
A Scheme for Load Balancing in
Heterogeneous Distributed Hash Tables∗

George Giakkoupis
ggiak@cs.utoronto.ca

Vassos Hadzilacos
vassos@cs.utoronto.ca

Department of Computer Science
University of Toronto

Toronto, Canada

ABSTRACT
We present a scheme for evenly partitioning the key space in
distributed hash tables among the participating nodes. The
scheme is based on the multiple random choices paradigm [3,
19], and handles both node joins and leaves. It achieves,
with high probability, a ratio of at most 4 between the loads
of the most and least burdened nodes, in the face or arbitrary
node arrivals and departures. Each join or leave operation
incurs message cost that is, with high probability, O(log2 n),
where n is the number of nodes, and causes the relocation
of keys from at most one node (for joins) or three nodes (for
leaves). A version of our scheme is suitable for heterogeneous
systems, where the capacities of nodes to serve keys can vary
widely.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications—
load balancing ; G.3 [Probability and Statistics]: Sto-
chastic processes; E.1 [Data Structures]: Distributed data
structures

General Terms
Algorithms, Performance, Theory

Keywords
Peer-to-peer, distributed hash tables, load balancing

1. INTRODUCTION
Distributed Hash Tables (DHTs) [17, 21, 5, 20, 10, 14,

16, 1, 13] are data structures used to organize highly dy-
namic, massive, decentralized distributed systems, such as
peer-to-peer networks. A DHT maps keys (i.e., resource

∗Research supported in part by the Natural Sciences and
Engineering Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

identifiers) into a hash space, which is partitioned among
the nodes in the network. Each node is responsible for (the
resources whose keys are hashed into) its segment of the
hash space. When a node joins the system, the partition of
the hash space is perturbed slightly, so that the new node
can be given its own segment of the hash space, pieces of
which previously belonged to a small number of old nodes.
Similarly, when a node leaves the system, its segment is re-
distributed among a small number of the remaining nodes.
In addition to the join and leave operations, a DHT supports
the lookup operation which locates the node responsible for
(the resources identified by) a given key.

To enable the implementation of these operations, each
node maintains a number of links to other nodes in the sys-
tem, thereby forming an overlay network. Because of the
massive scale of the networks for which DHTs are intended,
the overlay network must have low degree and the lookup,
join and leave operations must have cost (e.g., in terms of
messages and time) that is at most polylogarithmic in the
number of nodes in the system.

An important goal in the design of DHTs is to achieve
a balanced partition of the hash space among the nodes in
the system. It is often desirable that each node assumes
responsibility for a portion of the hash space that is pro-
portional to its power (measured in terms of its processor
speed, available bandwidth, and/or storage capacity), and
that this property is maintained as nodes join and leave the
system. This is because, typically, the number of keys a
node is responsible for serving, and the amount of routing
traffic the node handles are proportional to the size of the
segment that the node is associated with.

We quantify the notion of load balance in DHTs in the
following natural way. Assume each node has a positive
weight, that is proportional to its power, i.e., for any nodes
n1, n2 of weights respectively w1, w2, with w1 ≥ w2, n1 can
manage a segment of the hash space that is w1/w2 times
larger than that n2 can handle. The weighted size of a node’s
segment is the quotient of the segment’s size divided by the
node’s weight. Finally, the balance ρ of a DHT structure is
the ratio of the maximum weighted size of any node segment
to the minimum weighted size. Note that if all nodes have
the same weight, then ρ reduces to the usual measure of
load balance in DHTs: the ratio of maximum segment size
to minimum.

In this paper, we describe a simple and intuitive protocol
for managing the partition of a DHT’s hash space into node
segments, as nodes join and leave the system. The proto-

col can be used in any DHT structure whose hash space is
a line segment or a ring. It employs the multiple random
choices paradigm [3, 19], and it has two versions. The first
(unweighted) version can be roughly described as follows.
To accommodate the addition of a new node, we select at
random a (logarithmic in the system size) number of points
in the hash space,1 split in half the largest node segment
containing at least one of the points selected, and assign
one half to the newly arrived node. To cope with the de-
parture of a node, again we choose a logarithmic number of
points at random, we merge with an adjacent segment the
shortest segment containing some of the points selected, and
assign the segment of the departing node to one of the two
nodes whose segments were merged. The second (weighted)
version of the protocol is a natural extension of the above
scheme that assumes node weights that are powers of 2, up
to a fixed maximum.

The unweighted version of the protocol guarantees that
ρ ≤ 4 with high probability, for any sequence of node joins
and/or leaves. Both join and leave operations have message
complexity O

�
log n ·Lm(n)

�
, and (parallel) time complexity

Lt(n) + O(1), where n is the system size, and Lm(n), Lt(n)
are respectively the message complexity and time complex-
ity of a lookup request. (Typically Lm(n) and Lt(n) have
the same asymptotic behavior and are Θ(log n) [21, 5, 20,
10], or Θ(log n/ log log n) [6, 4, 11], with high probability.)
Finally, a join affects only the segment of a singe node, and
a leave affects at most two (adjoining) node segments and
the segment of the departing node. The weighted version
guarantees that ρ ≤ 8, with high probability, and has the
same (asymptotic) join/leave complexity as the unweighted
version. Each join or leave operation incurs only a few local-
ized changes in the partition of the hash space, i.e., at most
a constant number of adjacent node segments are modified.

Related Work
In most early DHT structures [21, 10, 13, 16], each node
(upon arrival) chooses at random a point in the hash space�
typically, the unit interval [0, 1)

�
, and becomes associated

with the points of the hash space closest to the selected point
(with respect to some distance function). Assuming random
node departures, this scheme guarantees that the ratio of
largest to average node segment size is Θ(log n), with high
probability [7, 21]. However, we can show that the ratio
of average to smallest segment size is Ω(n) with constant
probability. Therefore, assuming homogeneous nodes, ρ is
Ω(n log n), with constant probability.

In another early approach [17], a new node splits in half
the node segment containing a randomly selected point, and
assumes responsibility of one half. In the pure join model,
the balance of this scheme is better than the previous one,
but we can show that ρ is still Ω(log2 n/ log log n), with high
probability. (The ratio of largest to average segment size is
the same as before, while the ratio of average to smallest
is Ω(log n/ log log n), with high probability.) In both this
and the previous approaches, if every physical node acts
as Ω(log n) virtual nodes, each associated with a distinct
segment, then constant ρ is achieved, with high probabil-
ity [7, 21]. However, this approach amplifies by a factor of
Ω(log n) the number of links a node should maintain, and

1Throughout this paper, whenever we say “at random”, we
imply “independently and uniformly at random”.

(consequently) increases the complexity of join and leave
operations.

Five recently proposed load balancing schemes guarantee
constant ρ, with high probability, for homogeneous nodes,
while assigning a single segment per node. Abraham et al. [1]
and Naor and Wieder [16] independently suggested and ana-
lyzed the join scheme our (unweighted) protocol uses. How-
ever, neither work provides a method for departures that
provably achieves constant ρ. Adler et al. [2] propose and
analyze a scheme for joins in a hypercubic overlay struc-
ture. Roughly, a new node splits in half the longest seg-
ment among the ones associated with the node responsible
for a randomly selected point, and its Θ(log n) neighbors
in the overlay structure. They also describe a procedure
for leaves, but they do not show it maintains constant ρ, al-
though experimental results suggest that it may do so. The
message and (parallel) time complexity of node joins are
Θ
�
Lm(n) + log n

�
and Lt(n) + O(1), with high probability,

respectively, and the number of nodes affected is constant.
The next two approaches are not tied to specific over-

lay structures, and provably guarantee constant ρ in the
face of both joins and leaves. Karger and Ruhl [8] present
a scheme with message and time complexity respectively
Θ
�
log n · Lm(n)

�
and Lt(n) + O(log n), with high probabil-

ity. The number of nodes affected by a single operation is
O(log n), with high probability, and Θ(log log n), on expec-
tation. Manku [12] proposes a very efficient scheme where
operations are, roughly, performed as in our protocol, but
instead of random segments the scheme examines a logarith-
mic number of consecutive segments in the neighborhood
of a random point. The message and time complexity are
respectively Lm(n) + Θ(log n) and Lt(n) + Θ(log n), with
high probability, and constant number of node segments are
modified per operation.

Finally, in a very recent paper Kenthapadi and Manku [9]
present a load balancing scheme that combines two differ-
ent approaches: the multiple random choices scheme, and
the “neighborhood search scheme” of [12]. Their protocol
is overlay independent, and provably guarantees constant ρ
only in the pure join model. The complexity of joins depends
on two system parameters r and v, with rv = Θ(log n),
where r represents the number of random points selected,
and v represents the number of (consecutive) segments ex-
amined in the neighborhood of each random point. The
message and time complexity per operation are respectively
rLm(n) + rv and Lt(n) + v, with high probability.

All the above approaches assume homogeneous nodes. To
our knowledge, the problem of load balancing in DHTs of
heterogeneous nodes has not, so far, received special atten-
tion. A reason may be that it can be easily reduced to the
load balancing problem for homogeneous nodes, by having
each (heterogeneous) node run a number of virtual nodes
proportional to its power. However, to paraphrase the apt
statement of Ratnasamy et al. [18] (made, in their case,
about routing rather than load balancing) “instead of merely
coping with heterogeneity, [load balancing algorithms] could
instead use it to their advantage.”

In particular, a balancing scheme that assigns a single
(contiguous) segment per node, would result in significant
reduction in the number of links in the network compared
to the approach that uses virtual nodes. For instance, in a
system where half of the nodes are twice as powerful as the
other half, a scheme that assigns a single contiguous segment

protocol message complexity time complexity nodes reloc. comments

Abraham et al. [1] Θ(log n · Lm(n)) Lt(n) + O(1) O(1) no departures
Naor and Wieder [16] Θ(log n · Lm(n)) Lt(n) + O(1) − no proof for departures
Adler et al. [2] Θ(Lm(n) + log n) Lt(n) + O(1) O(1) no proof for departures; overlay specific
Karger and Ruhl [8] Θ(log n · Lm(n)) Lt(n) + O(log n) O(log n) −
Manku [12] Θ(Lm(n) + log n) Lt(n) + Θ(log n) O(1) −
Kenthapadi

rLm(n) + rv Lt(n) + v O(1)
where rv = Θ(log n); no proof for

and Manku [9] departures
this paper Θ(log n · Lm(n)) Lt(n) + O(1) O(1) works with heterogeneous nodes

Table 1: Comparison of schemes for load balancing in DHTs.

per node would result in the more powerful nodes having
(roughly) half the number of outgoing links and the same
number of incoming links as in the virtual nodes approach,
while the less powerful nodes would have the same number
of outgoing and one third fewer incoming links.

Our Contribution
The idea of employing the multiple random choices para-
digm [3, 19] to achieve load balancing in DHTs is not novel.
As we saw above, the join protocol we use was proposed by
two other groups [1, 16]. However, they didn’t provide a pro-
tocol for handling node leaves that maintains constant ρ. To
our knowledge, our work is the first to propose and analyze
a scheme that uses the multiple random choices scheme for
both node joins and leaves, and achieves constant ρ. Com-
pared to the other two algorithms that handle both joins and
leaves, it has similar complexity, but relocates fewer nodes
per operation than [8], and it has worse message complex-
ity, but slightly better parallel time complexity than [12].
Finally, our protocol is the only one we know of that can
handle heterogeneous nodes, achieving constant ρ (indepen-
dent of nodes’ relative power) and assigning to each node a
single contiguous segment.

The rest of this extended abstract is organized as follows.
In Section 2 we present the unweighted and weighted ver-
sions of our load balancing protocol, and discuss the perti-
nent properties of each. In Section 3 we present a detailed
overview of the analysis of the unweighted version. Under-
lying our protocols are complex stochastic processes whose
rigorous analysis is quite lengthy; thus, our goal here is to
explain the main ideas of the analysis, without providing all
the detailed calculations. In Section 4 we describe, sketchily,
the analysis of the weighted version of the protocol.

2. PROTOCOLS FOR BALANCED
PARTITIONING

2.1 A Note on the Model
The load balancing protocols we present in the next two

sections are general enough to be used in any DHT design
whose hash space is a line segment or a ring. For concrete-
ness we will assume that the hash space is the unit interval
I = [0, 1). For efficiency, we will also assume that every
node maintains links to its immediate successor and prede-
cessor nodes in the hash space. As is typical in the analysis
of load balancing algorithms for DHTs, we only consider the
case where node joins and leaves occur sequentially. We ex-
pect the protocols should perform well up to some degree of
concurrency, as well.

2.2 S&M Protocol
This scheme assumes that all nodes are equally powerful,

and aims to partition the hash space evenly among them.
Node joins and leaves are performed in such a way that, at
any time, the length of the segment associated with each
node is an integer power of 1/2 (potentially a different one
for different nodes), and its endpoints are integer multiples
of its length. We call such a segment of length 1/2d, for
some d ∈ N, a d-segment ; we also say that this segment has
depth d. Finally, we define the sibling of a d-segment λ,
denoted λ, to be the unique d-segment such that λ ∪ λ is a
(d − 1)-segment.

Protocol Description
To join the system, a new node n, first requests the depth of
the segment associated with a node n0 that is known to be
in the system already. Let d be that depth. Then, n issues
(via n0) lookup requests for each of �α+d+β+� keys selected
at random, where α+ and β+ are positive system-wide para-
meters. Let n′ be a node associated with a longest segment,
among those returned by the lookup requests. Then, the
segment of n′ is split into two halves, and each of n, n′ is
associated with one half.

The leave procedure is, in a sense, symmetric to the join
process. Suppose some node n, who is currently in the sys-
tem and is associated with a d-segment λ, d > 0, wishes to
depart. Before n does do, it looks up the nodes that are
responsible for �α−(d + 1) + β−� keys selected at random,
where α−, β− are again positive system parameters. Let
n′ be a node associated with a shortest segment among the
looked up nodes, and let λ′ denote that segment. We have
two cases, depending on the length |λ′| of λ′.

(a) |λ′| < |λ|: If λ′ is associated with a single node, say n′′,
(i.e., λ′ is not currently split), then λ′ and λ′ are merged,
n′′ and n′ are associated with the resulting segment and
λ, respectively, and n leaves the system. If λ′ is not
associated with a single node (i.e., λ′ is currently split),
then n traverses (sequentially) the nodes associated with
subsegments of λ′, until it finds a pair of nodes n1, n2

associated with two sibling segments. (Note that we can
always find such a pair of nodes.) Then, the two sibling
segments are merged, n1 and n2 become associated with
the newly created segment and λ, respectively, and n
departs from the system.

(b) |λ′| ≥ |λ|: The procedure is almost identical to that
described in case (a) if we consider n in place of n′. So,
we first attempt to merge λ with λ, and if this is not
possible (because λ is split) we merge two sibling node
segments that are subsegments of λ.

Protocol Properties
The above protocol provides strong load balancing guaran-
tees. Roughly speaking, if we start from a sufficiently bal-
anced initial state, then at all times during an arbitrary
sequence of k joins and/or split operations, ρ ≤ 4, with
probability 1 − O(k/Nb), where N is the minimum num-
ber of nodes in the system during this sequence, and b > 0
a constant that can be made arbitrarily large by choosing
large enough parameters α+, β+, α−, β− (independently of k
or N). A more formal statement of this property, and an
outline of its proof are presented in Section 3. We note par-
enthetically that the protocol is “self-correcting” in the sense
that starting from an arbitrary (valid) state, a sufficiently
balanced state is reached after a large enough number of
steps. We will elaborate on this issue in the full version of
this paper.

It is easy to see that the message complexity of a join
operation in an n-node system with constant ρ is O

�
log n ·

Lm(n)
�
. This is not optimal since other approaches require

as little as O(log n) + Lm(n) messages [12]. However, if
the probing lookups are executed in parallel (instead of se-
quentially), the time complexity of both join and leave pro-
cedures reduces to O(1) + Lt(n). Finally, a node join af-
fects only the segment associated with a singe node, and a
node leave affects the segments associated with at most two
nodes (in addition to the departing node). Thus, for con-
stant ρ both operations result in relocating keys that fall in
an O(1/n) fraction of the hash space, which is optimal.

2.3 Weighted S&M Protocol
The scheme we present in this section is an extension of

the protocol described in Section 2.2 that takes into account
the relative power of nodes. In particular, it presumes that
each node n has a weight, denoted w(n), that is an integer
power of 2 between 1 and some system-wide parameter W
(also a power of 2), and tries to partition the hash space in
such a way that each node is associated with a segment of
length proportional to its weight. Roughly speaking, this
scheme arranges nodes into (virtual) groups, and uses the
same technique as the unweighted S&M Protocol to achieve
for each group what that protocol achieved for single nodes.
Below we describe the protocol in more detail.

The hash space is partitioned into segments, one for each
node, such that at any time there is a (unique) many-to-
one mapping of the set of nodes to a set of groups with the
following properties: (i) the union of the segments of all
nodes in a group, called a group segment, is a d-segment, for
some d ≥ 0 (potentially, a different d for different groups);
and (ii) the sum of the weights of all nodes in a group, called
the group’s weight, is between W and 2W − 1.2 We denote
the weight of a group G by w(G).

The details of how a group segment is partitioned among
the nodes of the group are specified by a part of the bal-
ance algorithm we call the group management protocol. In
addition, the group management protocol describes how to
perform the group operations listed below. Note that, these
operations may only modify segments associated with nodes
of the groups mentioned in each operation.

2More precisely, this property applies only if the total weight
of all nodes in the system is at least W . Otherwise, there is
only one group that contains all the nodes.

T1: Add node n to group G. If w(G) +w(n) ≥ 2W , then G
is split into two groups, each associated with one half
of G’s segment.

T2: Given two groups G, G′ associated with sibling seg-
ments, and a node n in G, remove n from the system.
If w(G) + w(G′) − w(n) < 2W , then G and G′ are
merged into a single group.

T3: Given a group G, a node n in G, and two other groups
G1, G2 associated with sibling segments, remove n from
the system in such a way that either (i) the value of
w(G) after the operation is greater or equal to that
before, or (ii) G is split into two groups. Moreover, G1

and G2 may be merged into a single group.

The group management protocol can be designed indepen-
dently of the rest of the load balancing algorithm, as long
as it adheres to the above specification. In the next two
paragraphs, we first describe the Weighted S&M Protocol in
detail assuming an arbitrary group management protocol,
and then we discuss specific group management protocol
designs.

Protocol Description
Besides the fact that it operates on groups, instead of single
nodes, the weighted version of the S&M Protocol is almost
identical to the unweighted one.3 To join the system, a
node n issues, via some known node n0, lookup requests for
�α+d+β+� keys selected at random, where d is the depth of
the segment associated with n0’s group. Then, n adds itself
(using operation T1) to a group associated with a longest
segment, among the groups of the nodes probed. Note that
the segment of a group can be computed by traversing no
more than 2W nodes.

Consider, now, a node n that belongs to a group G, and
let G be associated with d-segment λ, d ≥ 0. To leave the
system, n first looks up the nodes responsible for �α−(d +
1) + β−� keys, selected at random. Let G′ be a group as-
sociated with a shortest segment, among the groups of the
nodes probed, and let λ′ be that segment. Similarly to the
unweighted protocol, we have two cases.

(a) |λ′| < |λ|: If λ′ is associated with a single group, say
G′′, then n is removed from the system by performing
operation T3 with parameters G, n, G′, and G′′. If λ′ is
not associated with a single group then n traverses the
nodes associated with subsegments of λ′, until it finds a
pair of group G1, G2 associated with sibling segments.
Then, n is removed from the system by performing op-
eration T3 with parameters G, n, G1, and G2.

(b) |λ′| ≥ |λ|: If λ is associated with a single group, say
G′′′, then n is removed by executing operation T2 with
parameters G, n, and G′′′. Otherwise, n looks for a pair
of groups G3, G4 associated with sibling subsegments
of λ, and leaves the system by performing operation T3

with parameters G, n, G3, and G4.

Group Management
Recall that the group management protocol specifies how a
group segment is distributed among the nodes in the group,
and describes how operations T1–T3 are performed. We

3In fact, for W = 1 the two protocols are identical.

evaluate the efficiency of such a protocol in terms of the fol-
lowing measures: (i) the balance it achieves among the nodes
in a group, denoted �; (ii) the number of node segments af-
fected (i.e., have one or both endpoints modified) in each
of operations T1–T3 ; and (iii) the fraction of hash space
whose association to nodes changes as a result of operations
T1–T3. Ideally, we would like that � be as close to 1 as pos-
sible, that operations T1–T3 (in most cases) affect a number
of nodes that is at most proportional to the weight w of the
node added/removed and independent of W , and that each
operation changes the association to nodes in a fraction of
the segment of each group involved in the operation that is
at most proportional to w/W .

The simplest approach is to associate with each node a
segment of length exactly proportional to the node’s weight,
i.e., a node of weight w, in a group of weight w′ and (group)
segment λ, is associated with a segment of length |λ|w/w′.
Such a scheme is optimal in terms of (i), i.e., achieves � = 1.
However, operations T1–T3 modify the endpoints of all node
segments in at least one (and at most three) groups, even
when the weight w of the node added/removed is small.
Finally, operations T1–T3 may result in changing the asso-
ciation to nodes of a constant fraction (i.e., independent of
w and W) of a group segment. There are more complex
ways to do group management that are better in terms of
(ii) and (iii) while still keeping � ≤ 2, but these are omitted
from here.

Protocol Properties
The protocol guarantees regarding the relative length of
group segments are the same as those the unweighted proto-
col provides about the relative length of node segments. If,
in addition, the group management protocol achieves � ≤ 2
then, with high probability, ρ ≤ 8 during any sequence of
joins/splits that starts from a sufficiently balanced state and
uses large enough protocol parameters (α+, β+, α−, β−),
provided that the number of nodes in the system does not
become too small, and the sequence of operations is not too
long.

The message complexity of a single node join/leave is
O
�
log n · (Lm(n) + W)

�
. (Note that if we use the sim-

ple group management protocol we saw in the previous
paragraph, the message complexity per operation becomes
O
�
log n · Lm(n) + W), because with that specific protocol

a node can determine the length of its group segment based
on its own node segment.) If the probing lookups are ex-
ecuted in parallel, though, the resulting time complexity
is Lt(n) + O(W). A node join affects only the segments of
nodes in a singe group, while a leave affects nodes associated
with at most three groups. So, in both cases the number of
nodes affected is O(W). Finally, each join/leave changes
the association to nodes of a constant fraction of each group
segment affected by the operation. Thus, if ρ is constant, at
most an O(W/n) fraction of the hash space is affected.

3. ANALYSIS OF S&M PROTOCOL

3.1 Binary Partitions
We say that a partition of the unit interval I into segments

is a binary partition, if each segment is a d-segment, for
some d ≥ 0 (possibly, different d for different segments).
If, moreover, the segments are sorted (from left to right) in

decreasing length, then the partition is called sorted binary
partition.

We use the following notation for the quantities associated
with a binary partition B. Let i ∈ N. The total number of
segments that B consists of is denoted by n(B), the number
of i-segments of B is denoted by ni(B), and the sum of the
lengths of all i-segments of B is denoted by �i(B). If B does
not contain any i-segments then ni(B) = 0 and �i(B) = 0.
For convenience, we define �≥i(B) =

�
k≥i �k(B); �≤i(B)

is defined similarly. The smallest and largest i for which
�i(B) > 0 are called the min depth and max depth of B, and
are denoted by ν(B) and ξ(B), respectively. The difference
ξ(B) − ν(B), denoted bf(B), is called the balance factor of
B. In all the above notation, we often omit parameter B
when it is clear which binary partition we are considering.

3.2 S&M-Processes
We define two families of discrete stochastic processes that

describe models for adding and removing segments in binary
partitions. The first family, called actual S&M-processes,
simply formulates as a stochastic process the S&M Proto-
col described in Section 2.2. The second family, called vir-
tual S&M-processes, describes a slightly different, less com-
plicated model. We introduce virtual S&M-processes because
they are easier to analyze, and their analysis yields results
that apply to actual S&M-processes, as well.

The sample space of an actual or virtual S&M-process is a
set of finite sequences of binary partitions or sorted binary
partitions, respectively. Both types of processes are parame-
terized by an initial partition, four positive constants called
splitting factor/term and merging factor/term, and a finite
binary sequence of +/−’s, called event list. Actual S&M-
processes have an additional parameter, called list of points,
which is a sequence of points from I of the same length as
the event list. We explain the use of these parameters below.

Let B = 〈Bi〉ki=0, k ≥ 0, be an actual or virtual S&M-
process with initial partition B0, splitting factor α+, split-
ting term β+, merging factor α−, merging term β−, and
event list 〈ri〉ki=1.

4 Moreover, if B is an actual S&M-process,
let 〈pi〉ki=1 be its list of points. Then, B0 = B0, and for
every 0 < i ≤ k, Bi is determined as follows. If ri = + then
Bi results from Bi−1 by splitting in half a segment of Bi−1

that is selected using a probabilistic protocol described be-
low. If ri = − then Bi is generated by merging two sibling
segments of Bi−1 into a single segment. Again, the pair of
segments is chosen probabilistically.

If B is an actual S&M-process, the following segment se-
lection protocol is used. Let d be the depth of the segment
containing point pi. If ri = +, we pick �α+d + β+� points
of I at random, and choose to split the longest among the
segments of Bi−1 that contain at least one of the points se-
lected. (If more than one such longest segments exists then
we deterministically choose one of them.) If ri = −, we pick
�α−(d + 1) + β−� points at random. Let L be the set of
segments of Bi−1 containing at least one of the points se-
lected. Let also λ denote the segment containing pi, if this
segment is shorter or equal to every segment in L, or a (de-
terministically selected) shortest segment in L, otherwise.
Then, if λ is not currently split, we choose to merge λ with

4A note on the use of different fonts: X and x denote fixed
values, X denotes a random variable, and X denotes a sto-
chastic process or set of random variables.

λ; otherwise, we (deterministically) choose a pair of sibling
segments that are subsegments of λ.

If B is a virtual S&M-process, the segment selection pro-
tocol is as follows. If ri = +, we pick �α+ν(Bi−1) + β+�
points of I at random. Let d be the depth of the longest
segment of Bi−1 that contains at least one of the points se-
lected. Then, we choose to split the rightmost d-segment of
Bi−1. If ri = −, we pick �α−(ξ(Bi−1) − 1) + β−� points
of I at random. Let d be the depth of the shortest segment
of Bi−1 that contains at least one of the points selected.
Then, if nd(Bi−1) ≥ 2 we choose to merge the two leftmost
d-segments of Bi−1. Otherwise, we choose the two leftmost
d′-segments of Bi−1, where d′ is the minimum j > d for
which nj(Bi−1) ≥ 2. (Note that, if n(Bi−1) ≥ 2 there is
always such a d′.)

We conclude this section by comparing the behavior of
actual and virtual S&M-processes, with respect to load bal-
ancing. Informally, an actual S&M-process provides at least
as strong load balancing guarantees as a virtual S&M-process
with similar parameters. More precisely, let two partitions
B, B′ be called similar if ni(B) = ni(B

′) for all i ∈ N. Let
also bf(B) denote the maximum balance factor of any par-
tition in (actual or virtual) S&M-process B. Then, it is easy
to show (using coupling) that the following statement holds.

Lemma 3.1. If actual S&M-process B1 and virtual S&M-
process B2 have the same splitting and merging fac-
tors/terms, the same event list, and similar initial parti-
tions, then Pr[bf(B1) ≤ 2] ≥ Pr[bf(B2) ≤ 2].

This lemma allows us to directly apply to actual S&M-
processes the bounds we will prove for virtual S&M-processes
in the next section.

3.3 Analysis of Virtual S&M-Process
Informally, we will show that in a virtual S&M-process

starting from a “sufficiently balanced” initial partition with
large enough constant merging and splitting factors, with
high probability, the balance factor of all binary sorted par-
titions in the process is at most 2, provided that the number
of segments in the system does not become too small, and
the process does not go on for too long (i.e., the number
of steps is polynomial in the minimum number of segments
during the process). Throughout the remainder of this sec-
tion, whenever we say “partition”, we mean “binary sorted
partition”.

We consider a partition to be sufficiently balanced if one
of the following two conditions applies: (i) bf ≤ 1, or (ii)
bf = 2 and �ν ≤ u and �ξ ≤ v, where u, v are appropriate
constants with 0 ≤ u, v ≤ 1. A partition that satisfies ei-
ther of the above conditions is called 〈u, v〉-safe. Note that
condition (i) implies that bf = 0 if n is a power of 2, and
that bf = 1 otherwise. So, it describes partitions that are
(in some sense) completely balanced. Condition (ii), on the
other hand, refers to partitions that deviate from a com-
pletely balanced state, by (at most) as much as described
by parameters u, v. As expected, we will see that these pa-
rameters are closely related to the selected factor/term pa-
rameters of the S&M-process, and the probability with which
the load balancing guarantees of the process hold.

Let |B| denote the length of S&M-process B, i.e., the num-
ber of partitions in B minus one. Recall also that bf(B)
denotes the maximum balance factor of any partition in B.

Then, the main result of this section can be formally stated
as follows.

Theorem 3.1. Let b > 0. There are α+, β+, α−, β− >
0 and 0 ≤ u, v ≤ 1, all of which depend only on b, such
that if virtual S&M-process B starts from a 〈u, v〉-safe initial
partition and has splitting factor ≥ α+, splitting term ≥
β+, merging factor ≥ α− and merging term ≥ β−, then
Pr[bf(B) ≤ 2] = 1 − O(|B|/Nb), where N is the minimum
number of segments in any partition of B.

The proof of this theorem is presented in Section 3.3.2. Be-
fore that, in Section 3.3.1, we show some basic facts we will
use in the proof.

3.3.1 Basic Results
We begin by introducing some definitions. The random

experiment that determines the next partition in a virtual
S&M-process from the previous one is called a v-split (respec-
tively a v-merge) if it splits a segment (respectively merges a
pair of segments) of the partition it is applied to. A v-split
is favorable if it splits a longest segment (of the partition
it is applied to), and non-favorable otherwise. Similarly, a
v-merge is favorable if it merges two shortest segments, and
non-favorable otherwise.

The first two lemmata we present in this section bound
respectively the probability that a single v-split splits a seg-
ment of length above a given minimum, and the probability
a single v-merge merges segments of length below some max-
imum. The proof of the second lemma is similar to that of
the first one, and it is omitted.

Lemma 3.2. Let α, c > 0. For any partition with �≤i ≥
c/α, for some i ≥ 0, a v-split with splitting factor ≥ α splits
a segment of depth ≤ i, with probability ≥ 1 − e−cν.

Proof. Let w = �≤i. The probability the v-split splits
a segment of depth ≤ i is ≥ 1 − (1 − w)αν ≥ 1 − e−wαν ≥
1 − e−cν , since w ≥ c/α.

Lemma 3.3. Let α, c > 0. For any partition with �≥i ≥
c/α, for some i ≥ 0, a v-merge with merging factor ≥ α

merges segments of depth ≥ i, with probability ≥ 1−e−c(ξ−1).

The first of the remaining two lemmata bounds the num-
ber of consecutive v-splits that should be applied to a given
partition until all its longest segments are split, with certain
probability. The proof is quite technical and is described in
the Appendix. The last lemma bounds the number v-merges
required until all the shortest segments in a partition are
merged, with a given probability. Its proof is similar to that
of Lemma 3.4, and it is omitted.

Lemma 3.4. Let 0 < w ≤ 1, α > 1, and c > 0. For any
partition B with �ν ≤ w, a sequence of successive v-splits
with splitting factor ≥ α and sufficiently large splitting term
β(w, α, c), splits all ν-segments of B after ≤ 2ν(w

α−1
+ 4c+6

α
)

non-favorable v-splits occur, with probability ≥ 1 − e−cν.

Lemma 3.5. Let 0 < w ≤ 1, α > 1, and c > 0. For any
partition B with �ξ ≤ w, a sequence of successive v-merges
with merging factor ≥ α and sufficiently large merging term
β(w, α, c), merges all ξ-segments of B after ≤ 2ξ−1(w

α−1
+

4c+6
α

) non-favorable v-merges occur, with probability ≥ 1 −
e−c(ξ−1).

3.3.2 Proof of Theorem 3.1
For every partition B and 0 ≤ w ≤ 1 let low(B, w) be

the minimum j such that �≤j(B) ≥ w, and high(B, w) be
the maximum j such that �≥j(B) ≥ w. Consider, now, the

following variation of B, denoted B̂. B̂ is defined identically
to B̂, except for a slight modification in the segment selec-
tion protocol. Namely, in each v-split of B̂, applied to some
partition B, the segment selection protocol (as defined for
B) is repeatedly executed until it selects a segment of depth
≤ low(B,u). Similarly, in every v-merge the segment selec-
tion protocol is repeated until it selects a segment of depth
≥ high(B, v).

The modified v-splits and v-merges of B̂ are called respec-
tively r-splits and r-merges, and the number of times the
segment selection protocol of an r-split/r-merge is executed
is called the multiplicity of this r-split/r-merge. Finally, let

mult(B̂) denote the maximum multiplicity of all r-splits and

r-merges of B̂.5

Informally, to prove the theorem we first bound the proba-
bility that bf(B̂) is at most 2. Then, we bound the probabil-

ity of the event that all steps of B̂ have multiplicity 1. (Note

that this event implies that B̂ and B are indistinguishable if
they make the same random choices.) Finally, we combine
the above two results to bound the probability that bf(B) is
at most 2.

More precisely, let c = b ln 2, α+ = 7
2
c + 3(≈ 2.5b + 3),

α− = 4α+, u = c/α+, and v = c/α−. Let also β+ =
β+(u, α+, c) be large enough so that Lemma 3.4 holds for
w = u, α = α+ and β = β+, and let β− = β−(v, α−, c) be
large enough so that Lemma 3.5 holds for w = v, α = α−

and β = β−. Then, the following claims apply for the above
parameters.

Claim 3.1. Pr[bf(B̂) ≤ 2] ≥ 1 − 4b|B|/Nb.

Claim 3.2. Pr[mult(B̂) = 1 | bf(B̂) ≤ 2] ≥ 1− 4b|B|/Nb.

It is also easy to see (and prove formally using cou-

pling) that Pr[bf(B) ≤ 2] ≥ Pr[{mult(B̂) = 1} ∩ {bf(B̂) ≤
2}]. Thus, Pr[bf(B) ≤ 2] ≥ Pr[mult(B̂) = 1 | bf(B̂) ≤
2] · Pr[bf(B̂) ≤ 2], and using the claims above we obtain
Pr[bf(B) ≥ 2] ≥ 1 − 8b|B|/Nb = 1 − O(|B|/Nb).

To complete the proof of the theorem it remains to prove
the two claims. We start with the second one, whose proof
is shorter.

Proof of Claim 3.2. It is easy to verify that the prob-
ability an r-split of B̂ has multiplicity 1, given the partition
that it is applied to, is independent of all the other parti-
tions in B̂ (even the one that results from the execution of

the r-split). Now, consider an r-split of B̂ that is applied to
some partition B with bf(B) ≤ 2. The probability it has
multiplicity 1 is equal to the probability p a v-step (with
the same splitting factor/term) applied to B splits a seg-
ment of depth ≤ low(B, u). Using Lemma 3.2 with α = α+

and i = low(B,u) we get that p ≥ 1 − 1/2bν(B). Since
bf(B) ≤ 2, 2ν ≥ N/4, so, p ≥ 1 − (4/N)b. Using a similar
reasoning (and Lemma 3.3 instead of 3.2) we can show that
an r-merge has multiplicity 1 with probability ≥ 1− (2/N)b,

5The notation and terms we defined for virtual S&M-
processes and v-splits/v-merges are extended to apply for

B̂ and r-splits/r-merges in the obvious way.

for any possible sequence of partitions in B̂, provided it is
applied to a partition with balance factor ≤ 2. The claim
follows by combining the above two results.

Proof of Claim 3.1. Let B̂ = 〈Bi〉κi=0, and for every

0 ≤ j ≤ k ≤ κ, let B̂k
j = 〈Bi〉ki=j , πk

j be the event “all

partitions in B̂k
j have balance factor ≤ 2”, and σk

j be the

event “Bk is the only 〈u, v〉-safe partition in B̂k
j ”. We also

define events πκ
κ+1 and σκ

κ+1 to be always “true”. We will
show that for every 0 ≤ j ≤ κ, the following predicate holds.
S(j): for any 〈u, v〉-safe partition B, Pr[πκ

j+1 | Bj = B] ≥
1−4b(κ−j)/Nb. The claim, then, follows directly by setting
j = 0.

The proof is by induction on j. Obviously, S(κ) holds.
Assume S(k) holds for all j < k ≤ κ. We will show
that S(j) holds, as well. We have Pr[πκ

j+1 | Bj =

B] =
�κ

k=j+1 Pr[πk
j+1 ∩ σk

j+1 ∩ πκ
k+1 | Bj = B] =

�κ
k=j+1 Pr[πκ

k+1 | {Bj = B} ∩ πk
j+1 ∩ σk

j+1] · Pr[πk
j+1 ∩

σk
j+1 | Bj = B]. Applying the induction hypothesis we

obtain Pr[πκ
k+1 | {Bj = B} ∩ πk

j+1 ∩ σk
j+1] ≥ 1 − 4b(κ −

k)/Nb. Moreover, we will later show that
�κ

k=j+1 Pr[πk
j+1∩

σk
j+1 | Bj = B] ≥ 1 − 4b/Nb. Combining these facts we get

Pr[πκ
j+1 | Bj = B] ≥ 1 − 4b(κ − j)/Nb.

To complete the proof we need to show that for any 0 ≤
j ≤ κ, and any 〈u, v〉-safe partition B,

�κ
k=j+1 Pr[πk

j+1 ∩
σk

j+1 | Bj = B] ≥ 1 − 4/Nb. We have the following cases.

Case 1: bf(B) ≤ 1, or bf(B) = 2 and �ν(B) < �uν and
�ξ(B) < �vξ−1.

6 For the selected values of u and v, it is easy
to verify that a single r-split or r-merge leads to a 〈u, v〉-safe
partition with certainty, i.e., Pr[πj+1

j+1∩σj+1
j+1) | Bj = B] = 1.

Case 2(a): bf(B) = 2 and �ξ(B) = �vξ−1. Let k be the
smallest i > j such that (i) �ν(B)(Bi) = 0, or (ii) �ξ(Bi) =

�ξ(B), or (iii) i = κ. Assume B̂k
j involves only r-splits (and

no r-merges). Then, applying Lemma 3.4 with w = u, α =
α+ and β = β+, we obtain that, with probability ≥ 1 −
1/2bν ≥ 1 − (4/N)b, at most φ = 2ν(u

α+−1
+ 4c+6

α+) of the r-

splits during B̂k
j are non-favorable. Thus, with probability ≥

1− (4/N)b, for all partitions in B̂k
j , �≥ν+2 ≤ v +φ/2ν+1. By

substituting the values of α+, u, v, we obtain �≥ν+2 ≤ 1−u,
which implies that none of the r-splits splits a ξ-segment.
Thus, with probability ≥ 1− (4/N)b, πk

j+1 occurs and either
condition (i) is met and bf(Bk) = 1, or condition (iii) is met

(i.e., σk occurs, as well). Now, if B̂k
j involves also r-splits,

then all r-merges before φ non-favorable r-splits occur are
favorable. So, the previous analysis continues to apply with
the slight modification that condition (ii) may be met before
the other two, in which case we also have bf(Bk) = 1.

Case 2(b): bf(B) = 2 and �ν(B) = �uν . The analysis is
“symmetric” to that of the previous case, with the roles of
v-splits and v-merges switched. Lemma 3.5 is used instead
of 3.4.

4. SKETCH OF ANALYSIS OF WEIGHTED
S&M PROTOCOL

The analysis of the weighted version of the protocol is
similar to that of the unweighted version. Again we use an

6Let �xi = �x · 2i/2i, i.e., the largest integral multiple of
1/2i that is at most x; �x�i is defined similarly.

aggregated representation of the system state, and study the
transitions in this simplified (virtual) state space. This time,
however, the abstraction we use is slightly more involved
than the one we used in the analysis of the unweighed proto-
col (i.e., sorted binary partitions and virtual S&M-process),
since here we need to also take node weights into account.

More precisely, the information we maintain for each sys-
tem state is the distribution of the group segment lengths,
the distribution of group weights for groups associated with
longest group segments, when the total length of these seg-
ments is below some threshold, and the distribution of group
weights for groups associated with shortest group segments,
when the total length of these segments is below a thresh-
old.

As in the analysis of the unweighted protocol, we show
that in states with a large number of longest group seg-
ments joins add nodes to longest group segments almost
with certainty (for large enough system parameters). We
also bound the number of joins required until all longest
group segments are split when starting from states with a
small number of longest group segments. The additional
complication introduced by the fact that not all joins result
in group splits is overcome by assuming “adversarial” weight
selection, i.e., we assume nodes added in longest group seg-
ments have weight 1, while nodes added in other groups
have weight W . Thus, a longest group segment must be
selected W times before it is split, while a join in a non-
longest group segment always causes a group split. Analo-
gous statements are shown to hold for node leaves. Finally,
we combine these results in a manner similar to that in the
proof of Theorem 3.1.

This analysis shows that the Weighted S&M Protocol sup-
ports for the group segments the same load balancing guar-
antees the unweighted protocol provides about node seg-
ments.

5. REFERENCES
[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal,

D. Malkhi, and E. Pavlov. A generic scheme for
building overlay networks in adversarial scenarios. In
Proc. International Parallel and Distributed Processing
Symposium (IPDPS 2003), page 40.2, Apr. 2003.

[2] M. Adler, E. Halperin, R. Karp, and V. Vazirani. A
stochastic process on the hypercube with applications
to peer-to-peer networks. In Proc. 35th Annual ACM
Symposium on Theory of Computing (STOC 2003),
pages 575–584, June 2003.

[3] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced
allocations. SIAM Journal on Computing,
29(1):180–200, 1999.

[4] P. Fraigniaud and P. Gauron. The content-addressable
network D2B. Technical Report 1349, RI, University
of Paris-Sud, France, Jan. 2003.

[5] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao.
Distributed object location in a dynamic network. In
Proc. 14th ACM Symposium on Parallel Algorithms
and Architectures (SPAA 2002), pages 41–52, Aug.
2002.

[6] F. Kaashoek and D. Karger. Koorde: A simple
degree-optimal hash table. In Proc. 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03),
pages 98–107, Feb. 2003.

[7] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web. In Proc.
29th Annual ACM Symposium on Theory of
Computing (STOC 1997), pages 654–663, May 1997.

[8] D. Karger and M. Ruhl. Simple efficient load
balancing algorithms for peer-to-peer systems. In
Proceed. 16th ACM Symposium on Parallel Algorithms
and Architectures (SPAA 2004), pages 36–43, 2004.

[9] K. Kenthapadi and G. Manku. Decentralized
algorithms using both local and random probes for
P2P load balancing. In Proc. 17th ACM Symposium
on Parallel Algorithms and Architectures (SPAA ’05),
July 2005. (to appear).

[10] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a
scalable and dynamic emulation of the butterfly. In
Proc. 21st Annual Symposium on Principles of
Distributed Computing (PODC 2002), pages 183–192,
July 2002.

[11] G. Manku. Routing networks for DHTs. In Proc. 22nd
Annual Symposium on Principles of Distributed
Computing (PODC 2003), pages 133–142, July 2003.

[12] G. Manku. Balanced binary trees for ID management
and load balance in distributed hash tables. In Proc.
23rd Annual Symposium on Principles of Distributed
Computing (PODC 2004), pages 197–205, July 2004.

[13] G. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed hashing in a small world. In Proc. 4th
USENIX Symposium on Internet Technologies and
Systems (USITS ’03), pages 127–140, Mar. 2003.

[14] P. Maymounkov and D. Mazières. Kademlia: A
peer-to-peer information system based on the XOR
metric. In Proc. 1st International Workshop on
Peer-to-Peer Systems (IPTPS ’02), pages 53–65, Mar.
2002.

[15] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[16] M. Naor and U. Wieder. Novel architectures for P2P
applications: the continuous-discrete approach. In
Proc. 15th ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’03), pages 50–59, June
2003.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. ACM SIGCOMM 2001 Conference (SIGCOMM
2001), pages 161–172, Aug. 2001.

[18] S. Ratnasamy, I. Stoica, and S. Shenker. Routing
algorithms for DHTs: Some open questions. In Proc.
1st International Workshop on Peer-to-Peer Systems
(IPTPS ’02), pages 45–52, Mar. 2002.

[19] A. Richa, M. Mitzenmacher, and S. Sitaraman. The
power of two random choices: A survey of techniques
and results, Sept. 2000.

[20] A. Rowstron and P. Druschel. Pastry: scalable,
decentraized object location and routing for
large-scale peer-to-peer systems. In Proc. 18th
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), pages 329–350,
Nov. 2001.

[21] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer

lookup service for internet applications. In Proc. ACM
SIGCOMM 2001 Conference (SIGCOMM 2001),
pages 149–160, Aug. 2001.

APPENDIX

A. PROOF OF LEMMA 3.4
First, we prove three lemmata that bound the number

of v-splits required until the number of longest segments of
a given initial partition drops below some threshold, with
certain probability. The main lemma, then, follows by com-
bining the three results.

The first lemma computes a bound on the number of v-
splits required until �ν ≤ 1/ν. To prove this statement,
we observe that the probability that any of these v-splits is
favorable is greater or equal to the probability a v-split ap-
plied to the last partition reached is favorable; then, we use
Chernoff’s inequality to obtain the desired bound assuming
each v-split is favorable with that minimum probability.

Lemma A.1. Let 0 < w ≤ 1, α > 1, and b > 0. For
any partition B with �ν(B) ≤ w, a sequence of successive v-
splits with splitting factor ≥ α and sufficiently large splitting
term β(w, α, b) reaches a partition B′ with �ν(B′) ≤ 1/ν
after ≤ 2ν w

α−1
non-favorable v-splits occur, with probability

≥ 1 − e−bν.

Proof. Assume �ν(B) > 1/ν (otherwise, the lemma holds
trivially). If 2ν w

α−1
< 1 the lemma holds for β ≥ 9

8
(b +

1)α−1
w

> 9
8
(b + 1)2ν ≥ (b + 1)ν2, because then all v-splits

until the first partition with �ν ≤ 1/ν is reached are favor-

able with probability ≥ 1−2ν(1−1/ν)β ≥ 1−2νe−(b+1)ν ≥
1−e−bν . For the rest of the proof we assume that 2ν w

α−1
≥ 1.

Let m = nν(B) − �2ν/ν, i.e., m is the number of favorable
v-splits required to reach B′. Let also B0 = B, and Bi,
i ≥ 1, be the partition that results by applying to Bi−1 a
v-split with splitting factor ≥ α, and term ≥ β (to be de-
termined later). Finally, let Xi, i ≥ 1, be the indicator ran-
dom variable of event {�ν(Bi) = �ν(Bi−1)} ∩ {�ν(Bi−1) >
1/ν}. Then, for any integer k > 0, the probability it takes
≤ k non-favorable v-splits (or equivalently, ≤ m + k v-
splits) until the first partition with �ν ≤ 1/ν is reached

is equal to Pr[
�m+k

i=1 Xi ≤ k] = 1 − Pr[
�m+k

i=1 Xi > k].

We will bound Pr[
�m+k

i=1 Xi > k]. Note that Pr[Xi =
1 | X1, . . . , Xi−1] ≤ Pr[�ν(Bi) = �ν(Bi−1) | �ν(Bi−1) =

�1/ν�ν] ≤ (1 − 1/ν)αν+β ≤ e−α−β/ν = q.7 Thus, it fol-

lows (by use of coupling) that
�m+k

i=1 Xi is stochastically

smaller than the sum
�m+k

i=1 Yi, where Y1, . . . , Ym+k are in-
dependent Bernoulli trials with probability of success q. So,
Pr[

�m+k
i=1 Xi > k] ≤ Pr[

�m+k
i=1 Yi > k] = Pr[

�m+k
i=1 Yi >

(1 + δ)E{�m+k
i=1 Yi}], where E{�m+k

i=1 Yi} = q(m + k) and

δ + 1 = k
q(m+k)

. If k > qm
1−q

then δ > 0, and by us-

ing Chernoff’s bound [15] we obtain Pr[
�m+k

i=1 Xi > k] ≤
[eδ/(1 + δ)1+δ]q(m+k) ≤ [e/(1+δ)](δ+1)q(m+k) = [e/(1+δ)]k .

So, Pr[
�m+k

i=1 Xi > k] ≤ [eq(1+m/k)]k ≤ e(1−α−β/ν+m/k)k =

e[m−(α−1)k]− βk
ν . Let k = �2ν w

α−1
 (which is > 0 from the as-

sumption at the beginning of the proof). Then, k ≥ � m
a−1

 ≥
m−(a−1)

a−1
, so, m − (α − 1)k ≤ a − 1. If also β ≥ bν2+(a−1)ν

k
,

then Pr[
�m+k

i=1 Xi > �2ν w
α−1

] ≤ e(a−1)−[bν+(a−1)] = e−bν .

7See footnote 6.

Thus, for the lemma to hold it suffices to have β ≥ [b ν2

2ν +

(a − 1) ν
2ν]/� w

a−1
ν , or β ≥ (9

8
b + a − 1) 2(a−1)

w
.

The next lemma considers starting partitions with �ν ≤
1/ν, and counts the number of v-splits (with splitting factor
a) required until �ν ≤ 1

αν
. The proof is similar to that of

Lemma A.1, and it is omitted.

Lemma A.2. Let α > 1, and β, b > 0. For any partition
B with �ν(B) ≤ 1/ν, a sequence of successive v-splits with
splitting factor ≥ α and term ≥ β reaches a partition B′

with �ν(B′) ≤ 1
αν

after ≤ 2ν 2α
β

(b + 1) non-favorable v-splits

occur, with probability ≥ 1 − e−bν.

The third lemma applies for starting partitions with �ν ≤
1

αν
and bounds the number of v-splits until all ν-segments

are split. In this case we cannot use the same argument as
in the proof of the previous lemmata, since the probability
of a favorable split when �ν is close to 0 is very small (i.e.,
of order ν

2ν). Instead, we use an adaptation of the Coupon
Collector problem.

Lemma A.3. Let α, b > 0. For any partition B with
�ν(B) ≤ 1

αν
, a sequence of successive v-splits with splitting

factor ≥ α and sufficiently large splitting term β(α, b) splits

all ν-segments of B after ≤ 2ν 4(b+1)
α

non-favorable v-splits

occur, with probability ≥ 1 − e−bν.

Proof Sketch. Consider the slightly modified setting
where in each v-split we choose to split the longest of the
probed segments (instead of the rightmost segment whose
length is equal to that of the longest segment probed). If
more than one longest segments are probed, then one of
them is chosen at random. This setting is (stochastically)
equivalent to the original in terms of the number of v-splits
required until all ν-segments are split. Consider now an ad-
ditional modification to the segment selection protocol of the
original process. If at least one point ≤ 1

aν
is selected, then

we split the segment containing a (new) randomly selected
point in the range [0, 1

αν
). (Otherwise the standard selec-

tion protocol is applied). The number T of v-splits required
in the last setting until all ν-segments are split is stochas-
tically larger than in the first one and, thus, stochastically
larger than in the original. We bound T as follows. Fix a
ν-segment of B. The probability the segment is split during
a v-split is ≥ αν

2ν ·�1−(1− 1
αν

)αν
� ≥ αν

2ν ·(1− 1
e
). Using Cher-

noff’s bound we can show that the segment is still not split

after 2ν 4(b+1)
α

v-splits with probability ≤ e−(b+1)ν . Thus,
the probability at least one ν-segments is not split within the

above number of v-splits is Pr[T ≥ 2ν 4(b+1)
α

] ≤ e−bν .

We are now ready to prove our main lemma.

Proof of Lemma 3.4. Consider a sequence of v-splits
with splitting factor ≥ α and term ≥ β (to be determined
later) that starts from partition B. Let r12

ν be the number
of non-favorable v-splits until a partition B1 with �ν(B1) ≤
1/ν is reached. Then, using Lemma A.1 with b = c + 3, we
obtain that for β ≥ some sufficiently large β1(w, α, c + 3),
Pr[r1 ≤ w

α−1
] ≥ 1 − e−3e−cν . Assuming B1 is reached,

let r22
ν be the number of non-favorable v-splits until a

partition B2 with �ν(B2) ≤ 1
αν

is reached. Then, using

Lemma A.2 with b = c + 3 and β ≥ 2α2(c + 4) = β2

we obtain that Pr[r2 ≤ 1/α] ≥ 1 − e−3e−cν . Finally, if

r32
ν is the remaining number of non-favorable v-splits un-

til all ν-segments are split, then using Lemma A.3 with
b = c + 1/4 we obtain that for β ≥ some sufficiently large

β3(α, c + 1/4), Pr[r3 ≤ 4c+5
α

] ≥ 1 − e−1/4e−cν . Combining
the above probabilities, we get that for β = max{β1, β2, β3},
Pr[r1 + r2 + r3 ≤ w

α−1
+ 4c+6

α
] ≥ 1 − e−cν .

