2 n
)

expected steps.

only one of these two sources of information. However, no
formal analysis was provided.

1.3 Our framework
We consider the following variance of the augmented-lattice

model. As in the original model, the long-range links are
drawn independently at random according the harmonic dis-
tribution with exponent equal to the dimensionality of the
lattice (cf. Eq. 1.1). Unlike the original model, however, the
number of long-range contacts each node has is not fixed,
but it is drawn independently at random from the power-
law distribution with exponent α ≥ 0 (cf. Eq. 1.2). This
distribution is scaled so that its expectation is constant and
each node has at least one long-range contact.2 We then re-
move the orientation of each of the long-range links to get a
non-directed network. We study the performance of greedy
routing in this network.

1.4 Our results
In this section, we ignore O(log log n) multiplicative fac-

tors in the statement of the asymptotic bounds. The precise
bounds are described in Section 2.3.

We prove that for 2 < α < 3, which is the case for most
real-world networks, the expected number of steps of greedy
routing from any source to any target is O(logα−1 n) steps.
Thus, for this range of values for α, the effect of the power-
law degree distribution is significant. In particular, when α
approaches 2, the expected number of steps of greedy routing
in the augmented lattice with power-law degrees approaches
the square-root of the expected number of steps of greedy
routing in the augmented lattice with fixed degrees, although
both networks have the same average degree. For both α < 2
and α ≥ 3, we show that the expected number of steps of
greedy routing from any source to any target is O(log2 n)
steps, which is the same order of magnitude as the perfor-
mance of greedy routing in the augmented lattice with fixed
degrees. For the critical value α = 2, we prove that the
expected number of steps of greedy routing from any source
to any target is O(log3/2 n) steps.

All these upper bounds are tight (but, perhaps, for α = 2).
For α > 2, the upper bounds are even tight in a strong sense.
Indeed, we prove that the expected number of steps of greedy
routing for a uniformly-random pair of source–target nodes
is Ω(logα−1 n) steps if 2 < α < 3, and Ω(log2 n) steps if
α ≥ 3. For α < 2, we prove that there exists a source–target
pair for which greedy routing requires Ω(log2 n) expected
steps. For α = 2, we show that the expected number of steps
for a uniformly-random source–target pair is Ω(log4/3 n).

We formally prove the above results for the case of the
1-dimensional lattice, i.e., the ring. Nevertheless, none of
the arguments we use is specifically tied to the ring, and
the exact same results can be easily shown for d-dimensional
lattices, for constant values of d. Note that unlike the results
in [13], where the critical value of the exponent depends on
the dimensionality d of the lattice, our results do not depend
on d.

To the best of our knowledge, these results are the first to
formally quantify the effect of the power-law degree distri-
bution on the navigability of small worlds.

2For α > 2, even without the scaling, the expectation is con-
stant and, with constant probability, each node has at least
one long-range contact. So, the scaling makes a difference
only for α ≤ 2.
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Figure 1: Summary of the results.

The following picture emerges from our analysis. For α ≥
3, almost all nodes are of small degree, and the nodes of
higher degree are too few to contribute significantly. Hence
greedy routing performs essentially the same as when the
degrees are fixed.

For 2 < α < 3, there are still very few nodes of high
degree. However, nodes of degree roughly log n are relatively
abundant, and there are more and more such nodes as α
approaches 2. It is the contribution of these nodes that
reduces the routing time from log2 n to logα−1 n.

The case α = 2 is special. All “degree scales” are present,
and each is equally likely to contribute. On the one hand,
this results in greater routing speed than in the case 2 < α <
3 when the current node is far from the target, since there
are many high-degree nodes between the current node and
the target in the lattice. On the other hand, the balance in
the degree scales means that as we get closer to the target
the number of high-degree nodes available decreases faster
than in the case 2 < α < 3; and when we get at distance
sub-polynomial from the target (essentially at distance less

than e
√

ln n), greedy routing performs the same as when the
degrees are fixed.

Finally, for α < 2, there are many nodes of high de-
gree, and the role of the cut-off point kmax of the power
law becomes critical. We assumed that kmax ∼ nγ , for some
0 < γ ≤ 1. In this setting, only the contribution of nodes
with degree close to kmax is significant. However, when the
current node is at distance less than kmax from the target, it
is very likely that greedy routing will not find a node of such
degree, and from that distance it starts performing the same
as when the degrees are fixed. Note that for α < 2, nodes
that are further away from the target may, in expectation,
require fewer steps to reach the target than nodes closer to
the target, which is not the case when α > 2.

2. MODEL AND MAIN RESULTS

2.1 Network model
We will use the notation [i..j] = {k ∈ Z : i ≤ k ≤ j} and

[i..j) = [i..j − 1], for i, j ∈ Z. (If i > j then [i..j] = ∅.)
Also, whenever we treat a real number x as an integer we
will mean 
x�.

In our analysis we will focus on the 1-dimensional lattice
case. Let Gn be the class of all directed graphs with set
of nodes [0..n) that contain as a subgraph the n-node ring,

i.e., the graph with set of nodes [0..n), and set of edges
{(u, u±1 mod n) : u ∈ [0..n)}.3 Let G be a graph in Gn, and
E be the set of edges of G. The out-neighbors (in-neighbors)
of a node u of G are all nodes v such that (u, v) ∈ E ((v, u) ∈
E). More specifically, the nodes u ± 1 mod n are called the
ring-neighbors of u, and the remaining out-neighbors (in-
neighbors) of u are its out-contacts (in-contacts). For any
two subsets of nodes A and B, we will write A → B to
denote that a node in B is an out-contact of a node in A
(or, equivalently, a node in A is an in-contact of a node in
B). When |A| = 1, say A = {a}, we will often write a → B,
instead; and the same convention is used when |B| = 1.
The ring-distance between nodes u and v, denoted δ(u, v),
is the minimum number of ring edges between them in either
clockwise or counter-clockwise direction, i.e.,

δ(u, v) = min{u − v mod n, v − u mod n}.
So, if v is a ring-neighbor of u then δ(u, v) = 1, and if it is
an in-contact or out-contact of u then δ(u, v) ≥ 2. We will
write ‖u‖ to denote δ(u, 0).

Random-graph models: We will study two random-graph
models. Each of them is parameterized by the size n of the
graph, and the exponent α ≥ 0 of a power-law distribution.
In the first model, denoted G(n, α), a random element of
Gn is generated by choosing the out-contacts of the nodes
as follows. For each node u, we draw an integer Du from
[1..kmax] independently at random, such that

(1) ��[Du = k] ∝ 1/kα, for k �= 1, and (2) �[Du] = 2.

We assume that the “cut-off point” kmax of the power-law
distribution is Θ(nγ), for some constant 0 < γ ≤ 1. Then,
we perform Du independent identical random trials, such
that in each trial a node v �= u is chosen with probability

∝ 1/δ(u, v).

The out-contacts of u are all the distinct nodes chosen by
these Du trials that are not ring-neighbors of u; formally, if
vi is the node chosen in the i-th trial then the out-contacts
of u are the elements of the set

⋃
1≤i≤Du

{vi} \ {u ± 1 mod

n}. The second random-graph model we consider, denoted
U(n, α), is the model in which a random graph is obtained by
first generating a random graph in G(n, α), and then taking
its underlying undirected graph; in fact, for each (directed)
edge of G(n, α) we also add its opposite-directed edge, if it
does not already exist. Formally, if E is the set of edges in
G(n, α) then the set of edges in U(n, α) is {(u, v) : (u, v) ∈
E or (v, u) ∈ E}.

Discussion: Recall that the long-range contacts of a node
in G(n, α) are selected using independent trials with replace-
ment. This assumption simplifies the analysis, but it has
the side effect that the out-degree D+

u of node u in G(n, α)
can be smaller than Du, and also the distribution of D+

u

is not exactly a power law. Nevertheless, the use of trials
with replacement gives essentially the same results as the
trials without replacement. This is because the discrepancy
between D+

u and Du is significant only for large values of
Du (e.g., of order Ω(

√
n)). And our analysis shows that the

3For a graph in Gn, the underlying ring will be used to
compute distances between nodes. Also, when we refer to
nodes we will mean their integer labels.



effect of such high-degree nodes is negligible when α > 2;
while for α < 2 our proof actually holds even if trials are
without replacement. For the in-degree D−

u of u in G(n, α),
it is easy to see that its distribution is close to a Poisson
with constant expectation; so, the distribution of the (total)
degree D+

u + D−
u of u in U(n, α) is essentially the same as

that of D+
u for all but very small values.

Next, recall that Du ≤ kmax = Θ(nγ) and Du �= 0. For
α > 2, the exact same asymptotic results hold with or with-
out these constrains. The rest of the discussion is for the
case α ≤ 2. Note that it must be kmax < ∞, otherwise the
expectation of Du is ∞. Also, a value for kmax that is poly-
nomial in n is consistent with real-world networks. It can
be shown that if kmax is poly-log in n then greedy routing
performs in logarithmic time. On the lower side, a mini-
mum value is imposed on Du because otherwise Du would
be 0 with overwhelming probability. It can be shown that,
in that case, greedy routing would require polynomial time
if α < 2, and poly-log time if α = 2.

2.2 Greedy routing
We consider the following routing algorithm for graphs in

Gn. When a node u receives a message for a target node t �=
u, u forwards the message to an out-neighbor that is closest
to t, with respect to the ring-distance. We call this routing
algorithm greedy. We are interested in the performance
of greedy in G(n, α) and U(n, α). Specifically, we study
two performance measures: the expected delivery time of
greedy, and the greedy diameter. Let lu,v be the expected
length of the greedy routing path from u to v in the random
graph. The expected delivery time is the average of lu,v,
taken over all possible source–target pairs, i.e.,

Expected delivery time of greedy =
1

n2

∑
u,v

lu,v.

The greedy diameter is the corresponding maximum, i.e.,

greedy diameter = max
u,v

lu,v.

Note that the greedy diameter is always greater or equal
to the corresponding expected delivery time. All the lower
bounds we prove, except for the model U(n, α) with α < 2,
are for the expected delivery time of greedy; whereas all
the upper bounds are for the greedy diameter.

Throughout our analysis of greedy in G(n, α) and U(n, α),
we will assume that the target node is node 0. We can
make this assumption without loss of generality because of
the symmetry of the random-graph models. Also, for the
analysis in U(n, α), instead of considering the graph U(n, α)
directly, we will consider G(n, α), and for the purposes of
routing we will ignore the direction of the links. So, when-
ever we refer to the in-/out-contacts, in-/out-links, etc., of a
node, we will mean in G(n, α); the same convention is used
for the ‘→’ notation.

In G(n, α), the greedy path from a fixed source to a fixed
target is a Markov chain; the next node in the path depends
only on the last node visited. However, this is not the case in
U(n, α), where the next node depends on all the previously
visited nodes, and also on their in- and out-links. Specifi-
cally, if 〈Y0, Y1, . . .〉 is the routing path from node Y0 to 0
then for any node v with ‖v‖ < ‖Yi‖, v �→ {Y0, . . . , Yi−1};
hence, the values of Y0, . . . , Yi−1 affect the distribution of
the out-contacts of v. More importantly, the distribution of

the out-contacts of Yi is affected by whether Yi−1 → Yi or
not; e.g., if Yi−1 �→ Yi and Yi is not a ring-neighbor of Yi−1

then Yi → Yi−1, which, for some values of α, changes the
a-priory distribution of the out-degree of Yi significantly.

2.3 Statement of the results
In all the results below, the asymptotic notation is as n →

∞, and α is not a function of n.

Theorem 2.1. The expected delivery time of greedy in
G(n, α) is Ω(ln2 n).

Theorem 2.2. The greedy diameter of G(n, α) is O(ln2 n).

Theorem 2.3. The expected delivery time of greedy in
U(n, α) is ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ω(ln4/3 n), if α = 2;

Ω(lnα−1 n), if 2 < α < 3;

Ω(ln2 n/ ln ln n), if α = 3;

Ω(ln2 n), if α > 3.

Also, for 0 ≤ α < 2, the greedy diameter is Ω(ln2 n).

Theorem 2.4. The greedy diameter of U(n, α) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(ln2 n), if 0 ≤ α < 2;

O(ln3/2 n), if α = 2;

O(lnα−1 n ln ln n), if 2 < α < 3;

O(ln2 n), if α ≥ 3.

3. DEFINITIONS AND BASIC FACTS

3.1 Distribution of out-contacts
Recall that the out-contacts of a node u in G(n, α) are

chosen using independent identical trials, such that, in each
trial, node v �= u is picked with probability ∝ 1/δ(u, v). So,
the probability that v is picked in a given trial is

1

ν δ(u, v)
, where ν =

∑
v �=u

1

δ(u, v)
= 2 ln n + O(1).

Also, the number Du of trials used is chosen independently
at random from [1..kmax], where kmax = Θ(nγ), such that
��[Du = k] ∝ 1/kα, for k �= 1, and �[Du] = 2. Let

qk = ��[Du = k] =

{
1

βkα , if k �= 1;

1 − ∑
j �=1 qj , if k = 1,

where β is the normalizing factor such that�[Du] =
∑

k kqk =
2. It is easy to see that

β =
∑

k

k − 1

kα
=

⎧⎪⎨
⎪⎩

Θ(1), if α > 2;

Θ(ln n), if α = 2;

Θ(k2−α
max ), if 0 ≤ α < 2.

Also, the probability that Du = 1 is q1 = Θ(1), if α > 2,
and q1 = 1 − o(1), if 0 ≤ α ≤ 2.

3.2 Simple facts about G(n, α)

We now state without proof some simple facts that we use
repeatedly in the analysis. In all these facts, the underlying
graph is G(n, α) and u, v ∈ [0..n).



Fact 3.1. If U ⊆ [0..n) and p = ��[u → U |Du = 1],

1
2

min{1, kp} ≤ ��[u → U |Du = k] ≤ min{1, kp}.

Fact 3.2. If v is not a ring-neighbor of u4 then

1
νδ(u,v)

≤ ��[u → v] ≤ 2
νδ(u,v)

.

Fact 3.3. If U = {u + d mod n : d ∈ [a..b]} or U =
{u − d mod n : d ∈ [a..b]}, where 2 ≤ a ≤ b ≤ n/2, then

1
ν

ln b+1
a

≤ ��[u → U |Du = 1] ≤ 1
ν

ln b
a−1

.

Fact 3.4. If U1, U2 ⊆ [0..n) and U1 ∩ U2 = ∅ then

��[u → U1 | {Du = k}∩{u �→ U2}] =
��[u → U1 |Du = k]

��[u �→ U2 |Du = 1]
.

For the next fact we need to introduce some notation,
which we also use throughout the analysis. Let Rx be the
set of all nodes at ring-distance at most x from 0; i.e.,

Rx = {u : ‖u‖ ≤ x}.
By Hu we denote the set of all sets H ⊆ [0..n) \ R‖u‖, such
that for any two distinct v1, v2 ∈ H , ‖v1‖ �= ‖v2‖. Note
that for any graph in Gn and node s, every prefix path of
the routing path from s to 0 that contains no nodes in R‖u‖
belongs to Hu.

Fact 3.5. If H ∈ Hu and d = minv∈H δ(u, v) then
(a) ��[u → H |Du = k] ≤ ��[0 → [d..d + |H |) |D0 = k];
(b) ��[u �→ H |Du = k] ≥ 2−k; and (c) ��[u �→ H ] ≥ q1/2.

4. PROOF OF THE LOWER BOUNDS
We begin with an auxiliary lemma that bounds from below

the average length of any process that approaches 0 with
jumps that follow a distribution of a specific form. We use
this result in the proofs of all the lower bounds. We prove the
lower bound for G(n, α) in Section 4.1, and for U(n, α) with
α > 2, α < 2, and α = 2 in Sections 4.2–4.4, respectively.

The next lemma provides a lower bound on the expected
number of steps of an arbitrary process on the non-negative
integers, which is non-increasing, and the length of the jump
in each step is bounded by a distribution of a certain form.
We will use this result in the proofs of all the lower bounds.

Lemma 4.1. If 〈X0, X1, . . .〉 is a non-increasing, non-neg-
ative, integer-valued random process with X0 > ρ ≥ 1, such
that for all j with ρ < j ≤ X0,

��[Xi+1 = j′ |Xi = j] ≤
{

c (j/j′)ε

ρ(j−j′) , if 0 < j′ ≤ j − 2;

c 1
ρ ln j

, if j′ = 0,

where 0 ≤ ε < 1, then the expected number of steps to reach
0 is at least c′ρ ln(X0/ρ), where c′ = c′(c, ε) > 0.

The proof of Lemma 4.1 is similar to the proof of the
lower bound for the augmented lattice with fixed degrees,
described in [17] (Theorem 7). Roughly, we consider the
sequence of ln Xi, show that the average reduction in each
step is at most c′′(c, ε)/ρ, and use an expectation argument
to obtain the lower bound. The full proof is omitted due to
space limitations.

4If v is a ring-neighbor of u then ��[u → v] = 0, by the
definition of ‘→’.

4.1 Proof of Theorem 2.1
It is a straightforward application of Lemma 4.1. Let

〈Y0, Y1, . . .〉 be the routing path from Y0 to 0 in G(n, α).
For all u, v with ‖v‖ ≤ ‖u‖ − 2,

��[Yi+1 = v |Yi = u] ≤ ��[u → v] ≤ 2
νδ(u,v)

,

by Fact 3.2. From this and Lemma 4.1, applied for n/4 ≤
X0 ≤ n/2, ρ = ν, ε = 0, and Xi = ‖Yi‖, we obtain that the
expected length of the routing path from u to 0 is Ω(ν lnn) =
Ω(ln2 n), for all u with ‖u‖ ≥ n/4; the theorem then follows.

4.2 Proof of Theorem 2.3 case α > 2

We describe a random process N , which we prove ap-
proaches zero faster than greedy (Section 4.2.1), and we
derive a lower bound on its expected length (Section 4.2.2).
Combining these two results we obtain the theorem (Sec-
tion 4.2.3). Unlike greedy, N is a Markov chain, so, it is
easier to analyze.

4.2.1 Process N
Process N is parameterized by n, α, and s, where s ∈

[0..n), and it resembles greedy routing in U(n, α) from
source s to target 0. Roughly speaking, N differs from
greedy mainly in that: (1) each time the message is for-
warded to an in-contact, say v, of the current node, the
message is next forwarded to an out-neighbor of v closest to
0, and these two forwardings count as a single step of N ;
and (2) the random graph is regenerated in each step of N .
In addition, instead of the contacts of the current node, say
u, the out-contacts of a node a1 and the in-contacts of a
(possibly different) node a2 are used to determine the next
node. The ai are functions on u, have ‖ai‖ ≥ ‖u‖, and they
are such that they minimize the expected length of N . We
introduce N because its expected length is a lower bound for
the expected steps greedy takes to route a message from s
to 0, and because N is a Markov chain, hence, it is easier to
analyze than greedy. Another useful property of N is that
its expected length is a non-decreasing function of ‖s‖.

We now define N formally. Let a1 : [0..n) → [0..n), A1 :

[0..n) → 2[0..n), a2 : [0..n)2 → [0..n), and A2 : [0..n)2 →
2[0..n) be functions such that for all nodes u, r,

‖a1(u)‖ ≥ ‖u‖, A1(u) ∈ Ha1(u),

‖a2(u, r)‖ ≥ ‖u‖, A2(u, r) ∈ Ha2(u,r).

Recall from Section 3.2 that for any graph in Gn and node
u′, Hu contains every prefix path of the routing path from
u′ to 0 such that no node in this prefix path is in R‖u‖ = {v :
v ≤ ‖u‖}. The ai and Ai should also satisfy an additional
condition, which we specify later.

Let u �= 0 be the current node in N . (Initially u = s, and
N finishes when u = 0.) The next node, denoted Nu, is a
node closest to 0 among the two ring-neighbors of u, and the
nodes Nu,1, Nu,2 which are determined as follows. First we
choose the out-contacts of a1(u) as in G(n, α), conditioned
on the event {a1(u) �→ A1(u)}. We let Nu,1 be an out-
contact of a1(u) that is closest to 0; or, if a1(u) has no out-
contacts, Nu,1 is a randomly chosen node among u and the
ring-neighbors of u (this ensures that ��[Nu,1 = v] > 0, for
all v). Suppose that Nu,1 = r. Nu,2 is then chosen as follows.
We choose the out-contacts of the nodes in R‖a2(u,r)‖−1 as in
G(n, α), conditioned on the event {R‖a2(u,r)‖−1 �→ A2(u, r)}.
(If a1(u) ∈ Ra2(u,r)−1 then the out-links of a1(u) generated



earlier to determine Nu,1 are deleted, and replaced by new
ones.) Let Z be the set of the in-contacts of a2(u, r) that are
in R‖a2(u,r)‖−1 and are closest to 0 (0 ≤ |Z| ≤ 2). If Z = ∅,
Nu,2 = a2(u, r); if Z = {0}, Nu,2 = 0; otherwise, Nu,2 is a
node closest to 0 among the out-neighbors of the nodes in
Z.

Functions ai and Ai should satisfy the following optimiza-
tion condition. Roughly speaking, this condition says that
given the values of ai and Ai for all u with ‖u‖ < ‖v‖, their
values for u = v are such that they minimize the expected
length of N when starting from s = u. Formally, let LN

u

denote the expected number of steps of N for s = u. The
condition is described inductively as: for ‖u‖ = 1, 2, . . . ,⎧⎪⎨
⎪⎩

for all r, a2(u, r) and A2(u, r) are such that they

minimize �[LN
u |Nu,1 = r];

a1(u) and A1(u) are such that they minimize �[LN
u ].

The next two lemmata state the two properties of N we
described at the beginning, that �[LN

s ] is a non-decreasing
function of ‖s‖, and it is a lower bound for the expected
value of the number of steps Ls that greedy requires to
route a message from s to 0. Due to space limitations, the
proof of Lemma 4.3 is omitted.

Lemma 4.2. If ‖u‖ ≥ ‖u′‖ then �[LN
u ] ≥ �[LN

u′ ].

Proof. By induction on ‖u‖. We show that if ‖u‖ ≥ ‖u′‖
and ‖r‖ ≥ min{‖r′‖, ‖u′‖ − 1} then

�[LN
u |Nu,1 = r] ≥ �[LN

u′ |Nu′,1 = r′], (4.1)

�[LN
u ] ≥ �[LN

u′ ]. (4.2)

Clearly, both relations hold if u′ = 0. Below we assume
that u′ �= 0 and, thus, u �= 0. The induction hypothe-
sis (i.h.) is that for all v, v′, w, w′, such that ‖u‖ > ‖v‖ ≥
‖v′‖ and ‖w‖ ≥ min{‖w′‖, ‖v′‖ − 1}, �[LN

v |Nv,1 = w] ≥
�[LN

v′ |Nv′,1 = w′] and �[LN
v ] ≥ �[LN

v′ ]. From the i.h. it is
immediate that

�[LN
v |Nv,1 = w] = �[LN

v |Nv,1 = ‖w‖], (4.3)

�[LN
v ] = �[LN

‖v‖]. (4.4)

We derive (4.1) as follows. By (4.4),

�[LN
u |Nu,1 = r]

= 1 +
∑

v

�[LN
min{‖u‖−1,‖r‖,‖v‖}] ·��[Nu,2 = v |Nu,1 = r].

For �[LN
u′ |Nu′,1 = r′], suppose that we compute LN

u′ using
a2(u, r) and A2(u, r) in place of a2(u

′, r′) and A2(u
′, r′),

respectively, and let M be the resulting quantity. By the
optimality of the a2 and A2,

�[LN
u′ |Nu′,1 = r′] ≤ �[M |Nu′,1 = r′]

= 1 +
∑

v

�[LN
min{‖u′‖−1,‖r′‖,‖v‖}] ·��[Nu,2 = v |Nu,1 = r].

From the two results above and the second part of the i.h.,
we obtain (4.1). We now derive (4.2).

�[LN
u ] =

∑
r

�[LN
u |Nu,1 = r] ·��[Nu,1 = r].

For �[LN
u′ ], suppose that when computing LN

u′ we replace
a1(u

′) and A1(u
′) by a1(u) and A1(u), respectively, and let

M ′ be the resulting quantity. By the optimality of the a1

and A1, and (4.3) (for v = u′),

�[LN
u′ ] ≤ �[M ′] =

∑
r

�[LN
u′ |Nu′,1 = r] ·��[Nu,1 = r].

Combining the two results above and applying the first part
of the i.h. (for v = u), yields (4.2).

Lemma 4.3. �[LN
s ] ≤ �[Ls].

4.2.2 Expected length of N
The next lemma provides lower bounds on the expected

length of N , for α > 2.

Lemma 4.4.

(a) If α > 3 then �[LN
n/4] = Ω(ln2 n).

(b) If α = 3 then �[LN
n/4] = Ω( ln2 n

ln ln n
).

(c) If 2 < α < 3 then for λ = elnα−2 n, �[LN
λ ] = Ω( lnα−1 n

ln lnn
).

Proof. (a) We show below that for all u, j such that
0 ≤ j ≤ ‖u‖ − 2,

��[‖Nu‖ = j] = O
(

1
ν(‖u‖−j)

)
. (4.5)

From this and Lemma 4.1, applied for X0 = n/4, Xi+1 =
‖NXi‖, ρ = ν, and ε = 0, it follows that �[LN

n/4] = Ω(ln2 n).
We now prove (4.5).

��[‖Nu‖ = j] ≤��[‖Nu,1‖ = j]

+ max
r
��[‖Nu,2‖ = j |Nu,1 = r]. (4.6)

Below we will write a1 and A1 instead of a1(u) and A1(u),
respectively.

��[‖Nu,1‖ = j] ≤ ��
[
a1 → {j, n − j} ∣∣ a1 �→ A1

]
≤ ��[a1 → {j, n − j}]

��[a1 �→ A1]
= O

( 1

ν(‖a1‖ − j)

)
, (4.7)

by Facts 3.2 and 3.5(c). Next we bound the second term
on the right-hand side of (4.6). We will need the following
definitions. Let Sv, for v �= 0, be an out-neighbor of v in
G(n, α) that is closest to 0 (there may be two such nodes);
and S0 = 0. Let also Zv be the set of the in-contacts of v
that are in R‖v‖−1 and are closest to 0 (0 ≤ |Zu| ≤ 2).

��[‖Nu,2‖ = j |Nu,1 = r]

≤
∑

v:j≤‖v‖<‖a2‖

∑
k

��
[{v ∈ Za2} ∩ {‖Sv‖ = j} ∩ {Dv = k}

∣∣ R‖a2‖−1 �→ A2

]
, (4.8)

where again we write a2 and A2 instead of a2(u, r) and
A2(u, r), respectively. For j + 2 ≤ ‖v‖ < ‖a2‖,
��

[‖Sv‖ = j
∣∣ {v ∈ Za2} ∩ {Dv = k} ∩ {R‖a2‖−1 �→ A2}

]
= ��

[‖Sv‖ = j
∣∣ {Dv = k − 1} ∩ {v �→ A2}

]
≤ ��

[
v → {j, n − j} ∣∣ {Dv = k − 1} ∩ {v �→ A2}

]
=
��

[
v → {j, n − j} ∣∣ Dv = k − 1

]
��[v �→ A2 |Dv = 1]

= O
( k − 1

ν(‖v‖ − j)

)
, (4.9)



where the second-to-last line was obtained using Fact 3.4,
and the last using Facts 3.1 and 3.5(b); also,

��
[
v ∈ Za2

∣∣ {Dv = k} ∩ {R‖a2‖−1 �→ A2}
]

≤ ��
[
v → a2

∣∣ {Dv = k} ∩ {v �→ A2}
]

= O
( k

ν(‖a2‖ − ‖v‖)
)
, (4.10)

similarly to (4.7); and

��
[
Dv = k

∣∣ R‖a2‖−1 �→ A2

]
= ��

[
Dv = k

∣∣ v �→ A2

]
= O(qk), (4.11)

by Fact 3.5(c). Combining (4.8)–(4.11), we obtain

��[‖Nu,2‖ = j |Nu,1 = r]

= O

( ∑
v:j+2≤‖v‖<‖a2‖

∑
k

k2−α

ν2(‖v‖ − j)(‖a2‖ − ‖v‖)

+
1

ν(‖a2‖ − j)

)

= O
( ln(‖a2‖ − j)

ν2(‖a2‖ − j)
+

1

ν(‖a2‖ − j)

)

= O
( 1

ν(‖a2‖ − j)

)
. (4.12)

Applying (4.7) and (4.12) to (4.6), yields (4.5).

(b) We consider an “early-stopping” variance of N that dif-
fers from N as follows: Let u �= 0 be the current node,
suppose Nu,1 = r, and let Z be the set of the in-contacts
of a2(u, r) that are in R‖a2(u,r)‖−1 and are closest to 0 (see

the definition of N in Section 4.2.1); if Dv > ln2 n for some
v ∈ Z then the process jumps to node 0 in the next step.

Let Mu denote the next node after node u in this new
process, and LM

u be the number of steps to reach 0 from u.
Clearly, �[LN

u ] ≥ �[LM
u ], so, it suffices to bound �[LM

n/4].

We show that for all u with ‖u‖ ≥ ρ = ln n
ln ln n

,

��[‖Mu‖ = j] =

{
O

(
1

ρ(‖u‖−j)

)
, if 0 < j ≤ ‖u‖ − 2;

O
(

1
ρ ln n

)
, if j = 0.

(4.13)
From this and Lemma 4.1, applied for X0 = n/4, Xi+1 =

‖MXi‖, and ε = 0, it follows that �[LM
n/4] = Ω

(
ln2 n
ln ln n

)
. The

proof of (4.13) is similar to that of (4.5) and is omitted.

(c) We show that for all u with ν < ‖u‖ ≤ λ,

��[‖Nu‖ = j] =

{
O

( (‖u‖j)3−α

ν(‖u‖−j)

)
, if 0 < j ≤ ‖u‖ − 2;

O
(

1
ν ln ‖u‖

)
, if j = 0.

(4.14)
From this and Lemma 4.1, applied for X0 = λ, Xi+1 =
‖NXi‖, ρ = ν, and ε = 3 − α, it follows that �[LN

λ ] =
Ω(ν ln λ) = Ω(lnα−1 n). The derivation of (4.14) is similar
to that of (4.5) — but more computationally involved. The
main difference is that a more accurate bound is used in
place of (4.9).

4.2.3 Putting the pieces together
If α > 3 then, by Lemmata 4.4(a), 4.2, and 4.3, �[Lu] ≥

�[LN
u ] = Ω(ln2 n), for all u with ‖u‖ ≥ n/4. Hence, the ex-

pected delivery time is Ω(ln2 n). For the cases α = 3 and 2 <
α < 3 the theorem follows similarly, using Lemmata 4.4(b)
and 4.4(c), respectively, in place of Lemma 4.4(a).

4.3 Proof of Theorem 2.3 case α < 2

The theorem follows from the fact that for some λ that is
polynomial in n, all nodes in Rλ have out-degree (at most)
1, with probability Θ(1). Specifically, the probability that
Du = 1 is

q1 =

⎧⎪⎨
⎪⎩

1 − Θ(1/k2−α
max ), if 1 < α < 2;

1 − Θ(ln n/kmax), if α = 1;

1 − Θ(1/kmax), if 0 ≤ α < 1.

(4.15)

Let λ = min{n
2
, 1

1−q1
}, and E =

⋂
u∈Rλ

{Du = 1}. Then,

��[E ] = q2λ+1
1 = Θ(1). Let 〈Y0, Y1, . . .〉 be the routing path

from λ to 0. If ‖v‖ ≤ ‖u‖ − 2,

��[Yi+1 = v | {Yi = u} ∩ {〈Yj〉i−1
j=0 = H} ∩ E ]

≤ ��[{u → v} ∪ {v → u} | {u, v �→ H} ∩ {Du = Dv = 1}]
= O

(
1

νδ(u,v)

)
,

by Fact 3.5(b). This and Lemma 4.1, applied for ρ = ν,
ε = 0, and Xi = ‖Yi‖ | E , yields �[Lλ | E ] = Ω(ν ln λ).
By (4.15) and the fact that kmax is polynomial in n, lnλ =
Θ(ln kmax) = Θ(lnn), so, �[Lλ | E ] = Ω(ln2 n). And since
��[E ] = Θ(1), �[Lλ] ≥ �[Lλ | E ] · ��[E ] = Ω(ln2 n); hence,
the greedy diameter is Ω(ln2 n).

4.4 Proof of Theorem 2.3 case α = 2

The proof consists of two parts, which are roughly as fol-
lows. First we show that for any λ and node s with ‖s‖ ≥ λ,
with probability Θ(1), the routing path from s to 0 contains

some node u such that λ1/3 ≤ ‖u‖ ≤ λ and u has a small

expected out-degree. Next, we show that if λ = eln1/3 n

then the expected number of remaining steps from u to 0 is
Ω(ln4/3 n). The two lemmata we state below correspond to
these two parts. Let 〈Y0, Y1, . . .〉 be the routing path from
node Y0 to 0.

Lemma 4.5. If ‖Y0‖ > λ = ω(1) and K = min{i : ‖Yi‖ ≤
λ} then

��
[{‖YK‖ ≥ λ1/3}∩({YK �→ YK−1}∪{DYK = 1})] = Θ(1).

Lemma 4.6. For λ = eln1/3 n and λ1/3 ≤ ‖u‖ ≤ λ,

�
[
LYi

∣∣ Y0, . . . , Yi−1, {Yi = u}∩({Yi �→ Yi−1}∪{DYi = 1})]
is Ω(ln4/3 n).

Let E = {‖YK‖ ≥ λ1/3} ∩ ({YK �→ YK−1} ∪ {DYK =

1}). We prove Lemma 4.5 by showing that E occurs with
probability Θ(1), for any fixed K and Y0, . . . , YK−1, and
conditionally on the event that for all v with ‖v‖ > λ, Dv ≤
‖v‖. Since this last event occurs with probability Θ(1), the
lemma follows. The proof of Lemma 4.6 is analogous to that
of Lemma 4.4(b). We analyze an early-stopping variation of
greedy, where if in some step we visit a node v ∈ R‖u‖
that has an in-contact v′ ∈ R‖v‖−1 with Dv′ > 1 then we
jump to 0 in the next step. The full proofs of Lemmata 4.5
and 4.6 are omitted due to space limitations.

The theorem now follows easily. For λ = eln1/3 n, K as in
the statement of Lemma 4.6, and E as above,

�[LY0 ] ≥ �[LY0 | E ] ·��[E ] ≥ �[LYK | E ] ·��[E ] = Ω(ln4/3 n),

by Lemmata 4.5 and 4.6.



5. PROOF OF THE UPPER BOUNDS
As in the proof of the lower bounds in Section 4, we start

with a simple lemma that bound from above the length of
any process that approaches 0 with jumps that follow a dis-
tribution of a specific form. In Section 5.1, we show that
O(ln2 n) steps are required in all models. In Sections 5.2
and 5.3, we prove tighter upper bounds for U(n, α), for
2 < α < 3 and α = 2, respectively.

Lemma 5.1(a) below is an analogue of Lemma 4.1, and we
will use it in the proofs of all the upper bounds. Lemma 5.1(b)
provides a with-high-probability bound for the length of the
process; we will use it in Sections 5.2 and 5.3. The proof is
straightforward and is omitted.

Lemma 5.1. If 〈X0, X1, . . .〉 is a non-increasing, non-neg-
ative, integer-valued random process, such that for all j,

��[Xi+1 ≤ j/2 |X0, . . . , Xi−1, {Xi = j}] ≥ 1/ρ,

then for κ = �log(X0 + 1)�,
(a) The expected number of steps to reach 0 is at most ρκ.

(b) The number of steps to reach 0 is greater than t ≥ 4ρκ

with probability at most e
− t

4ρ .

We will also use the following simple fact, which we state
without proof.

Fact 5.2. If Q1, Q2, . . . , Qκ are independent 0–1 random
variables and Q =

∑
i Qi then (a) ��[Q = 0] ≤ e−�[Q]; and

(b) if for all i, �[Qi] ≤ 1/2 then ��[Q = 0] ≥ e−
3
2 �[Q].

5.1 Proof of an O(ln2 n) bound for all models
Let 〈Y0, Y1, . . .〉 be the routing path from node Y0 to 0 in

G(n, α) or U(n, α). We will show that for all u,

��[‖Yi+1‖ ≤ ‖u‖/2 | {〈Yj〉i−1
j=0, {Yi = u}] = Ω(1/ν). (5.1)

From this and Lemma 5.1(a), applied for Xi = ‖Yi‖ and
ρ = Θ(ν), we obtain that the expected length of the routing
path from Y0 to 0 is O(ν ln(‖Y0‖ + 1)) = O(ln2 n). We now
prove (5.1). For ‖u‖ ≤ 2, it obviously holds; so, suppose
that ‖u‖ > 2.

• In G(n, α), the left-hand side of (5.1) equals

��[u → R‖u‖/2] ≥ q1��[u → R‖u‖/2 |Du = 1] = Ω( 1
ν
),

by Fact 3.3.

• In U(n, α), we have

��[‖Yi+1‖ ≤ ‖u‖/2 | {Yi = u} ∩ {〈Yj〉i−1
j=0 = H}]

≥ ��[R‖u‖/2 → u |R‖u‖/2 �→ H ]. (5.2)

But for any v ∈ R‖u‖/2,

��[v → u |R‖u‖/2 �→ H ]

= ��[v → u | v �→ H ] ≥ ��[{v → u} ∩ {v �→ H}]
≥ ��[{v → u} ∩ {Dv = 1}] = q1��[v → u |Dv = 1]

≥ q1

2ν‖u‖ .

So,
∑

v∈R‖u‖/2
��[v → u |R‖u‖/2 �→ H ] ≥ 1

4ν
; and

since the events {v → u} are independent (condition-
ally on R‖u‖/2 �→ H), we have, by Fact 5.2(a), that

��[R‖u‖/2 → u |R‖u‖/2 �→ H ] ≥ 1 − e−
1
4ν = Θ(1/ν).

Combining this and (5.2) yields (5.1).

5.2 Proof of Theorem 2.4 case 2 < α < 3

We will use the following result, which is analogous to
Lemma 5.1(a).

Lemma 5.3. If 〈X0, X1, . . .〉 is a non-increasing, non-neg-
ative, integer-valued random process with X0 > λ ≥ 1, such
that for all j with λ < j ≤ X0,

��[Xi+1 ≤ j/2 |X0, . . . , Xi−1, {Xi = j}] ≥ log j
ρ

(5.3)

then the expected number of steps until the process’ value
reduces to at most λ is at most ρ(ln log X0 + 1).

Proof. Let Tk, for k ≥ 0, be the number of steps until
the process’ value is reduced to at most 2kλ; i.e., Tk =
min{i : Xi ≤ 2kλ}. (Note that smaller k correspond to
larger Tk.) To prove the lemma we must show that �[T0] ≤
ρ(ln log X0 + 1). For k ≥ log X0 − log λ, Tk = 0. For
0 ≤ k < log X0 − log λ,

��[Tk = i + 1 |X0, . . . , Xi, {Tk+1 ≤ i < Tk}]
= ��[Xi+1 ≤ 2kλ |X0, . . . , Xi, {2kλ < Xi ≤ 2k+1λ}]
≥ log λ+k

ρ
,

by (5.3). So, Tk − Tk+1 is stochastically smaller than a geo-
metric random variable with probability parameter log λ+k

ρ
.

Therefore,

�[T0] = �

[ log X0−log λ−1∑
k=0

(Tk − Tk+1)

]

≤
log X0−log λ−1∑

k=0

ρ

log λ + k
≤ ρ(ln log X0 + 1).

Roughly, the proof of the theorem proceeds as follows. We
show that in every three steps of greedy the ring-distance

to 0 is halved with probability Ω
(

ln ‖u‖
lnα−1 n

)
, provided that we

are not too close to 0 and not too many steps have been
taken so far. Also, by the analysis in Section 5.1, the ring-
distance to 0 is halved with probability Ω(1/ ln n) in each
step, independently of the previous steps. By combining
these two results and applying Lemmata 5.1 and 5.3 we ob-
tain the theorem.

The next lemma gives a lower bound on the speed of
greedy when the length of the prefix of the routing path
so far is much smaller than the current ring-distance to
the target. Two steps at a time are considered instead of
just one. Interestingly, this bound is obtained by counting
only the contribution of nodes with out-degree Θ(ln n). Let
〈Y0, Y1, . . .〉 be the routing path from node Y0 to 0.

Lemma 5.4. If ‖u‖ ≥ 8(i2 + 1) then

��[‖Yi+2‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u} ∩ {Yi �→ Yi−1}]
is Ω

(
ln‖u‖

lnα−1 n

)
.

Proof. We describe an event E such that if E occurs
and Yi = u then ‖Yi+2‖ ≤ ‖u‖/2, and we bound E ’s con-
ditional probability instead. Informally, if E ∩ {Yi = u}
occurs then the following statements are true about Yi+1:
(1) it is an in-contact of Yi; (2) it has out-degree Θ(lnn);

(3) ‖u‖/2 < ‖Yi+1‖ ≤ ‖u‖ − ‖u‖1/2; and (4) at least one of
its out-contacts is in R‖u‖/2. Formally, we define the follow-
ing four events. Let

E0 = {u �→ R‖u‖−‖u‖1/2}.



Define the sets C = R‖u‖−‖u‖1/2 \ R‖u‖/2 and C∗ = {v ∈
C : ν ≤ Dv ≤ 2ν}, and let

E1 = {C∗ → u}, E2 = {R‖u‖−1 \ C∗ �→ u}.
Last, if E1 occurs, let Z be the in-contact of u in C∗ that is
closest to 0 (if there are two such nodes then Z is the one
that greedy would choose), and let

E3 = {Z → R‖u‖/2}.
We define

E = E0 ∩ E1 ∩ E2 ∩ E3.

It is easy to see that E ∩ {Yi = u} ⊆ {‖Yi+2‖ ≤ ‖u‖/2}. So,
to prove the lemma it suffices to show that

��[E | {〈Yj〉i−1
j=0 = H}∩{Yi = u}∩{Yi �→ Yi−1}] = Ω

(
ln ‖u‖

lnα−1 n

)
.

But the left-hand side is equal to ��[E |R‖u‖ �→ H ]; so,

we will show that ��[E |R‖u‖ �→ H ] = Ω
( ln ‖u‖

lnα−1 n

)
. Let

A = {R‖u‖ �→ H}. Since E0 is independent of the other
three events,

��[E |A] = ��[E0 | A] ·��[E1 | A] ·��[E2 | E1 ∩A]

·��[E3 | E1 ∩ E2 ∩A]. (5.4)

We compute lower bounds for the four probabilities on the
right-hand side.

��[E0 | A] ≥ ��[u �→ R‖u‖−‖u‖1/2 ∪ H ]

≥ q1��[u �→ R‖u‖−‖u‖1/2 ∪ H |Du = 1]

≥ q1��[0 → [2..‖u‖1/2) |D0 = 1]

+ q1��[0 → [|H | + 2..n/2 − ‖u‖] |D0 = 1]

= Ω
( 1

ν
ln ‖u‖1/2 +

1

ν
ln

n/2 − ‖u‖ + 1

|H | + 1

)
= Ω(1). (5.5)

The third relation was obtained using Fact 3.5(a); the second-
to-last was obtained using Fact 3.3; the last using the facts
that ‖u‖+ |H | < n/2+1 and ‖u‖ > i = |H |. Next we bound
��[E1 | A]. Let Dv denote the event {ν ≤ Dv ≤ 2ν}, and Qv

be the indicator random variable of the event Dv ∩{v → u}.
For all v ∈ C,

�[Qv | A] = ��[v → u | Dv ∩ {v �→ H}]

· ��[v �→ H | Dv]

��[v �→ H ]
·��[Dv ]

= Ω
( 1

να−1δ(u, v)

)
, (5.6)

where the last relation holds because: ��[v → u | Dv ∩{v �→
H}] ≥ ��[v → u |Dv = ν] = Θ

(
1

δ(u,v)

)
; ��[v → H | Dv] ≤

|H | · 2ν

ν‖u‖1/2 ≤ 1√
2
, since ‖u‖ > 8|H |2; and ��[Dv ] =

Θ
(

1
να−1

)
. So, for Q =

∑
v∈C Qv,

�[Q | A] =
∑
v∈C

�[Qv | A] = Ω
( ln ‖u‖

να−1

)
.

And since the Qi are independent (conditionally on A), we

have, by Fact 5.2(a), that ��[Q �= 0 | A] ≥ 1−e
−Ω

(
ln ‖u‖
να−1

)
=

Ω
(

ln ‖u‖
να−1

)
. Finally, since E1 = {Q �= 0},

��[E1 | A] = Ω
(

ln‖u‖
να−1

)
. (5.7)

Next,

��[E2 | E1 ∩A] ≥ ��[E2 | A] ≥ ��[R‖u‖−1 �→ u | A]

= Θ(1), (5.8)

where the last relation is obtained as follows. For all v ∈
R‖u‖−1,

��[v → u | A] = ��[v → u | v �→ H ] = O(��[v → u]),

by Fact 3.5(c); so,
∑

v∈R‖u‖−1
��[v → u | A] = O(

∑
v ��[v →

u]) = O(1), since the expected number of in-contacts a node
has is constant; and since the events {v → u} are indepen-
dent, we have, by Fact 5.2(b), that ��[R‖u‖−1 �→ u | A] ≥
e−O(1) = Θ(1). The last bound we need is

��[E3 | E1 ∩ E2 ∩A] ≥ ��[u → R‖u‖/2 |Du = ν]

= Θ(1), (5.9)

by Facts 3.1 and 3.3. Combining (5.4), (5.5), (5.7), (5.8),

and (5.9), yields ��[E |A] = Ω
( ln ‖u‖

να−1

)
.

We will now use Lemma 5.4 to show that if ‖u‖ > λ =

elnα−2 n and i = o(λ1/2) then

��[‖Yi+3‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u}] = Ω
( ln ‖u‖

να−1

)
.

(5.10)
By Lemma 5.4, it suffices to show that

��[‖Yi+3‖ ≤ ‖u‖/2 |Y0, . . . , Yi−1, {Yi = u} ∩ {Yi → Yi−1}]
is Ω

( ln‖u‖
να−1

)
. Let H be the σ-algebra generated by Y0, . . . ,

Yi−1, {Yi = u} ∩ {Yi → Yi−1}.
��[‖Yi+3‖ ≤ ‖u‖/2 | H]

≥ ��
[‖Yi+3‖ ≤ ‖u‖/2 ∣∣H, {Yi+1 �→ Yi}

] ·��[Yi+1 �→ Yi |H]

≥ ��
[‖Yi+3‖ ≤ ‖u‖/2 ∣∣H, {Yi+1 �→ Yi} ∩ {‖Yi+1‖ > ‖u‖/2}]

·��[R‖u‖−1 �→ u | H]

= Ω
( ln ‖u‖

να−1

)
,

because the probability in the third line is Ω
(

ln(‖u‖/2)

lnα−1 n

)
, by

Lemma 5.4, and the probability in the second-to-last line
is Θ(1), similarly to the last relation in (5.8). We can now
obtain the theorem as follows:

• If Y0 ≤ λ then, by (5.1) and Lemma 5.1(a), applied
for Xi = ‖Yi‖ and ρ = Θ(ln n), we have �[LY0 ] =
O(lnn ln λ) = O(lnα−1 n).

• If Y0 > λ, let T1 be the number of steps from Y0 until
we reach a node within ring-distance λ of 0, and T2

be the number of remaining steps to 0. Similarly to
the case Y0 ≤ λ, �[T2] = O(lnα−1 n); so, we just need
to show that �[T1] = O(lnα−1 n ln ln n). By (5.1) and
Lemma 5.1(b), applied for Xi = ‖Yi‖, ρ = Θ(lnn),
and t = 4ρ ln n, we have that

��[T1 ≥ ln3 n] < 1/n.

Also, by (5.10) and Lemma 5.3, applied for Xi =
‖Y3i‖ if i < ln3 n/3, Xi = 0 if i ≥ ln3 n/3, and
ρ = Θ(lnα−1 n), we obtain that �[min{T1, ln

3 n}] =
O(lnα−1 n ln ln n); so,

�[T1 |T1 < ln3 n] = �[min{T1, ln
3 n} |T1 < ln3 n]

≤ �[min{T1, ln
3 n}]

= O(lnα−1 n ln lnn)



Therefore,

�[T1] = �[T1 |T1 < ln3 n] ·��[T1 < ln3 n]

+�[T1 |T1 ≥ ln3 n] ·��[T1 ≥ ln3 n]

≤ �[T1 |T1 < ln3 n] + n��[T1 ≥ ln3 n]

= O(lnα−1 n ln ln n).

5.3 Proof of Theorem 2.4 case α = 2

It is similar to the proof of case 2 < α < 3. The next
two lemmata are the analogues of Lemmata 5.3 and 5.4,
respectively. Their proofs are omitted.

Lemma 5.5. If 〈X0, X1, . . .〉 is a non-increasing, non-neg-
ative, integer-valued random process with X0 > λ ≥ 2, such
that for all j with λ < j ≤ X0,

��[Xi+1 ≤ j1−ε |X0, . . . , Xi−1, {Xi = j}] ≥ log2 j
ρ

,

where 0 < ε < 1, then the expected number of steps until the
process’ value reduces to at most λ is at most c ρ

log2 λ
, where

c = c(ε).

Let 〈Y0, Y1, . . .〉 be the routing path from Y0 to 0.

Lemma 5.6. If ‖u‖ ≥ 46(i6 + 1) then

��[‖Yi+2‖ ≤ ‖u‖2/3 | Y0, . . . , Yi−1, {Yi = u} ∩ {Yi �→ Yi−1}]
is Ω

(
ln2 ‖u‖
ln2 n

)
.

Note that, unlike in case 2 < α < 3 where only nodes of
out-degree Θ(ln n) contribute to routing significantly, now
the contribution of nodes with out-degrees in a wider range
is significant.

The rest of the proof is completely analogous to that
of case 2 < α < 3. Instead of (5.10), we show (using

Lemma 5.6) that if ‖u‖ > λ = e
√

ln n and i = o(λ1/6) then

��[‖Yi+3‖ ≤ ‖u‖2/3 |Y0, . . . , Yi−1, {Yi = u}] = Ω
( ln2 ‖u‖

ln2 n

)
;

and instead of Lemma 5.3, we use Lemma 5.5, for ρ =
Θ(ln2 n) and ε = 1/3.
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