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ABSTRACT
We investigate the complexity of greedy routing in uniform
ring-based random graphs, a general model that captures
many topologies that have been proposed for peer-to-peer
and social networks. In this model the nodes form a ring;
for each node u we independently draw the set of distances
along the ring from u to its “long-range contacts” from a
fixed distribution P (the same for all u), and connect u
to the corresponding nodes as well as its ring successor.
We prove that, for any distribution P , in a graph with
n nodes and an expected number of � long-range contacts
per node constructed in this fashion, the expected number
of steps for greedy routing is Ω((log2 n)/�alog∗ n), for some
constant a > 1. This improves an earlier lower bound of
Ω((log2 n)/� log log n) by Aspnes et al. and is very close to
the upper bound of O((log2 n)/�) achieved by greedy routing
in Kleinberg’s (one-dimensional) “small-world” networks, a
particular instance of uniform ring-based random graphs.
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1. INTRODUCTION
Let Gn be the set of all directed graphs on the set of nodes

[0..n − 1],1 where each node u is connected to its successor
node (u + 1) mod n, and, optionally, to a set of long-range
contacts. So, every graph in Gn contains the directed ring
0 → 1 → · · · → (n − 1) → 0 as a subgraph. Consider now
the following simple model for constructing random graphs
in Gn. Fix a probability distribution P on the subsets of
[2..n−1], i.e., the set of possible distances along the ring from
a node to the other nodes, excluding the node’s successor.
For each node u, independently choose a sample Δu from
P , and let the long-range contacts of u be the nodes whose
distance from u is in Δu, i.e., the nodes (u + d) mod n, for
all d ∈ Δu. We call the resulting random graph a uniform
ring-based random graph, or uniform graph, for short.

Uniform graphs capture a wide range of graph topologies
proposed for peer-to-peer networks or used to model social
networks. Depending on the choice of the distribution P ,
the resulting graph may be deterministic, such as the Chord
ring; or randomized, such as Kleinberg’s (one-dimensional)
“small-world” networks and randomized versions of Chord.

A natural scheme for routing in networks modeled after
uniform graphs is greedy routing : given a destination node t,
a node forwards a message for t to its neighbor u (successor
or long-range contact) that minimizes the distance along the
ring to t, i.e., it minimizes (t − u) mod n.2 In this paper we
investigate the complexity of the above routing scheme in
uniform graphs. More precisely, we derive a lower bound on
the expected number of steps required to route a message
from a randomly selected source to a random destination, in
terms of the number of nodes n and the expected number � of
long-range contacts per node. Note that we do not impose
any restrictions on the structure of the distribution P . In
particular, the nodes need not all have the same number of
long-range contacts; also, the long-range contacts of a node
are not necessarily selected independently of each other.

In his seminal work on routing in social networks [8],
Kleinberg described a simple instance of the uniform graphs
family where each node u has the same number � ≤ log n
of long-range contacts, and the distance (along the ring)

1For i, j ∈ Z, we denote by [i..j] the set {k ∈ Z : i ≤ k ≤ j}.
2An alternative version (bidirectional greedy routing) is to
forward the message to the neighbor u that minimize the
“absolute distance” |t − u| to t. We discuss this variation
later.



from u to each of them is drawn independently from the
harmonic distribution. The expected number of steps for
greedy routing in this construction is O((log2 n)/�). (This
complexity was later shown to be tight [3].) No construc-
tion that is modeled after uniform graphs and achieves bet-
ter than Θ((log2 n)/�) has been proposed yet. On the other
hand, Aspnes et al. [2] proved that, regardless of the ac-
tual distribution P used to determine the long-range con-
tacts, the expected number of steps for greedy routing is
Ω((log2 n)/� log log n).

In this paper we reduce the gap between these two results
by improving the lower bound to Ω((log2 n)/�alog∗ n), for

some constant a > 1. Note that the quantity alog∗ n grows
slower than any constant number of iterative applications of
log to n; it is “practically” a constant. The proof of this
result is inspired, to some degree, by Kleinberg’s analysis.
It proceeds by deriving a recursive formula that bounds the
expected number of steps for greedy routing on any uniform
graph of a given size in terms of that on an exponentially
smaller uniform graph. Our analysis suggests general struc-
tural properties of the optimal uniform graph that are simi-
lar to those observed by Kleinberg for the class of graphs he
studied. We conjecture that the lower bound can be further
improved to Ω((log2 n)/�) — i.e., that Kleinberg’s construc-
tion is in fact (asymptotically) optimal for greedy routing
on uniform graphs.

Discussion and related work. Our results are limited
by two assumptions: First, we focus on uniform ring-based
random graphs; second, we focus on greedy routing. We
now explain the benefits of these assumptions.

Despite its simplicity, the model of uniform graphs can
describe a wide range of systems, by suitable choice of the
probability distribution P that determines the long-range
contacts. For example, we can describe deterministic con-
structions (where one subset of [2..n − 1] has probability
one, and all others have probability zero), as well as prob-
abilistic ones. Likewise, we can describe both homogeneous
systems, where all nodes have the same number of long-
range contacts, and heterogeneous ones where the number
of long-range contacts can vary (a little or a lot) from node
to node. The uniformity property, i.e., that each node uses
independently the same distribution to determine its long-
range contacts, is also beneficial. It implies that a node’s
position in the ring doesn’t influence the distances to its
long-range contacts. Since nodes are effectively equivalent,
it is easier for them to share load and harder for an adversary
to disrupt the system by attacking critical nodes.

The advantages of greedy routing are well-known, and re-
flected by its popularity [1]: Routing decisions are made
locally and independently in each node. They are also in-
dependent of the routing path up to the current node, so,
messages need not store routing information other than the
destination node. As a result of these two properties, greedy
routing is easy to implement. Also, it is inherently fault-
tolerant since as long as each node has some edge towards
the destination, the message will reach it. Last, it has good
locality behavior in that every step reduces the distance to
the destination. Bidirectional greedy routing is a variation
of the (unidirectional) version that we consider in this paper,
where a node forwards a message for node t to its neighbor
u that minimizes the “absolute distance” |t − u| to t.3

3To ensure that in uniform graphs bidirectional greedy rout-

In view of the advantages of the two assumptions un-
derlying our analysis, it is not surprising that the designs
of many peer-to-peer systems fall within the purview of
these assumptions. For both unidirectional and bidirectional
greedy routing, there are deterministic constructions with
� = Θ(log n) (Chord [15, 5]), and probabilistic ones with
� ranging from 1 to Θ(log n) (Kleinberg’s small-world net-
works [8], Symphony [12], Randomized-Chord [6, 17]). In
all of these constructions, the expected number of steps for
routing is Θ((log2 n)/�).

On the lower bound side, the following facts are known
about the number of steps for unidirectional routing in uni-
form graphs. Xu has shown that for any deterministic con-
struction with � = Θ(log n), the number of steps is Ω(log n)
in the worst-case [16]. (I.e., there is a source–destination
pair of nodes in the given graph for which unidirectional
greedy routing requires Ω(log n) steps.) Aspnes et al. have
shown that, for any distribution P , the expected number
of steps (for a randomly selected source–destination pair of
nodes) is Ω((log2 n)/� log log n) [2]. We improve this bound

to Ω((log2 n)/�alog∗ n), for some constant a > 1. For bidi-
rectional routing in uniform graphs, Aspnes et al. showed
that under some assumptions on P , the expected number
of steps is Ω((log2 n)/�2 log log n) [2]. Also, Flammini et al.
have shown that in the special case where each node has
exactly one long-range contact and certain assumptions on
its distribution apply, the expected number of steps for the
worst-case source–destination pair is Ω(log2 n) [4].

The shortest tree of degree � spanning n nodes has height
Θ(log n/ log �). Thus, this bound represents the optimal ex-
pected number of steps for routing in an n-node network
of degree �. Indeed, designs that achieve this bound have
been proposed. Note that this bound is (asymptotically)
better than the lower bound for greedy routing in uniform
graphs. In particular, the lower bound of Aspnes et al. im-
plies that, for � = o(log n), greedy routing in uniform graphs
is suboptimal; that bound, however, is not strong enough to
show that this is also true in the (important) case where
� = Θ(log n). Our improved lower bound shows that greedy
routing in uniform graphs is suboptimal even in that case.

In view of the lower bound showing that greedy routing
in uniform graphs is suboptimal, designs that achieve opti-
mal routing must abandon at least one of the assumptions
underlying that bound: Either they must be based on con-
structions that are not uniform ring-based random graphs,
or they must use non-greedy routing — or both. As we
argued earlier, these assumptions have considerable advan-
tages, and so the gain of more efficient routing has to be
weighed against the loss of these advantages.

We now review some of the designs that achieve more effi-
cient routing than is possible with greedy routing in uniform
graphs. Papillon [1] is an example of a network that achieves
optimal routing by abandoning only the first assumption.
It uses greedy routing but the underlying construction is a
non-uniform ring-based graph (a ring-embedded butterfly-
like network). A similar construction is also described in [4].
The so-called “neighbors-of-neighbors” approach of Manku
et al. [13] is an example of a network that achieves bet-
ter routing performance by abandoning only the second as-
sumption. It uses a non-greedy algorithm (where the routing

ing can always reach the destination, we slightly modify our
model by requiring that, in addition to its successor, each
node u is always connected to its predecessor (u− 1) mod n.



decision at each node is based not only on the node’s neigh-
bors, but also on their neighbors), but the network itself
is a uniform ring-based random graph. (In fact, the un-
derlying construction is Kleinberg’s small-world network).
Finally, several deterministic and randomized constructions
have been proposed that achieve optimal routing by aban-
doning both assumptions: They use non-greedy algorithms
in networks that are not uniform ring-based random graphs,
such as the de Bruijn graph, randomized versions of it, as
well as randomized versions of the butterfly network that
have been proposed for peer-to-peer networks [10, 7, 11, 14].

A number of recent papers study the problem of construct-
ing random graphs where greedy routing is efficient (i.e., it
requires a number of steps at most polylogarithmic in n),
by “augmenting” base structures other than the ring (or
the grid). In particular, each node of the base graph is
augmented by a long-range contact selected independently
from some distribution over the remaining nodes (possibly,
a different distribution for each node). In the greedy rout-
ing scheme they consider, a node forwards a message to its
neighbor that has the shortest path to the destination as
measured in the base graph (not in the augmented one).
For a recent survey of this work see [9].

2. RIGOROUS STATEMENT OF RESULT
For every graph G ∈ Gn and pair of nodes u, v of G, we de-

note by U(G, u, v) the length of the (unidirectional) greedy
routing path from u to v; we call it the routing cost from u
to v. The routing cost from u to the “average destination”,
where each node is equally likely to be the destination, is
denoted Ūu(G); i.e., Ūu(G) = (1/n)

�n−1
v=0 U(G, u, v).

Let P be a probability distribution on the subsets of [2..n−
1]. We denote by G(P ) the uniform graph model where
the distances to the long-range contacts of a nodes are dis-
tributed according to P . The cardinality � of P is the ex-
pected number of long-range contacts per node in G(P );
i.e., � =

�
Δ⊆[2..n−1] |Δ|P (Δ). We say that P is an (n, �)-

distribution if P is a distribution on the subsets of [2..n− 1]
of cardinality �. The expected routing cost in G(P ) (from
a fixed source) to the average destination is denoted T (P );
i.e., T (P ) = �[Ūu(G)], where G is a random graph in G(P ).
(Note that because of the way the long-range contacts of G’s
nodes are selected, �[Ūu(G)] is the same for all u.) The op-
timal T (P ) over all possible (n, �)-distributions P is denoted
T (n, �). (More formally, T (n, �) is the infimum of T (P ) over
all P .)

We can now state our main result. Here we assume � is a
non-decreasing function of n, perhaps a constant.4

Theorem 1. If � = Ω(1) then T (n, �) = Ω((log2 n)/

�alog∗ n), where a is a constant > 1.

The corresponding upper bound (which follows mostly
from previously known results) is:

Theorem 2. If � = O(log n) then T (n, �) = O((log2 n)/�).

3. ANALYSIS
In Section 3.1, we state four auxiliary lemmata and use

them to derive Theorems 1 and 2. In Section 3.2, we intro-
duce routing trees, a concept useful for our analysis. Sec-

4Technically, the following weaker condition on � suffices:
� = Θ(g), where g is a non-decreasing function of n.

tion 3.3 contains the proofs of the first three auxiliary lem-
mata from Section 3.1. In Section 3.4 we provide some addi-
tional facts about routing trees, which we use in Section 3.5
to prove the fourth auxiliary lemma.

3.1 Statement of auxiliary lemmata and deri-
vation of Theorems 1 & 2

We begin with three lemmata that allow us to bound
T (n, �) in terms of T (n′, �′), for n′ �= n or �′ �= �. The first
states the intuitive result that T (n, �) is a non-increasing
function of �.

Lemma 1. If � < �′ then T (n, �) ≥ T (n, �′).

The next lemma says what happens to T (n, �) for fixed
�, as n increases. One might expect T (n, �) to be a non-
decreasing function of n. This is not necessarily the case,
since some “convenient” values of n (say, powers of 2) may
result in smaller T than smaller values of n. We show the fol-
lowing weaker result, which, however, suffices for our analy-
sis.

Lemma 2. If n > n′ then T (n, �) ≥ n′
n

T (n′, �).

The third lemma is more interesting than the previous
two. Lemma 1 shows that, for fixed n, as � increases T (n, �)
decreases; Lemma 3 says it does not decrease too much.

Lemma 3. If � > �′ then T (n, �) ≥ �′
�
T (n, �′).

The main part of our analysis is the proof of the following
lemma, which gives a lower bound for T when � = 1. We
use T (n) as a shorthand for T (n, 1).

Lemma 4. T (n) = Ω((log2 n)/alog∗ n), for some constant
a > 1.

We can now derive Theorems 1 and 2 as follows.

Proof of Theorem 1. Since � is a non-decreasing func-
tion of n, for all sufficiently large values of n it is � < 1, or
� > 1, or � = 1. If � < 1 the bound for T (n, �) follows from
Lemmata 1 (for �′ = 1) and 4, and the fact that � is larger
than some positive constant (since � = Ω(1)). If � > 1 the
bound follows from Lemmata 3 (for �′ = 1) and 4. The case
� = 1 is handled in Lemma 4.

Proof of Theorem 2. Kleinberg showed that T (n, �) =
O((log2 n)/�) for � = 1 [8]. Using similar techniques, Aspnes
et al. showed that the same bound holds if � takes integer
values in the range 1 ≤ � ≤ log n [2]. By Lemma 1, T (n, �) ≤
T (n, �min{�, log n}	), for � ≥ 1. This, together with Aspnes
et al.’s result, yields the desired bound for all � that take
real values such that 1 ≤ � = O(log n). For � < 1 the bound
follows from Kleinberg’s result and the fact that T (n, �) ≤
T (n)/�, which follows from Lemma 3.

3.2 Routing trees
Let G ∈ Gn and u be a node of G. Consider the sub-

graph R of G that consists of the (unidirectional greedy)
routing paths from u to all the other nodes. We call R the
routing tree of G rooted at u. An example is illustrated in
Figures 1(a)–(c). It is easy to verify that R is indeed a tree.
Also, a pre-order walk of R visits the nodes in the order
u, u + 1, . . . , n− 1, 0, 1, . . . , u− 1.5 Note that the depth of a

5We assume that the children of each internal node of R are
ordered from left to right in increasing distance from u.
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Figure 1: (a) A sample G ∈ G8; (b) the routing tree
of G (rooted at 0); (c) the routing tree of G rooted
at 2; (d) the routing tree of ({5}, ∅), i.e., of the delta-
sets in G of nodes 0 and 1.

node v in R is the routing cost U(G, u, v), and, thus, Ūu(G)
is equal to the average node depth in R.

We use the following conventions. We refer to the routing
tree of G rooted at 0 as “the routing tree of G” (omitting
the reference to root 0), and to the routing path/cost from 0
to u as “the routing path/cost to u” (omitting the reference
to source 0). Likewise, we omit the subscript u from Ūu(G)
when u = 0.

We call the set of the distances along the ring from u to
its long-range contacts the delta-set of u in G. E.g., for the
graph in Figure 1(a), the delta-sets of nodes 1 and 2 are ∅
and {3, 4}, respectively.

Suppose now we have only partial knowledge of G; in
particular, suppose we just know its size n, and the delta-
sets Δ0, Δ1, . . . , Δt−1 of the first t ≤ n nodes 0, 1, . . . , t− 1.
What can we infer about the routing tree R of G (rooted
at 0)? It is easy to see that one can construct the subgraph
Rt of R induced by nodes 0, 1, . . . , t − 1 and their children
in R. (For t = 0, i.e., when we are given no delta-sets, Rt

consists only of node 0.) Rt is itself a tree; we call it the
routing tree of (Δ0, Δ1, . . . , Δt−1). An example of such a
tree is depicted in Figure 1(d). Each node of G that is not
in Rt is in a subtree of R rooted at some leaf u ≥ t of Rt. In
particular, the subtree of R rooted at such a node u contains
the nodes u, u + 1, . . . , u′ − 1, where u′ is the smallest node
in Rt that is larger than u, or u′ = n if no such node exists.
The size u′ − u of this subtree is called the span of u in Rt.
For example, in the routing tree of Figure 1(d) the span of
both nodes 2 and 5 is 3.

3.3 Proofs of Lemmata 1–3
All three proofs employ the same technique, based on

the coupling method: For any (n, �)-distribution P , we con-
struct a coupling (G, G′) of G(P ) and G(P ′) for some (n′, �′)-
distribution P ′ (for suitable n′, �′, depending on the lemma).
In other words, we define random graphs G and G′ on a
common probability space, such that G has the same dis-
tribution as G(P ), and G′ the same as G(P ′). For this pair
of random graphs, we show that �[Ū(G)] ≥ α�[Ū(G′)] (for
a suitable α, depending on the lemma). In the actual con-
struction of G and G′, we build G first, according to the
definition of G(P ). Then, based on G (and, possibly, on
additional random choices) we construct G′ such that the
following two objectives are satisfied:

Objective 1. G′ has the same distribution as G(P ′).

Objective 2. �[Ū(G′) | G] ≤ (1/α)Ū(G).

Note that Objective 2 implies �[Ū(G)] ≥ α�[Ū(G′)]. From
this and Objective 1 we obtain T (P ) ≥ αT (P ′), and since

we assumed an arbitrary P , T (n, �) ≥ αT (n′, �′). The con-
struction of G′ is simple for Lemmata 1 and 2; it is less
intuitive for Lemma 3. Below we denote by Δu, for u < n,
the delta-set of node u in G, and by Δ′

u, for u < n′, the
delta-set of node u in G′.

Proof of Lemma 1. For this lemma n′ = n and α = 1.
Let P ′ be a distribution obtained from P by reducing the
probability associated with (some of) the proper subsets of
[2..n − 1], and correspondingly increasing the probability of
the entire set [2..n − 1], such that the cardinality of the
resulting distribution is �′. It is easy to verify that we can
always construct such a P ′ (for any P and �′ > �). G′ is
defined as follows. For every node u such that Δu = [2..n−1]
(i.e., u has outgoing edges to all other nodes in G), Δ′

u = Δu;
for each of the remaining u, we independently set Δ′

u = Δu

with probability P ′(Δu)/P (Δu), or Δ′
u = [2..n − 1] with

probability 1 − P ′(Δu)/P (Δu). Obviously, for all u, the
routing path to u in G′ is a prefix of the corresponding
routing path in G; thus, U(G′, 0, u) ≤ U(G, 0, u). From this
it follows that Ū(G′) ≤ Ū(G) (which implies Objective 2).
It is straightforward to verify that Objective 1 holds, as
well.

Proof of Lemma 2. We construct G′ by letting Δ′
u =

{x ∈ Δu : x < n′}. Clearly, the routing path to u < n′

in G′ is identical to the corresponding routing path in G,
thus, U(G′, 0, u) = U(G, 0, u). From this, Ū(G′) = (1/n′)·�

u<n′ U(G, 0, u) ≤ (1/n′)
�

u<n U(G, 0, u) = (n/n′)Ū(G)
(which implies Objective 2, for α = n′/n). It is also easy to
verify that Objective 1 holds, for a P ′ of cardinality �′ ≤ �.
Therefore, T (n, �) ≥ (n′/n)T (n′, �′), and since T (n′, �′) ≥
T (n′, �) (by Lemma 1), T (n, �) ≥ (n′/n)T (n′, �).

Proof of Lemma 3. For this lemma n′ = n and α =
�′/�. We first describe the construction of G′ informally.
In this construction, we associate with each node u of G′ a
node Cu of G (this association is not necessarily one-to-one).
G′ is constructed inductively by considering each node u =
0, 1, . . . , n−1 in turn. Let R and R′ be the routing trees of G
and G′, respectively. We initialize the inductive construction
by setting C0 = 0 — i.e., associating with the root of R′

the root of R. For the node u of G′ under consideration,
we define its delta-set Δ′

u and, simultaneously, define the
association of u’s children in R′ to nodes in R. Specifically,
we choose Δ′

u = ∅ with probability 1 − α, and Δ′
u = ΔCu

with probability α. So, in the first case u has no long-range
contacts in G′ and (if u is not a leaf of R′) its only child
in R′ is u + 1. In this case, we associate with u + 1 the
node in G to which u is already associated, i.e., Cu+1 = Cu.
In the second case, u has long-range contacts in G′ at the
same distances as the corresponding node Cu does in G and
this defines the set of u’s children in R′. In this case, we
associate with each child u + δ of u in R′ the corresponding
child of Cu in R, i.e., Cu+δ = Cu + δ.

The construction of G′ is formalized by the following in-
ductive definitions of Δ′

u and Cu. Let B0, B1, . . . , Bn−1 be
independent identically-distributed binary random variables
such that ��[Bu = 1] = α. (B0, B1, . . . , Bn−1 are also inde-
pendent of G.) For each u ∈ [0..n − 1],

Δ′
u =

� ∅, if Bu = 0
ΔCu , if Bu = 1

where:



◦ C0 = 0, and if u > 0

Cu =

�
CFu , if BFu = 0
CFu + (u − Fu), if BFu = 1

◦ Fu is u’s parent in the routing tree of (Δ′
0, . . . , Δ

′
u−1).

We first establish that G′ is well defined. This is immedi-
ate from the following fact. (The proof is an easy induction
and is omitted).

Fact 3.1. For all u ∈ [0..n − 1], 0 ≤ Cu ≤ u.

The next fact gives more insight into the construction of G′.
(The proof, by induction, is omitted). Let Su denote the
size of the subtree of R rooted at u, and Hu the size of the
subtree of R′ rooted at u. Recall that the sets of nodes of
the above subtrees are [u..u + Su − 1] and [u..u + Hu − 1],
respectively.

Fact 3.2. For all u ∈ [0..n − 1],

(a) Hu ≤ SCu

(b) if u < u′ < u + Hu then Cu ≤ Cu′ < Cu + SCu ; in
particular, if Bu = 1 then Cu′ > Cu;
if u + Hu ≤ u′ < n then Cu′ ≥ Cu + SCu

Part (b) says that if u′ > u then Cu′ ≥ Cu (where the
inequality is strict if Bu = 1); also, Cu′ is a descendant of
Cu in R iff u′ is a descendant of u in R′.

Next, we show that Objective 1 holds; i.e., that G′ has
the desired distribution. For this, it is convenient to think
of the construction of G′ as a random process consisting of n
steps, 0 up to n−1, where step u determines the value of Δ′

u.
We assume that the value of each Bv and Δv is generated
right before it is about to be used — not earlier. Clearly,
Bu is generated in step u. Let Du be the subset of G’s
nodes consisting of all v for which Δv is generated in steps
0 up to u − 1. Observe that Du = {Cv : v < u, Bv = 1},
so, Fact 3.2(b) implies that Cu /∈ Du; i.e., ΔCu is not gen-
erated before step u. Therefore, in each step u: we first
determine Bu (independently of past choices); if Bu = 0 we
set Δ′

u = ∅; otherwise, we determine ΔCu (again indepen-
dently of past decisions) and let Δ′

u = ΔCu . Consequently,
Δ′

0, Δ
′
1, . . . , Δ

′
n−1 are distributed independently and identi-

cally, and their common distribution P ′ is

P ′(Δ) =

�
αP (Δ), if Δ �= ∅
(1 − α) + αP (∅), if Δ = ∅

The cardinality of P ′ is
�

Δ |Δ|P ′(Δ) =
�

Δ �=∅ |Δ|P ′(Δ) =

α
�

Δ �=∅ |Δ|P (Δ) = α� = �′, as desired.

It remains to show Objective 2. For t ≤ n, let Rt be
the routing tree of (Δ′

0, Δ
′
1, . . . , Δ

′
t−1), and V t be the set

of nodes of Rt. We now define a sequence X0, X1, . . . , Xn

of progressively more accurate estimates of nŪ(G′), where
estimate Xt is based on Rt. Specifically, for each t ∈ [0..n],

Xt =
�

u∈[0..t−1]

U(G′, 0, u) +
�

u∈V t−[0..t−1]

�
Hu · U(G′, 0, u)

+ (1/α) ·
�

v∈[Cu..Cu+Hu−1]

U(G, Cu, v)
�

(Recall that [0..t − 1] ⊆ V t, and for all u ∈ V t, U(G′, 0, u),
Hu, and Cu are functions of Rt; in particular, Hu is equal
to the span of u in Rt, for all u ∈ V t − [0..t − 1].) In the
definition of Xt, the first sum accounts for the routing costs

to the first t nodes of G′; the second is an estimate of the
routing costs to the remaining nodes of G′, i.e., to the nodes
in the subtrees of R′ rooted at all u ≥ t that are leaves
of Rt. In particular, inside this second sum, the first term
accounts for the routing costs up to u for all (the Hu) nodes
in R′’s subtree rooted at u; the second term is an estimate
of the remaining routing costs from u to these nodes. This
estimate is proportional to the sum of the routing costs in
G from Cu to nodes Cu, Cu + 1, . . . , Cu + Hu − 1, which, by
Fact 3.2(a), are all in the subtree of R rooted at Cu. Finally,
note that X0 = (n/α)Ū(G) and Xn = nŪ(G′).

We now show that �[Xt+1 | G, Rt] ≤ Xt (i.e., that condi-
tioned on G, the sequence of Xt is a super-martingale). Let
Zt+1 = Xt+1 − Xt. It is not hard to verify that

Zt+1 =

�
Ht − 1 − 1

α
U(G, Ct, Ct + Ht − 1), if Bt = 0

−( 1
α
− 1)(Ht − 1), if Bt = 1

Let At stand for “G, Rt”. Then,

�[Zt+1 | At] = �[Zt+1 | At, Bt = 0] ·��[Bt = 0 | At]

+�[Zt+1 | At, Bt = 1] ·��[Bt = 1 | At]

=
�
Ht − 1 − 1

α
U(G, Ct, Ct + Ht − 1)

�
(1 − α)

− ( 1
α
− 1)(Ht − 1)α

= −( 1
α
− 1) · U(G, Ct, Ct + Ht − 1) ≤ 0

So, �[Zt+1 | G, Rt] ≤ 0, or, equivalently, �[Xt+1 | G, Rt] ≤
Xt. From this it follows that �[Xn | G] ≤ X0; substitut-
ing the values of X0 and Xn and dividing by n we obtain
Objective 2.

3.4 More on routing trees
We now introduce some additional terminology related to

routing trees, which we use in the proof of Lemma 4. Let R
be the routing tree of G ∈ Gn. Let also Ru, for u < n, be
the subtree of R rooted at node u, and su be the size of Ru.
A node v of G is an r-descendant of u, for some r ≥ 1, if v is
in Ru and v−u < r; so, the r-descendants of u are the nodes
in 〈u, min{r, su}〉, where by 〈i, k〉, for i, k ∈ Z, we denote
the set [i..i + k− 1]. If v’s parent in R is an r-descendant of
u, but v itself is not then v is called an r-successor of u. So,
if su ≤ r all the nodes of Ru are r-descendants of u — u has
no r-ancestors; if su > r the r-descendants and r-successors
of u are as follows: Let x = x0, x1, . . . , xk be the path in Ru

from u to node u + r − 1 (that is, the largest r-descendant
of u). The r-descendants of u are the nodes along x, plus
the nodes of the subtrees rooted at the children of nodes
x0, x1, . . . , xk−1 that lie to the left of x on the plane; the r-
successors of u are the children of nodes x0, x1, . . . , xk−1 that
lie to the right of x, plus all the children of xk. We call x the
r-border of u. Examples of these definitions are illustrated in
Figure 2(a). Note that the r-successors of u form a “frontier”
between the r-descendants of u and the other nodes of Ru:
the path from u to each of its r-descendants consists only of
r-descendants of u; the path to any other node of Ru consists
of one or more r-descendants of u followed by exactly one r-
successor of u and then zero or more nodes that are neither
r-descendants nor r-successors of u.

Consider the set of nodes that consists of node 0, 0’s r-
successors, the r-successors of them, and so on. The nodes
in this set are called the r-significant nodes of G. Note that
if z0 < z1 < · · · < zκ−1 are the r-significant nodes of G and
zκ = n then the r-descendants of zk, for k < κ, are the nodes
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Figure 2: (a) the 7-descendants of 1 are nodes 1–7,
and of 15 are nodes 15–17; the 7-successors of 1 are
nodes 8, 9, 13; the 7-border of 1 is path 1, 5, 7; (b) the
4-significant nodes are marked with filled circles; the
4-partition of 〈0, 12〉 is {[0..3], {4}, [5..8], [9..11]}.

zk, zk + 1, . . . , zk+1 − 1. If v is an r-descendant of some r-
significant node u, we say that u is the r-ancestor of v. Let
Π be the partition of set 〈0, m〉 ⊆ 〈0, n〉 induced by the
“have the same r-ancestor” relation. So, for z0, z1, . . . , zκ

as above, Π = {[z0..z1 − 1], [z1..z2 − 1], . . . , [zκ′−1..m − 1]},
where κ′ is such that zκ′−1 < m ≤ zκ′ . We call Π the r-
partition of 〈0, m〉 with respect to G. An example is depicted
in Figure 2(b).

From the discussion above, the routing path in G to a node
v can be divided into a number of smaller paths, where each
smaller path consists of an r-significant node followed by
zero or more r-descendants of that node. For example, if the
routing tree of G is as in Figure 2(b) and r = 4, the routing
path to node 12 is divided into the three paths: 0, 1; 5; and
9, 10, 12. We can identify the r-significant nodes along the
routing path to v in an “on-line” fashion, as follows. Suppose
that initially we have no knowledge of G (other than its size
n), and in each step we learn the delta-set of the next node
in the routing path to v (starting from 0’s). Before the
first step we mark node 0; whenever a node u is marked we
check if v − u ≥ r; if this condition holds we continue to
take steps until we find the next node u′ in the path such
that u′ − u ≥ r, and we mark u′ as well; if it is v − u < r
the process ends. The nodes marked are the r-significant
nodes contained in the routing path to v. In particular, the
last of the nodes marked is the r-ancestor of v. Likewise,
we can compute the number m′ of the r-descendants in G of
any r-significant node u′ in the routing path to v, knowing
just the delta-sets of the nodes that precede u′ in this path.
It is easy to verify that m′ = min{r, b − u′}, where b is the
minimum among the right siblings of the nodes that precede
u′ in the path, or b = n if no such siblings exist.

3.5 Proof of Lemma 4
Let P be any (n, 1)-distribution, and G be a random graph

in G(P ). Throughout the proof we use Uu as a shorthand
for U(G, 0, u). Also by Ūm, for 1 ≤ m ≤ n, we denote
the average routing cost to the nodes in 〈0, m〉; i.e., Ūm =
(1/m)

�
u∈〈0,m〉 Uu.

Roughly, the proof proceeds as follows. First, we show
that for any positive integers m, r, η such that η ≤ r ≤ m ≤
n, �[Ūm] is bounded by the sum of the two terms:

(i) �[UZ ], where Z is the r-ancestor of a random node Y
in 〈0, m〉; and

(ii) �[Ūm∗ ], for an “optimal” m∗ ∈ [η, r], scaled by the pro-
bability q that Z has at least η r-descendants in 〈0, m〉.

Term (ii) bounds the expected (remaining) routing cost from
Z to Y . We then compute a lower bound for �[Ū(G)] =
�[Ūn] by recursively applying the above result. In par-
ticular, in each recursive step we take r ≈ m/ logβ n and
η ≈ r/ logβ+γ n, for some constants β, γ. For this choice
of r and η we show that each term of type (i) involved in
the bound for �[Ū(G)] can be bounded by T (n′), for some
n′ exponentially smaller than n, scaled by a factor propor-
tional to the “density” of P in the range, roughly, between
r and m. (By density of P in some range of distances we
mean the expected number of long-range contacts per node
at distances in this range.) We also show that the prob-
abilities q involved (because of the terms of type (ii)) are
very close to 1. By applying a convexity argument to the
resulting bound for �[Ū(G)] we obtain �[Ū(G)] ≥ T (n′)/a,
and, thus, T (n) ≥ T (n′)/a. Recursive application of the last
inequality yields the desired result.

The convexity argument we mentioned above suggests
that, optimally, the density of P should be roughly the same
over intervals of the form [u..u logc n], for a constant c. Re-
call that Kleinberg’s optimal small-world network has the
property that the density of P is exactly the same for all
intervals of the form [u..cu].

We now describe the details of the proof. Let Π be the
r-partition of 〈0, m〉 with respect to G, where r ≤ m ≤
n. Let also 〈Z, M〉 be a random block of Π, where Z is
the r-ancestor of a uniformly random node in 〈0, m〉, and
M is the number of Z’s r-descendants in 〈0, m〉. Clearly,
��[〈Z, M〉 = 〈z, m′〉 | G] = (m′/m) if 〈z, m′〉 ∈ Π, and 0
otherwise. Note that

Ūm =
1

m

�
〈z,m′〉∈Π

�
u∈〈z,m′〉

Uu

=
�

〈z,m′〉∈Π

�
��[〈Z, M〉 = 〈z, m′〉 | G] · 1

m′
�

u∈〈z,m′〉
Uu

�

= �

� 1

M

�
u∈〈Z,M〉

Uu

			 G



Taking the expectation over G, and observing that it is�
u∈〈Z,M〉 Uu = M · UZ +

�
u∈〈Z,M〉 U(G, Z, u) we obtain

�[Ūm] = �[UZ ] +�

� 1

M

�
u∈〈Z,M〉

U(G, Z, u)



(1)

We focus now on the rightmost term of (1), namely, on
�[(1/M)

�
u∈〈Z,M〉 U(G, Z, u)]. From the discussion at the

end of Section 3.4, Z and M can be determined without
knowing the delta-sets of the nodes in 〈Z, M〉. Therefore,
the knowledge of Z and M does not reveal any informa-
tion about the delta-sets of the nodes in 〈Z, M〉. More for-
mally, let Δu denote the delta-set of u. Conditioned on any
event Ez,m′ = {〈Z, M〉 = 〈z, m′〉} such that ��[Ez,m′ ] > 0,
Δz, Δz+1, . . . , Δz+m′−1 are independent and identically dis-
tributed according to P . Consequently, for all u ∈ 〈z, m′〉,
�[U(G, Z, u) | Ez,m′ ] = �[Uu−z]. So,

�

� 1

M

�
u∈〈Z,M〉

U(G, Z, u)



=
�
z,m′

�
�

� 1

M

�
u∈〈Z,M〉

U(G, Z, u)
			 Ez,m′



·��[Ez,m′ ]

�



=
�
z,m′

� 1

m′
�

u∈〈0,m′〉
�[Uu] ·��[Ez,m′ ]

�

=
�
z,m′

�[Ūm′ ] ·��[Ez,m′ ] =

r�
m′=1

�[Ūm′ ] ·��[M = m′]

If we restrict the range of m′ in the last sum to η ≤ m′ ≤ r,
where 1 ≤ η ≤ r, and let m∗ be the m′ ∈ [η..r] of minimum
�[Ūm′ ], we get �[(1/M)

�
u∈〈Z,M〉 U(G, Z, u)] ≥ �[Ūm∗ ] ·

��[M ≥ η]. From this and (1) we have

�[Ūm] ≥ �[UZ ] +�[Ūm∗ ] ·��[M ≥ η] (2)

The fact we state next provides lower bounds for �[UZ ]
and ��[M ≥ η]. Its proof is described in Sections 3.5.1
and 3.5.2. Let 2 ≤ θ < r. Let also λ be the expected number
of long-range contacts a node has at distances between θ and
m − 1; i.e., λ = �[|Δu ∩ [θ..m − 1]|]. (Note that λ is the
density of P in [θ..m− 1], as defined at the beginning of the
proof.) Suppose also m ≥ 3r.

Fact 4.1.

(a) �[UZ ] ≥ c · min{r/θ, 1
λ
T (�m

r
	)},

(b) ��[M ≥ η] ≥ 1 − c′�[Ur−1] · (η − 1)/r,

where c, c′ are positive constants.

We will now use result (2) and Fact 4.1 to compute a
bound for �[Ū(G)]. Let n0 = n, and for each i ∈ [0..τ − 1],
where τ = min{j : nj ≤ logβ+γ n},

ri is the k ∈ [�ni/ logβ n�..�2ni/ logβ n�] that minimizes
�[Uk−1]

ηi = �ni/ logβ+γ n�
θi = �ni/ logβ+δ n�

ni+1 is the k ∈ [ηi..ri] that minimizes �[Ūk]

λi = �[|Δu ∩ [θi..ni − 1]|]
Zi is the ri-ancestor of a uniformly random node in 〈0, ni〉
Mi is the number of the ri-descendants of Zi in 〈0, ni〉
β, γ, and δ are constants such that γ ≥ β+3 and β ≥ δ ≥ 2.
(Note that all the above quantities except for the last two
are computed directly from P .) By recursively applying (2)
we obtain the following bound for �[Ū(G)] = �[Ūn]. For all
i′ ∈ [0..τ ],

�[Ū(G)] ≥
�
i<i′

�
�[UZi ] ·

�
j<i

��[Mj ≥ ηj ]
�

+�[Ūni′ ] ·
�
j<i′

��[Mj ≥ ηj ] (3)

From Fact 4.1(a), �[UZi ] ≥ c·min{ri/θi, (1/λi)T (�ni/ri	)}.
Since 1

2
logβ n − 1 ≤ ni/ri ≤ logβ n, Lemma 2 implies that

T (�ni/ri	) ≥ ( 1
2
− o(1)) · T (� 1

2
logβ n − 1	). Also, ri/θi ≥

(1 − o(1)) logδ n ≥ (1 − o(1)) log2 n, since δ ≥ 2. Therefore,

�[UZi ] ≥ ĉ · min
�

log2 n, 1
λi

T
�� 1

2
logβ n − 1	� (4)

From Fact 4.1(b), ��[Mi ≥ ηi] ≥ 1− c′�[Uri−1](ηi − 1)/ri.
By the definition of ri, (�2ni/ logβ n� − �ni/ logβ n� + 1) ·
�[Uri−1] ≤ ni · �[Ūni ], which implies �[Uri−1] ≤ logβ n ·
�[Ūni ]. Also, (ηi − 1)/ri ≤ 1/ logγ n ≤ 1/ logβ+3 n, since
γ ≥ β + 3. Therefore,

��[Mi ≥ ηi] ≥ 1 − c′�[Ūni ]/ log3 n (5)

Using (3)–(5) we bound �[Ū(G)] as follows. Assume n
is large enough that τ > 0; i.e., n ≥ n̂ = min{k : k >
logβ+γ k}. We distinguish two cases.

Case 1 : max{�[Ūni ], �[UZi ]/ĉ} ≥ log2 n, for some i <
τ . Let i′ be the smallest such i. By (5), for all i < i′,
��[Mi ≥ ηi] ≥ 1 − c′/ log n. If �[Ūni′ ] ≥ log2 n then,

by (3), �[Ū(G)] ≥ �[Ūni′ ] ·
�

j<i′ ��[Mj ≥ ηj ] ≥ log2 n(1−
c′/ log n)i′ . Similarly, if �[UZi′ ] ≥ ĉ log2 n then �[Ū(G)] ≥
�[UZi′ ] ·

�
j<i′ ��[Mj ≥ ηj ] ≥ ĉ log2 n(1− c′/ log n)i′ . Since

i′ < τ ≤ log n/β log log n+o(1), we have that in either case,

�[Ū(G)] ≥ c1 log2 n

Case 2 : max{�[Ūni ], �[UZi ]/ĉ} < log2 n, for all i < τ .
As in the previous case, ��[Mi ≥ ηi] ≥ 1 − c′/ log n, for all
i < τ . So, by (3) for i′ = τ ,

�[Ū(G)] ≥
�
i<τ

�
�[UZi ] ·

�
j<i

��[Mj ≥ ηj ]
�

≥
�
1 − c′

log n

�τ �
i<τ

�[UZi ] ≥ ĉ′
�
i<τ

�[UZi ]

Note that (4) and case hypothesis �[UZi ] < ĉ log2 n imply
that for all i < τ , �[UZi ] ≥ ĉ(1/λi) · T (� 1

2
logβ n − 1	).

Therefore,

�[Ū(G)] ≥ ĉ′′T (� 1
2

logβ n − 1	)
�
i<τ

1/λi

Recall that λi = �[|Δu∩ [θi..ni−1]|], and observe that since
β ≥ δ each d < n belongs to at most two sets [θi..ni − 1],
for i < τ . So,

�
i<τ λi ≤ 2�[|Δu|] = 2, which implies that�

i<τ 1/λi ≥ τ 2/2 (because of the convexity of 1/x). Also,
τ ≥ log n/(β + γ) log log n. Therefore,

�[Ū(G)] ≥ f(n) · T (α(n))

where f(n) = c2(log n/ log log n)2 and α(n) = � 1
2

logβ n−1	.
{end of Case 2}

Combining Case 1 and 2, and recalling that the above
results hold for any (n, 1)-distribution P , we obtain that for
all n ≥ n̂,

T (n) ≥ min
�
c1 log2 n, f(n) · T �α(n)

�
(6)

The lemma follows by recursive application of the above in-
equality. Informally, we recursively apply (6) until either
(i) in some recursive step the first argument of min{·, ·} is
smaller than the second; or (ii) κ = log∗ n− log∗ n̂− 1 steps
have been taken. So, there are κ + 1 possible cases we need
to consider: one for each of the κ steps in which condition (i)
may be met, and the case where the recursion stops because
condition (ii) is met (and (i) is not). The corresponding

bounds for T (n) are
�

i<k f(α(i)(n)) · c1 log2(α(k)(n)), for

each k ∈ [0..κ − 1], and
�

i<κ f(α(i)(n)) · (2/3), where in
the last bound we used the trivial fact T (m) ≥ 2/3, for

m ≥ 3. (By f (j)(x) we denote the function f(x) itera-
tively applied j ≥ 0 times to an initial value of x.) We

show that all these bounds are Ω((log2 n)/alog∗ n), for some
constant a > 1. Roughly speaking, we do so by establish-
ing that for all k ∈ [1..κ], α(k)(n) = (σk log(k) n)β , and

f(α(k)(n)) = σ′
k(log(k+1) n/ log(k+2) n)2, where σk and σ′

k

lie between positive constants. (The details are omitted.)



3.5.1 Proof sketch of Fact 4.1(a)
The proof is similar, in principle, to those of Lemmata 1–3:

in the same probability space as G we construct an m′-node
uniform graph G′, where m′ ≈ m/r, and we bound �[UZ ] in
terms of �[Ū(G′)]. Roughly speaking, G′ is a “scaled-down”

version of the m-node uniform graph Ĝ, where each node k
of Ĝ has delta-set Δk ∩ 〈0, m〉. (Δk is the delta-set of k in

G.) To make routing costs in G′ comparable to those in Ĝ
we assign to each node u of G′ a positive weight Wu, and
consider, instead, the “weighted” cost of each routing path
in G′, that is, the sum of the weights of the node in this path.
We show that �[UZ ] is bounded by the expected weighted
routing cost in G′ to the average destination, which, in turn,
we bound in terms of �[Ū(G′)].

Before we describe how to construct G′ and the weights
W0, W1, . . . , Wm′−1 in terms of G, we describe the distri-
bution they will have. We also compute some quantities
related to this distribution. The size of G′ is m′ = �m/r′	,
where r′ = r + θ. The pairs (Δ′

0, W0), . . . , (Δ
′
m′−1, Wm′−1),

where Δ′
u denotes the delta-set of u in G′, are indepen-

dent and identically distributed. Their common distribu-
tion is as follows. Let D0, D1, . . . be a sequence of inde-
pendent random elements distributed according to P . Let
also Jt = max({1} ∪ Dt ∩ 〈0, m〉), for t ≥ 0. Define τ1 =
min{t :

�t
j=0 Jj ≥ r} and τ2 = min{t : Jt ≥ θ}. Finally, let

W = min{τ1, τ2} + 1, and D = Φ(Dmin{τ1,τ2}), where

Φ(Δ) =
�

d∈Δ∩[θ..m−1]

�� d

r′

�
+δ : δ = −1, 0, 1, 2

�
∩ [2..m′−1]

Note that if τ1 < τ2 then D = Φ(Dτ1 ) = ∅, while if τ1 ≥ τ2

D = Φ(Dτ2) �= ∅. The joint distribution of D, W is denoted

by P̂ ′, and the marginal of D by P ′. P̂ ′ will be the joint
distribution of Δ′

u, Wu (and P ′ the marginal of Δ′
u).

The next fact provides lower bounds for the cardinality
�′ of P ′ and the expected value of W . Recall that λ is the
expected number of long-range contacts a node in G(P ) has
at distances between θ and m−1. Let π be the probability a
node in G(P ) has at least one such long-range contact; i.e.,
π = ��[Δu ∩ [θ..m − 1] �= ∅]. (Note that λ ≥ π.)

Fact 4.1.1.

(a) �′ ≤ 4λ/π

(b) �[W | D] ≥ c1 min{r/θ, 1/π}, for a constant c1 > 0.

Proof. For part (a) we have

�′ = �[|D|] = �
�|Φ(Dτ2 )| 		 τ1 ≥ τ2

� ·��[τ1 ≥ τ2]

≤ �
�|Φ(Dτ2 )| 		 τ1 ≥ τ2

�
= �

�|Φ(Dt)|
		 Jt ≥ θ

�
= �[|Φ(Dt)|]/��[Jt ≥ θ]

where the last equality holds because Φ(Dt) = ∅ if Jt < θ.
It is easy to verify that |Φ(Dt)| ≤ 4|Dt ∩ [θ..m − 1]|; so,
�[|Φ(Dt)|] ≤ 4�[|Dt ∩ [θ..m− 1]|] = 4λ. Also, ��[Jt ≥ θ] =
��[Dt ∩ [θ..m − 1] �= ∅] = π. Therefore, �′ ≤ 4λ/π.
For part (b), for the case where D = ∅ we have

�[W | D = ∅] = �[τ1 + 1 | τ1 < τ2] ≥ r/θ + 1

The first relation holds because D = ∅ iff τ1 < τ2; the
second because τ1 < τ2 implies Jt < θ for all t ≤ τ1, and,
thus, τ1 ≥ r/θ. Now, let Δ �= ∅ and P (Δ) > 0. Let also
ρ = �r/θ	.

�[W | D = Δ] = �[W | D �= ∅] = �[τ2 + 1 | τ1 ≥ τ2]

Since �[τ2 | τ2 ≤ min{ρ, τ1}] ≤ ρ < �[τ2 | ρ < τ2 ≤ τ1], and
τ2 ≤ ρ implies τ2 ≤ τ1,

�[W | D = Δ] ≥ 1 +�[τ2 | τ2 ≤ ρ]

Also,

�[τ2 | τ2 ≤ ρ] =

ρ�
j=1

j��[τ2 = j | τ2 ≤ ρ]

=

ρ�
j=1

j
��[τ2 = j]

��[τ2 ≤ ρ]
=

ρ�
j=1

j
πqj−1

1 − qρ

where q = 1 − π. After some computations we obtain

�[τ2 | τ2 ≤ ρ] =
1 − qρ(1 + πρ)

π(1 − qρ)

Since (1 − qρ) ≤ 1 and qρ ≤ e−πρ, �[τ2 | τ2 ≤ ρ] ≥
(1 − e−πρ(1 + πρ))/π ≥ 0.15/π, for πρ ≥ 0.7. Also, it is
�[τ2 | τ2 ≤ ρ] = (1+πρ−πρ/(1 − qρ))/π, and since qρ ≤ 1−
πρ+(πρ)2/2, �[τ2 | τ2 ≤ ρ] ≥ ρ(1 − πρ)/(2 − πρ) ≥ 0.2ρ, for
πρ ≤ 0.7. Therefore, �[W | D = Δ] ≥ 1+0.15·min{ρ, 1/π}.
Part (b) of the fact follows from this result and the bound
for �[W | D = ∅] we showed earlier.

We now describe how G′ and W0, W1, . . . , Wm′−1 are con-
structed in terms of G. We begin with an informal exposi-
tion. The construction is similar, in principle, to that in
the proof of Lemma 3. Let R̂ be the subgraph of the rout-
ing tree of G induced by the nodes in 〈0, m〉. (R̂ is itself a
tree.) Let also R′ denote the routing tree of G′. We con-
struct the pairs (Δ′

u, Wu) inductively by considering each
node u = 0, 1, . . . , m′ − 1 in turn. For each u we distinguish
two cases depending on whether u is a leaf of R′ or not. If u
is a leaf, we draw (Δ′

u, Wu) from P̂ ′ independently of G and
other random choices we make. With each u that is not a
leaf of R′ we associate a node Cu of R̂. As in the construc-
tion in the proof of Lemma 3, C0 = 0 and if u > 0, Cu is
determined at the same time as the delta-set of the parent
of u in R′. Roughly, if u is not a leaf of R′, Δ′

u and Wu are
determined from ΔYu and U(G, Cu, Yu), respectively, where

Yu is a descendant of Cu in R̂. (We give the details below.)
Also, with each (non-leaf) child u+δ of u in R′ we associate

a distinct child Cu+δ of Yu in R̂, such that Cu+δ ≈ Yu + δr′.
More precisely, let Ak, for k < m, be the r-ancestor of

node k in G. Let also Ξk = k if k is an r-significant node
of G (i.e., if Ak = k), and Ξk = Ak + r′ otherwise. Finally,
let Hu, for u < m′, be the span of u in the routing tree of
(Δ′

0, Δ
′
1, . . . , Δ

′
u−1). For each u ∈ [0..m′ − 1],

• if Hu = 1, the value of pair (Δ′
u, Wu) is chosen inde-

pendently at random from P̂ ′.

• if Hu > 1,

Δ′
u = Φ(ΔYu), Wu = U(G, Cu, Yu) + 1

where:

◦ Yu is the first node in the rightmost path from Cu

in R̂, such that: (i) a child of Yu in R̂ is ≥ Cu + r
or (ii) ΔYu ∩ [θ..m − 1] �= ∅

◦ C0 = 0, and if u > 0 and v is u’s parent in the
routing tree of (Δ′

0, Δ
′
1, . . . , Δ

′
u−1),

Cu = Yv + max
�
d ∈ {1} ∪ ΔYv ∩ 〈0, m〉 :

(Yv + d) − ΞCv ≤ (u − v) · r′



The next fact gives more insight into the construction
above; it is the analogous of Facts 3.1 and 3.2. (The proof

is omitted.) Let Ŝk, for k < m, be the size of the subtree of

R̂ rooted at k. Recall also that Hu, for u < m′, is equal to
the size of the subtree of R′ rooted at u.

Fact 4.1.2. For each u ∈ [0..m′−1], if Hu > 1 then

(a) 0 ≤ Cu ≤ ΞCu ≤ ur′ and Cu ≤ Yu < Cu + r

(b) ΞCu + Hur′ ≤ Cu + ŜCu = Yu + ŜYu

(c) if u < u′ < u + Hu and Hu′ > 1 then Yu < Cu′ <

Yu + ŜYu ;

if u + Hu ≤ u′ < m′ and Hu′ > 1 then Cu′ ≥ Yu + ŜYu

We now show that G′ and W0, W1, . . . , Wm′−1 have the
desired distribution. As in the proof of Lemma 3, we think
of the construction as a random m′-step process, where in
step u we determine the value of (Δ′

u, Wu). We assume
that the value of each Δk is generated right before it is
about to be used for the first time — not earlier. Let Du be
the subset of G’s nodes consisting of all k for which Δk is
generated in steps 0 up to u − 1. Observe that Du consists
of the nodes in the routing paths of G from Cv to Yv, for all
v < u. So, Fact 4.1.2(c) implies that for all k ≥ Cu, k /∈ Du;
thus, the delta-set of each node in the path from Cu to Yu is
generated independently in step u. It is now straightforward
to verify that (Δ′

u, Wu) is distributed according to P̂ ′, and
it is independent of choices made in previous steps.

Next we bound the expected “weighted” routing cost in
G′ to the average destination in terms of the correspond-
ing “unweighted” quantity. For u, v < m′, let Uw(u, v) =�

u′∈ϑu,v
Wu′ , where ϑu,v is the set of all the nodes in the

routing path from u to v in G′, excluding the last node v.

Let also Ūw = (1/m′)
�m′−1

u=0 Uw(0, u). (So, Uw(u, v) and
Ūw are the weighted versions of U(G′, u, v) and Ū(G′), re-
spectively.) We have

�[Uw(0, u) | G′] =
�

v∈ϑ0,u

�[Wv | G′] =
�

v∈ϑ0,u

�[Wv | Δ′
v ]

= U(G′, 0, u) ·�[W | D]

The second equality holds because of the independence of
the (Δ′

i, Wi) pairs; the last holds because each of these pairs
is distributed identically to (D, W ), and |ϑ0,u| = U(G′, 0, u).
From the above result and Fact 4.1.1(b) we obtain that
�[Uw(0, u) | G′] ≥ c1 min{r/θ, 1/π} · U(G′, 0, u). Taking
the average over all u < m′, and the expectation over G′,
we get

�[Ūw] ≥ c1 min{r/θ, 1/π} ·�[Ū(G′)]

≥ c1 min{r/θ, 1/π} · T (m′, �′)

By Lemma 1 and Fact 4.1.1(a), T (m′, �′) ≥ T (m′, 4λ/π).
By Lemma 3, we can omit factor 4 in the last inequality
at the cost of a constant factor, and by Lemma 2, we can
replace m′ = �m/(r + θ)	 with �m/r	 ≤ 2m′ again at the
cost of a constant factor; thus, T (m′, �′) ≥ c2T (�m/r	, λ/π).
Finally, by Lemma 3 and the fact that T (i) ≥ 2/3 for i ≥ 3,
T (�m/r	, λ/π) ≥ max{2/3, (π/λ)T (�m/r	}. Therefore,

�[Ūw] ≥ c3 min{r/θ, (1/λ)T (�m/r	)} (7)

To complete the proof, it remains to bound�[UZ ] in terms
of �[Ūw]. We show that�

k<r′m′
U(G, 0, Ak) ≥ r′

�
u<m′

Uw(0, u) (8)

We do so by proving that the following predicate holds for
all h ∈ [2..m′] (for fixed G): “for all u ∈ [0..m′ − 1] such
that Hu = h,�

v∈〈u,Hu〉
Uw(u, v) ≤ (1/r′)

�
k∈〈ΞCu ,r′Hu〉

U(G, Cu, Ak)”

(The proof is by induction on h; the details of this proof are
omitted.) (8) follows then by taking h = m′. From (8) (by
dividing both sides by m, and taking the expectation over
G) we obtain that �[UZ ] ≥ c4�[Ūw]. Substituting �[Ūw]
with the right side of (7) we obtain the desired bound for
�[UZ ].

3.5.2 Proof of Fact 4.1(b)
Let S be the set of the r-significant nodes of G that belong

to 〈0, m〉. Let also Ŝ = {u ∈ S : Du = r} and Š = {u ∈ S :
Du < η}, where Du denotes the number of the r-descendants
of u in G that are in 〈0, m〉. We have,

��[M < η] = �
�
��[M < η | G]

�
= �

� 1

m

�
u∈Š

Du




≤ �

� 1

m
|Š| · (η − 1)



≤ η − 1

m
�[|S| − |Ŝ|]

Note that except for node 0, every node in S is an r-successor
of some node in Ŝ. Also if u ∈ Ŝ, the number of u’s r-
successors is less or equal to the total number Nu of long-
range contacts of the nodes in the r-border of u, plus 1 (for
the successor of u + r − 1). From the last two observations,

|S| ≤ 1 +
�

u∈Ŝ(Nu + 1) = 1 + |Ŝ| +�
u∈Ŝ Nu. So,

��[M < η] ≤ η − 1

m

�
1 +�

��
u∈Ŝ

Nu


�
(9)

Next, we bound �[
�

u∈Ŝ Nu]. Let Rt, for 0 ≤ t ≤ m, be

the routing tree of (Δ0, Δ1, . . . , Δt−1). (Note that Rt com-

pletely determines which of the nodes in [0..t] are in Ŝ.)

Fact 4.1.3. �[Nu | Ru, u ∈ Ŝ] = �[Ur−1] + 1.

Proof. Assuming u ∈ Ŝ, let τ be the length of the r-
border of u. Also for each j ≥ 0, let Lj be the number of
long-range contacts of the (j + 1)th node along this path, if
j ≤ τ ; if j > τ the value of Lj is drawn independently at
random from the distribution of |Δk|. Finally, let A be a

shorthand for “Ru, u ∈ Ŝ.”

�[Nu | A]

=
�

i

�[Nu | A, τ = i] ·��[τ = i | A]

=
�

i

i�
j=0

�[Lj | A, τ = i] ·��[τ = i | A]

=
�
j≥0

�
�[Lj | A] −�[Lj | A, τ < j] ·��[τ < j | A]

�

=
�
j≥0

(1 −��[τ < j | A]) = 1 +
�
j≥0

(1 −��[τ ≤ j | A])

= 1 +�[τ | A] = 1 +�[Ur−1]

The forth equality holds because, conditioned on either A
or A∩{τ < j}, Lj is distributed like |Δk|, thus, �[Lj | A] =
�[Lj | A, τ < j] = 1.



Let Zi, for 1 ≤ i ≤ m + 1, be the ith largest node in Ŝ if
i ≤ |Ŝ|, or Zi = m otherwise. Let also Nm = 0. For each
t ∈ [0..m], we define

Xt =
�

j∈[1..t]

NZj +
m − Zt+1

r
· (1 +�[Ur−1])

Using Fact 4.1.3, it is straightforward to verify that�[Xt+1−
Xt | Ru, Zt+1 = u] ≤ 0. Therefore, �[Xt+1 − Xt] ≤ 0,
which implies �[Xm] ≤ X0, or, equivalently, �[

�
u∈Ŝ Nu] ≤

(m/r)(1 + �[Ur−1]). This, together with (9), yield the de-
sired bound for ��[M ≥ η].

4. CONCLUDING REMARKS AND FUTU-
RE WORK

In this paper, we have shown that the expected number
of steps for greedy routing in uniform ring-based random
graphs of n nodes with expected � long-range contacts per
node is Ω((log2 n)/�alog∗ n). This improves a lower bound
by Aspnes et al., and proves that greedy routing in this class
of graphs is suboptimal even when � = Θ(log n), a case of
practical interest.

Our lower bound is very close to the upper bound of
O((log2 n)/�) that greedy routing achieves in Kleinberg’s
small-world networks, a particular instance of uniform ring-
based random graphs. Our analysis suggests that the op-
timal distribution P for choosing long-range contacts has
structural properties similar to those of the distribution used
in Kleinberg’s construction. We conjecture that our lower
bound can be improved to Ω((log2 n)/�), i.e., that Klein-
berg’s construction is in fact (asymptotically) optimal for
greedy routing in uniform ring-based random graphs.

In this paper we have focused on unidirectional greedy
routing, where the distance from node u to node v is the
number of edges along the ring in, say, clockwise direction
from u to v. In bidirectional greedy routing, the distance
between two nodes is the minimum number of edges between
them in either clockwise or counterclockwise direction. In
most actual designs, both versions of greedy routing give
(asymptotically) the same results. We conjecture that the
same asymptotic bounds apply to both versions.

The model of uniform ring-based random graphs natu-
rally generalizes to more than one dimensions, by using the
d-dimensional torus (or grid) as a base graph instead of the
ring. Kleinberg’s construction also generalizes to higher di-
mensions resulting in the same O((log2 n)/�) upper bound
for greedy routing. It is interesting to investigate whether
the use of additional dimensions improves the performance
of greedy routing or if a lower bound similar to that for the
one-dimensional case applies.
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