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Abstract. We devise efficient gossip-based protocols for some funda-
mental distributed tasks. The protocols assume an n-node network sup-
porting point-to-point communication, and in every round, each node ex-
changes information of size O(logn) bits with (at most) one other node.
We first consider the renaming problem, that is, to assign distinct IDs
from a small ID space to all nodes of the network. We propose a renaming
protocol that divides the ID space among nodes using a natural push or
pull approach, achieving logarithmic round complexity with ID space
{1, . . . , (1 + ε)n}, for any fixed ε > 0. A variant of this protocol solves
the tight renaming problem, where each node obtains a unique ID in
{1, . . . , n}, in O(log2 n) rounds.
Next we study the following sorting problem. Nodes have consecutive IDs
1 up to n, and they receive numerical values as inputs. They then have
to exchange those inputs so that in the end the input of rank k is located
at the node with ID k. Jelasity and Kermarrec [20] suggested a simple
and natural protocol, where nodes exchange values with peers chosen
uniformly at random, but it is not hard to see that this protocol requires
Ω(n) rounds. We prove that the same protocol works in O(log2 n) rounds
if peers are chosen according to a non-uniform power law distribution.

Keywords: renaming, sorting, gossip protocols, epidemic protocols, dis-
tributed algorithms, randomized algorithms, network algorithms

1 Introduction

Today’s highly distributed systems are based on networks of massive scale. Such
networks often suffer from link and node failures, and from limited computa-
tional capabilities of their nodes. For example, peer-to-peer and mobile ad-hoc
networks are inherently highly dynamic, with nodes joining and leaving the sys-
tem frequently; or sensor networks are often used in harsh environments leading
to communication disruptions, and their nodes have little computational power.
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Gossip (or epidemic) protocols have emerged as an important communica-
tion paradigm for these networks. In gossip protocols nodes repeatedly contact
random neighbors and exchange small amounts of information in order to dis-
tribute and gather information. Such protocols are usually simple, scalable, and
fault-tolerant. They generally offer small communication overhead and modest
demands on the nodes’ storage space and computational power. Even though
they only provide probabilistic guarantees, the probability of failure typically
converges quickly to 0 with the time the protocol is run.

The classical problem solved with gossip protocols is rumor spreading [10] in
the random phone-call model [22]. In this model, nodes exchange information in
synchronous parallel communication rounds, using either push, pull, or push-pull
communication with peers chosen uniformly at random among all nodes (or just
among the node’s neighbors, if the network topology is not a complete graph).
Such rumor spreading protocols have been shown to be very efficient, requiring
only a logarithmic number of rounds for the complete graph and various other
topologies [22, 19, 14, 18, 7, 12, 13].

Later, gossip protocols have been used to solve node aggregation problems [6,
23, 28, 8]. Here, the goal is to compute the value f(x1, . . . , xn) of some aggrega-
tion function f (e.g., sum, average, or extrema), where xi is an input to the i-th
node. Most gossip protocols for aggregation need only poly-logarithmic many
rounds in the complete graph before nodes know the value of the aggregation
function (with sufficient accuracy) with high probability. In the design of gossip
protocols it is often assumed that any given node can in each round exchange
information with a peer selected uniformly at random from all nodes, indepen-
dently of the network topology. In practice [17], this is usually realized by a
peer-sampling service [21], which can be singled out from the application.

In the present paper, we study practical and fundamental problems that
cannot be expressed by aggregation functions. First, we study the problem of re-
naming. Here, every node must obtain a unique ID from an ID space {1, . . . ,m}
of size m ≥ n. The renaming problem has been studied extensively in the dis-
tributed computing literature, especially in the areas of shared memory and
message passing (see, e.g., [2] and references therein). Many distributed tasks
can only be solved if the participants have unique IDs, and often the complex-
ity of algorithms depends on the size of the domain from which those IDs are
chosen. For example, an algorithm to construct overlay networks in peer-to-
peer networks proposed by Angluin et al. [3] has expected round complexity
O(W log n), where W is the bit-length of node IDs. Another application is the
unique assignment of a small number of resources (e.g., servers or printers) to
processors (nodes). Nodes can also use their IDs as “tags” to mark their presence
in some data structure (e.g., a priority queue), so that a node can distinguish
whether itself or some other node has placed the tag [4]. We solve both, the loose
renaming problem, where m = (1 + ε)n for some constant ε > 0, and the tight
renaming problem, where m = n, with simple protocols that have respectively
O(log n) and O(log2 n) round complexity with high probability, and logarithmic
message-size complexity. Both protocols assume that each node can contact a
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uniform random node in a round. The tight renaming protocol assumes further
that a node can contact an arbitrary node directly, if it knows its network address
(see Section 1.1). Note that non-gossip based algorithms, e.g., algorithms based
on leader election protocols, can be used to solve tight renaming in O(log n)
time. But contrary to our gossip based solution, such algorithms require “exact”
communication, and tolerate no or almost no transmission faults.

Then we consider the problem of sorting n input values x1, . . . , xn, each one
given to a distinct node. Here we assume that the n nodes have consecutive IDs
in {1, . . . , n}. Nodes must exchange their input values in multiple communication
rounds, such that in the end the value of rank k is located at the node with ID
k. Jelasity and Kermarrec [20] proposed the following simple gossip protocol for
this problem: In each round, a node contacts a peer chosen uniformly at random,
and both nodes exchange their values, if they are out of order with respect to
their IDs. However, this protocol may need in expectation Ω(n) rounds until all
input values are sorted. For example, suppose node 1 holds value 2 and node 2
holds value 1, and each node i ≥ 3 holds value i. Then it takes Ω(n) rounds in
expectation before nodes 1 and 2 contact each other and resolve their inversion.
(There are other input instances for which it takes up to Ω(n log n) rounds with
high probability before all input values are sorted.) We show that the round
complexity drops to O(log2 n), if peers are not chosen uniformly at random, but
rather from a power law distribution: A node with ID x chooses a peer with ID
y with a probability inversely proportional to |x− y|. (A similar distribution for
sampling peers is used in Kleinberg’s small-world graph routing scheme [26, 25],
and also in the spatial gossip algorithms proposed by Kempe et al. [24].)

Our protocols for renaming and sorting are very simple and natural, how-
ever, their analysis is non-trivial and is based on potential function arguments.
Further, the protocols can tolerate random transmission faults, similar to the
standard rumor spreading protocols [15]. I.e., if communication channels fail to
be established between parties independently with a probability of q, then the
round complexity increases only by a factor of at most 1/(1 − q), which is the
expected number of trials before a connection is established.

1.1 Model and Practical Considerations

We assume that the network supports the abstraction of point-to-point commu-
nication. That is, each node has a unique network address from some arbitrary
domain, and node u can contact any other node v, if u knows v’s address. Nodes
do not know the addresses of other nodes in advance, but they can find out during
the course of the protocol. When two nodes have established a communication
channel, both can reliably exchange information for one round.

We assume further that the abstraction of a random peer-sampling service
is supported. Each time this service is invoked it returns a node chosen inde-
pendently and uniformly at random among all nodes. In a large-scale dynamic
system it is unrealistic that nodes maintain complete tables of network addresses
of peers, from which they can sample at random. To overcome this obstacle, var-
ious distributed designs of peer-sampling services have been proposed and stud-
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ied experimentally by the systems community (see, e.g., [21]). The use of such
services has become a standard practice in the implementation of gossip-based
systems [17]. This service is often implemented by building and maintaining a
random overlay network, that changes over time by having nodes exchange ran-
dom fractions of their list of neighbors with other (randomly selected) neighbors.
For related theoretical results on this problem see, e.g., [16, 9].

Our loose renaming algorithm relies only on the assumption that in each
round a node can contact some uniformly random node. The tight renaming
algorithm has the additional requirement that a node can contact a node by its
address. Initially, nodes do not know the address of any other node, but a node
can add its own address to a message (or the address of another node it knows
of), thus allowing the recipients of that message to contact the node directly in
future rounds. We stress that addresses may come from an arbitrary large space
that may be much larger than n, thus they cannot be used themselves as IDs.

For the sorting algorithm we assume that nodes already have IDs 1 up to
n. Similar to the loose renaming algorithm, the sorting algorithm does not use
network addresses directly. However, it requires a non-uniform peer-sampling
service, which allows each node with ID i to choose a random node with ID
j according to a probability distribution that depends on |i − j|. Precisely, the
probability of choosing j needs to be inversely proportional to |i−j|. A DHT-like
overlay network can be used to provide this service: By overlaying the network
with a Chord topology [29], peer-sampling with the required power-law distribu-
tion can be achieved in such a way that it does not increase the overall asymptotic
round complexity of our sorting protocol.3 If the non-uniform peer-sampling ab-
straction is provided by other means, then no overlay network is required for the
sorting protocol.

In order to solve the sorting problem, one could also follow a different ap-
proach that is not gossip-based: One can construct a (perfect) Chord overlay
on top of the network, and then implement a sorting network, where each com-
parator is replaced with a link between two peers in the network. If one uses
a Bitonic sorter [5], the comparators correspond to Chord links, and thus no
lookups in Chord are necessary. This would yield a sorting algorithm with the
same round complexity as ours. (One could even use an AKS [1] sorting network
to obtain, with some additional tricks, a round complexity of O(log n), but AKS
networks are considered impractical due to the extremely large constant fac-
tors [27].4) Most sorting networks, however, provide no inherent fault-tolerance
(with the exception of the AKS sorting network). Our gossip-based algorithm is
naturally fault-tolerant in the sense that it still works without an increase in the

3 This requires nodes to sample multiple peers at the beginning of the protocol and
leads to a poly-logarithmic increase in the message size complexity. The details can
be found in Appendix A.

4 In our analysis of the sorting algorithm we have not tried to optimize the constant
multiplicative factor in front of log2 n. This analysis gives an upper bound of roughly
100 on this constant, and a more careful analysis yields a bound of roughly 25. We
believe, however, that the actual value is much smaller.
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asymptotic round complexity, if any two peers fail to establish a communication
with constant probability. By repeating comparators (cf. [30]) one can also make
sorting networks fault-tolerant, but the repetition of comparators increases the
depth of the sorting network (and thus the round complexity in our application)
by a factor of Ω(log n) in order to allow for a constant failure probability for
each communication/comparator. Note also that we only need to use an overlay
network to provide the non-uniform peer sampling service, while such an overlay
seems inherent for a sorting network based approach.

To bound the message-size complexity of our protocols, we assume that
each network address is a W -bit string, where W = O(log n). If W is super-
logarithmic, then the complexity increases by an additive term of O(W ).

We present our protocols in terms of synchronous rounds. The synchrony
assumption is not really necessary for the definition of the protocols. Instead,
nodes may simply follow their own clocks in deciding when to initiate connec-
tions. We expect that the running time of our protocols should not be affected,
as long as (most) nodes take steps at roughly the same rate, e.g., in the stan-
dard asynchronous model where each node takes steps at times determined by
a poisson process with a fixed rate for all nodes.

2 Renaming Protocols

2.1 Loose Renaming

We present an algorithm that assigns IDs to n nodes from the integer interval
[1..(1 + ε)n], for some ε > 0; ε can be a function of n, but the running time
increases linearly with 1/ε. At any time, each node stores zero or more IDs, and
each ID is stored at exactly one node. If node u has one or more IDs at a given
time, then one of them is permanently stored by u, and is the ID assigned to
u by the algorithm, while the remaining IDs, if any, are u’s free IDs. The free
IDs of a node are consecutive, and thus they can be stored using at most 2 log n
bits. We present two versions on the algorithm: a pull algorithm, and a push
algorithm.

In round 0, a starting node sends the ID interval [1..(1 + ε)n] to itself.5 If
node u receives interval [a..b] in round t ≥ 0, and it has not received any IDs
prior to that, then ID a is assigned to u. Further, if a 6= b then the interval
[a+ 1..b] of remaining IDs will be the free IDs of u for the next round.

In the pull version of the algorithm, in every round t ≥ 1, each node u that
has no free IDs (u may or may not have been assigned an ID yet) sends a request
to a random node v. If v has an interval [a..b] of free IDs, then it chooses an
arbitrary node u′ among the nodes from which it received requests in round t,
and sends to u′ half of [a..b], precisely, the interval [d(a+ b)/2e..b]. If a 6= b then
v is left with the interval [a..d(a + b)/2e − 1] of free IDs, while if a = b (i.e., u
had only one free ID) then v has no free IDs in the next round.

5 The starting node can be chosen randomly via a gossip-based sampling procedure
and the network size n can also be estimated via gossip (see, e.g., [23]).
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The push algorithm is symmetric: In round t ≥ 1, each node u that has at
least one free ID sends half of its interval [a..b] of free IDs, i.e., [d(a+b)/2e..b], to
a randomly chosen node v. If v has no free IDs at the time, then it accepts (an
arbitrary) one of the ID intervals it receives in round t, and rejects the remaining
ones; if v already has some free IDs then it rejects any ID intervals it receives. If
the interval that u sent is rejected, then u keeps the whole interval [a..b] of free
IDs, thus no IDs are ‘lost’.

From the analysis of the pull protocol presented below, it follows that a node
which has been assigned an ID but has no free IDs may as well stop sending
requests after the first t1 rounds, for some t1 = Θ(log n), without affecting
the performance guarantees of the protocol. Then, only nodes with no assigned
IDs continue to send requests. This offers a natural stopping condition for the
protocol. The push algorithm, on the other hand, does not have a natural way
to determine when nodes that have free IDs should stop trying to push those
IDs. A drawback of pull is that nodes must be notified when the protocol starts
so that they can begin to send pull request.

Theorem 1. The loose renaming protocol described above for distributing a set
of (1 + ε)n IDs to n nodes guarantees that all nodes acquire IDs after at most

O
( (1+ε)n
εn+1 ·log n

)
rounds with probability 1−n−β for any ε ≥ 0 and any fixed β > 0.

Proof. We prove the theorem for the pull algorithm. The proof for push is almost
the same and is omitted. We start with an overview of the proof. We define a
potential function Φt, which measures the unbalance in the distribution of free
IDs among nodes, and we show that Φt drops by a constant factor per round
on average, as long as most nodes have 0 or 1 IDs. On the other hand, when
most nodes have 2 or more IDs, we observe that the number of nodes with 0
IDs decreases by a constant factor on average per round. We combine these two
results to show that w.h.p. in O(log n) rounds either all nodes have acquired IDs
or the free IDs are fairly balanced among nodes. In the latter case we bound
the additional number of steps until all nodes obtain IDs, by looking at a single
node and bounding the steps until it contacts some node that has free IDs.

Next we give the detailed proof. Let Xu,t denote the number of IDs that
node u has after round t (including its assigned ID). Let Xt = {Xu,t}u be the
vector of all Xu,t for a given round t. Let Nk

t = |{u : Xu,t = k}| be the number

of nodes that have exactly k IDs after round t, and let N≥kt = |{u : Xu,t ≥ k}|
and N≤kt = |{u : Xu,t ≤ k}|.

We define the potential Φu,t of node u after round t, as Φu,t = (Xu,t − 2)2 if
Xu,t ≥ 3, and Φu,t = 0 if Xu,t ≤ 2. The (total) potential after round t is then

Φt =
∑
u

Φu,t =
∑

u : Xu,t≥3

(Xu,t − 2)2.

The next lemma bounds the expected potential difference in a single round.

Lemma 1. E[Φt+1 | Xt] ≤ Φt
(

1− N
≤1
t

4n

)
.
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Proof. Fix Xt, and let u be a node with Xu,t ≥ 3. Suppose that u receives a
request in round t+1 to share its Xu,t−1 free IDs, and thus sends d(Xu,t−1)/2e
of them to some node v with Xv,t ∈ {0, 1}. We show that

Φu,t+1 + Φv,t+1 ≤ Φu,t/2. (1)

We have

Xu,t+1 = Xu,t − d(Xu,t − 1)/2e =

{
Xu,t/2 + 1/2, if Xu,t is odd;

Xu,t/2, if Xu,t is even; and

Xv,t+1 = Xv,t+d(Xu,t−1)/2e ≤ 1+d(Xu,t−1)/2e =

{
Xu,t/2 + 1/2, if Xu,t odd;

Xu,t/2 + 1, if Xu,t even.

It follows that if Xu,t is odd (recall also that Xu,t ≥ 3), then

Φu,t+1 + Φv,t+1 ≤ (Xu,t/2 + 1/2− 2)2 + (Xu,t/2 + 1/2− 2)2

= (Xu,t − 3)2/2 ≤ (Xu,t − 2)2/2 = Φu,t/2;

and, similarly, if Xu,t is even (and thus Xu,t ≥ 4) then

Φu,t+1 + Φv,t+1 ≤ (Xu,t/2− 2)2 + (Xu,t/2 + 1− 2)2

= (Xu,t − 4)2/4 + (Xu,t − 2)2/4 ≤ (Xu,t − 2)2/2 = Φu,t/2.

Thus, in both cases, Eq. (1) holds. We can now bound the total potential, Φt+1.
From (1), if a node u with Xu,t ≥ 3 shares its free IDs with some node v then
Φu,t+1+Φv,t+1 ≤ Φu,t/2, while if u does not share its free IDs then Φu,t+1 = Φu,t.
Further, all other nodes have zero potential. Therefore, if Yu is a 0/1 random
variable with Yu = 1 iff u shares its free IDs in round t+ 1, we have

Φt+1 ≤
∑

u : Xu,t≥3

(
YuΦu,t/2 + (1− Yu)Φu,t

)
=

∑
u : Xu,t≥3

(1− Yu/2)Φu,t.

Taking the expectation (recall that we have fixed Xt), yields

E[Φt+1] ≤
∑

u : Xu,t≥3

(1−E[Yu]/2)Φu,t. (2)

Since E[Yu] is the probability that u receives a request in round t + 1 from at

least one of the N≤1t nodes v with Xv,t ≤ 1, we have

1−E[Yu] = (1− 1/n)
N
≤1
t ≤ e−N

≤1
t /n ≤ 1−N≤1t /n+(N≤1t /n)2/2 ≤ 1−N≤1t /(2n).

Thus, E[Yu] ≥ N≤1t /(2n). Applying this to (2) completes the proof of Lemma 1.
ut

Next we bound the expected drop in a round of the number N0
t of nodes that

have no IDs.
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Lemma 2. E[N0
t+1 | Xt] ≤ N0

t

(
1− N

≥2
t

en

)
.

Proof. Fix Xt, and suppose that Xv,t = 0 for some node v. In order to have
Xv,t+1 > 0 it suffices that v sends its request in round t + 1 to some node u
with Xu,t+1 ≥ 2, and u does not receive a request from any other node. The

probability that v sends its request to some u with Xu,t+1 ≥ 2 is N≥2t /n; and
the probability that no node sends a request to the same node as v is

(1− 1/n)N
≤1
t −1 ≥ (1− 1/n)n−1 ≥ 1/e.

Thus, the probability of Xv,t+1 > 0 is at least N≥2t /(en). From the linearity of

expectation then we get E[N0
t −N0

t+1] ≥ N0
t N
≥2
t /(en), which proves Lemma 2.

ut

Consider now the product Zt := ΦtN
0
t . From Lemma 1 and the fact that

N0
t+1 ≤ N0

t , it follows

E[Zt+1 | Xt] ≤ N0
t ·E[Φt+1 | Xt] ≤ N0

t Φt

(
1− N

≤1
t

4n

)
,

and similarly, from Lemma 2 and the fact that Φt+1 ≤ Φt,

E[Zt+1 | Xt] ≤ Φt ·E[N0
t+1 | Xt] ≤ ΦtN0

t

(
1− N

≥2
t

en

)
.

Thus,

E[Zt+1 | Xt] ≤ Zt
(

1−max
{
N
≤1
t

4n ,
N
≥2
t

en

})
,

and since N≤1t + N≥2t = n, we can easily compute that max
{
N
≤1
t

4n ,
N
≥2
t

en

}
≥

1
e+4 ≥

1
7 . Therefore, we have that E[Zt+1 | Xt] ≤ (6/7)Zt. It follows E[Zt] ≤

(6/7)tZ0 ≤ (6/7)tn3. For

t1 = (β + 3) log7/6 n+ log7/6 2 = O(log n), (3)

we obtain then that E[Zt1 ] ≤ n−β/2. And by Markov’s Inequality, Pr(Zt1 > 0) =
Pr(Zt1 ≥ 1) ≤ n−β/2. Thus, we have that N0

t1 = 0 or Φt1 = 0, with probability
at least 1− n−β/2.

Suppose first that ε > 1. Then Φt1 > 0, for otherwise, no node has more than
two IDs after round t1, which is not possible as there are (1 + ε)n > 2n IDs in
total. It follows that N0

t1 = 0 with probability 1 − n−β/2, and thus all nodes

obtain IDs in t1 = O(log n) = O
(

(1+ε)n
εn+1 · log n

)
rounds; this proves the theorem.

For the remainder of the proof we assume that ε ≤ 1. Suppose that Φt1 = 0.
We will compute a t2 such that N0

t1+t2 = 0 with probability 1 − n−β/2. Since
Φt1 = 0, no node has more that 2 IDs after round t1. It follows thatN2

t = εn+N0
t ,

for all t ≥ t1. If Xv,t = 0 for some node v and round t ≥ t1, then the probability
of Xv,t+1 > 0 is bounded from below by the probability of the event that in
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round t + 1, v sends a request to one of the N2
t ≥ εn + 1 nodes with free IDs,

and this node does not receive any other request. This probability is at least

εn+1
n ·

(
1− 1

n

)N≤1
t −1 ≥ εn+1

n ·
(
1− 1

n

)n−1 ≥ εn+1
en .

It follows that for any node v, the probability of Xv,t1+k = 0 is at most
(
1 −

εn+1
en

)k ≤ e−k(εn+1)/(en). For

t2 = ((β + 1) lnn+ 1)en/(εn+ 1) = O(n log n/(εn+ 1)),

we obtain then that Xv,t1+t2 = 0 with probability at most n−β/(2n). Hence,
by the union bound, we have that Xv,t1+t2 6= 0 for some v (i.e., N0

t1+t2 6= 0)
with probability at most n−β/2. This probability is conditional on Φt1 = 0, i.e.,
formally, Pr(N0

v,t1+t2 6= 0 | Φt1 = 0) ≤ n−β/2. It follows

Pr(N0
v,t1+t2 6= 0 ∧ Φt1 = 0) = Pr(N0

v,t1+t2 6= 0 | Φt1 = 0) · Pr(Φt1 = 0) ≤ n−β/2.

And since we showed earlier that Pr(Φt1N
0
t1 6= 0) ≤ n−β/2, we get

Pr(N0
v,t1+t2 6= 0) = Pr(N0

v,t1+t2 6= 0∧Φt1 = 0)+Pr(N0
v,t1+t2Φt1 6= 0) ≤ n−β . (4)

Finally, observing that t1 + t2 = O
(

log n+ n logn
εn+1

)
= O

(
(1+ε)n
εn+1 · log n

)
, com-

pletes the proof of Theorem 1. ut

2.2 Tight Renaming

The previous protocol cannot be used to solve efficiently tight renaming, in which
the size of the ID space is exactly n: If there are just n IDs, then once there are
only few nodes left that have not received an ID, there are also only few nodes
that still have a non-empty interval of free IDs. Then it takes a long time, until a
node that needs an ID contacts one with a free ID. We solve the tight renaming
problem by adding a second phase to the loose renaming algorithm. In this phase,
any node that has not been assigned an ID yet, periodically broadcasts (via
rumor spreading) “requests” for an ID to the network; the requests contain the
network address of the node. When requests of different nodes “meet” at some
node, only one of them (the most recent one) survives. Thus, not all requests
reach all nodes, but each node receives at least some requests. This approach
ensures that message sizes and the information that each node stores is just
O(log n) bits. Nodes that receive requests in this second phase and have free IDs
respond by sending to the requesting node some of their free IDs. (They can do
so, as the request message contains the address of the requesting node.)

More precisely, in the first phase, nodes run the algorithm described in the
previous section for t1 = Θ(log n) rounds.6 In the second phase, a node u that has
not acquired an ID yet, generates a request every O(log n) rounds and sends this

6 This is the same t1 as that defined in Eq. (3).
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request to itself. The request contains u’s network address and an age counter
(which increases in each round). Each node keeps only the most recently gener-
ated request it has received, choosing arbitrarily among requests with the same
age. In every round, each node holding a request sends a copy of it to a randomly
chosen node. When a node v that has free IDs receives a request generated by
node u, it responds by sending to u directly half of its interval of free IDs (sim-
ilar to the loose renaming algorithm). Node u accepts the interval if it has not
already acquired an ID from some other node that also responded to its requests,
or rejects the offer otherwise.

We stress that is not required for different nodes to generate their requests in
the same round, or with the same frequency. The only requirement is that each
node generates a new request every O(log n) rounds for as long as it has no IDs.

Theorem 2. The tight renaming protocol described above for distributing IDs
to n nodes guarantees that all nodes acquire IDs after at most O(log2 n) rounds
with probability 1− n−β for any fixed β > 0.

Proof. We will use the same notation as in the proof of Theorem 1, namely, Xu,t,
Xt, N

k
t , and Φt. Recall that for tight renaming the ID space has size exactly n.

We have shown in the proof of Theorem 1 that with probability at least
1− n−β/2, we have N0

t1 = 0 or Φt1 = 0.
Suppose that Φt1 = 0, and thus no node has more than 2 IDs after round t1.

We will lift this assumption only at the end of the proof. Suppose that node u
has no ID yet after round t ≥ t1, and it sends a request in round t+ 1. We show
that with some constant probability, either u acquires an ID by round t+ log n,
or the number of nodes with no IDs drops by a constant factor by that time.

Lemma 3. Let t ≥ t1. If a node u with Xu,t = 0 sends a request in round t+ 1,
then with some probability p = Ω(1) we have Xu,t′ 6= 0 or N0

t′ ≤ N0
t /2, for

t′ = t+ log(n/N0
t ) + 1.

Proof. Fix Xt. Let Ai, for i ≥ 0, denote the set of nodes that have received u’s
request and still have it at the end of round t+i. Recall that nodes keep only the
most recently generated request they have received. Let Bi be the set of nodes
which, at the end of round t + i, have a request generated after round t by a
node other than u. Further, let ai = |Ai| and bi = |Bi|. Then,

ai ≤ 2i−1 and bi ≤ (N0
t − 1)2i−1.

Next we show for i = log(n/N0
t ) that ai = Ω(2i) = Ω(n/N0

t ) with constant
probability. Further, we show that if ai = Ω(n/N0

t ) and N0
t+i ≥ N0

t /2 and also
u has still no ID after round t+ i, then in the next round u acquires an ID with
probability Ω(1). The claim then follows.

To show the lower bound on ai, we first bound E[ai]. Given ai and bi, we
bound the conditional expectation of ai+1 as follows: The expected number of
nodes v /∈ Ai∪Bi that receive u’s request (and possibly other requests) in round
t+ i+ 1 is at least ai(n− 2ai − bi)/n (we subtract 2ai instead of ai to account
for collisions). The probability that a given one of these node does not receive
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a request pushed by a node in Bi in this round is (1 − 1/n)bi ≥ (1 − bi/n).
Combining these yields

E[ai+1 | ai, bi] ≥ (ai + ai(n− 2ai − bi)/n) · (1− bi/n)

= 2ai(1− ai/n− bi/2n) · (1− bi/n)

≥ 2ai(1− ai/n− 3bi/2n)

≥ 2ai(1− 3N0
t 2i−2/n),

where for the last relation we used the upper bounds for ai and bi we mentioned
earlier. Applying the above inequality repeatedly and using that a1 = 1 gives

E[ai] ≥ 2i−1
(

1− 3N0
t

i−1∑
j=1

2j−2/n

)
≥ 2i−1

(
1− 3N0

t 2i−2/n
)
.

For i∗ = log(n/N0
t ) we get E[ai∗ ] ≥ 2i

∗−1 (1− 3/4) = 2i
∗−3, and by Markov’s

Inequality,

Pr(ai∗ ≤ 2i
∗−4) = Pr(2i

∗−1 − ai∗ ≥ 2i
∗−1 − 2i

∗−4) ≤ 2i
∗−1 − 2i

∗−3

2i∗−1 − 2i∗−4
= 6/7.

Next suppose that ai∗ ≥ 2i
∗−4 = n/(24N0

t ) and N0
t+i∗ ≥ N0

t /2. The condi-
tional probability of Xt+i∗+1 6= 0 is lower-bounded by the probability that some
node from Ai∗ chooses some node v with free IDs (there are N2

t+i∗ = N0
t+i∗ ≥

N0
t /2 such nodes) and at the same time no other node chooses v. Thus, this

probability is at least(
1−

(
1− (N0

t /2)/n
)n/(24N0

t )
)

(1− 1/n)n−1 ≥
(

1− e1/2
5
)

(1/e) ≥ (1/26)(1/e).

We can now use the above bounds to prove the lemma. Define the events:
X = (Xu,t′ 6= 0), N = (N0

t+i∗ < N0
t /2), and A = (ai∗ ≥ 2i

∗−4). We have shown
that Pr(A) ≥ 1 − 6/7, and Pr(X | ¬N ∧ A) ≥ (1/26)(1/e). The probability we
want to lower-bound is

Pr(X ∨N ) = Pr(N ) + Pr(X ∧ ¬N )

≥ Pr(N ∧A) + Pr(X ∧ ¬N ∧A)

= 1 · Pr(N ∧A) + Pr(X | ¬N ∧ A) · Pr(¬N ∧A)

≥ Pr(X | ¬N ∧A) ·
(

Pr(N ∧A) + Pr(¬N ∧A)
)

= Pr(X | ¬N ∧A) · Pr(A)

≥ (1/26)(1/e)(1− 6/7).

This completes the proof of Lemma 3. ut

We can now finish the proof of the theorem as follows. Assume that Xu,t1 = 0,
and let r0 < r1 < . . . be the rounds after which u is supposed to send requests
(if it has not yet an ID by that round, i.e., Xu,ri = 0). W.l.o.g. we assume
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ri+1−ri ≥ log n, otherwise we can achieve that by omitting some of these times.
Further, from the algorithm we have ri+1 − ri = O(log n).

Define the random variables Yi, i ≥ 0, such that Yi = N0
ri if Xu,ri = 0, and

Yi = 0 if Xu,ri 6= 0. Note that Yi 6= 0 iff Xu,ri = 0. From Lemma 3 it follows

E[Yi+1 | Yi] ≤ pYi/2 + (1− p)Yi = (1− p/2)Yi;

and thus E[Yi] ≤ (1 − p/2)iN0
r0 . Choosing i∗ = (2/p)

(
(β + 1) lnn + 1

)
gives

E[Yi∗ ] ≤ n−β−1/2, and from Markov’s Inequality, Pr(Yi∗ 6= 0) = Pr(Yi∗ ≥ 1) ≤
n−β−1/2. It follows that for

t∗ = ri∗ = t1 +O(i∗ log n) = t1 +O(log2 n) = O(log2 n)

we have Pr(Xu,t∗ = 0) ≤ n−β−1/2, as we observed earlier that Yi 6= 0 iff Xu,ri =
0. From this and the union bound over all u, it follows that Pr(N0

t∗ 6= 0) ≤
n−β/2. Recall that we have assumed Φt1 = 0. But since Pr(Φt1N

0
t1 6= 0) ≤

n−β/2 as we saw at the beginning, we can obtain similar to Eq. (4) that the
unconditional probability that N0

t∗ 6= 0 is bounded by n−β . This completes the
proof of Theorem 2. ut

3 Sorting Protocol

For the sorting problem we assume that nodes have consecutive IDs, 1, . . . , n,
and each node has an input value from some totally ordered domain. W.l.o.g. we
assume that the input values are numbers, and nodes have distinct inputs. We
will say ‘node i’ to refer to the node with ID i. The goal is to redistribute the
values to nodes (one value per node) so that for each i, node i stores the value
of rank i, that is, the i-th smallest one among the input values.

In every round of the protocol, each node chooses to be active independently
with probability 1/2. Each active node i picks a node at random, choosing node
j with probability proportional to 1/|i−j|. If a non-active node j is contacted by
one or more active nodes, then it chooses one of them, say node i, and the two
nodes compare their values. Let Xi and Xj be the values of i and j respectively,
at the time. If (i − j)(Xi − Xj) < 0 then the two nodes swap their values;
otherwise, the do nothing. If an active node is contacted by another active node,
it does not respond to it.

Theorem 3. The sorting protocol described above sorts the inputs of all n nodes
in O(log2 n) rounds with probability 1− n−β for any fixed β > 0.

Proof. The proof uses a potential function argument. For each node i, we con-
sider the distance between i and the node that should have the value stored by
node i. We claim that the sum of the squares of these distances drops by a factor
of 1 − Ω(1/ log n) in expectation in each round; and thus it becomes zero after
O(log2 n) rounds.

For each node i, let Xi,t be the value that node i has after round t, and let
Ri,t = rank(Xi,t) be the rank of that value. Hence, Ri,t is equal to the ID of the
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node at which value Xi,t should be stored eventually. Further, let di,t = |Ri,t− i|
be the distance between nodes Ri,t and i. We define the potential Ψi,t of node i
after round t to be Ψi,t = d2i,t. The (total) potential after round t is then

Ψt =
∑
i

Ψi,t =
∑
i

d2i,t.

Lemma 4. E[Ψt+1 | Ψt] ≤ (1− c/lnn)Ψt, for some constant c > 0

Proof. The drop in the potential when two nodes i and j swap their values in
round t+ 1 is

Ψi,t + Ψj,t − Ψi,t+1 − Ψj,t+1 = (Ri,t − i)2 + (Rj,t − j)2 − (Ri,t − j)2 − (Rj,t − i)2

= 2(i− j)(Rj,t −Ri,t)
= 2|i− j| · |Rj,t −Ri,t|,

where the last equality holds because 2(i− j)(Rj,t −Ri,t) > 0, as nodes i and j
swap values only if (i − j)(Xi,t −Xj,t) < 0, and the differences Rj,t − Ri,t and
Xj,t −Xi,t have the same sign.

Below we assume w.l.o.g. that i ≤ Ri,t. Consider the two sets of nodes U =
[(i + di,t/3)..n] and W = [1..(Ri,t − di,t/3)]. The intersection of the two sets
has size |U ∩W | = di,t/3. It follows that there are at least di,t/3 nodes j ∈ U
for which Rj,t ∈ W . Fix one of these nodes j. If node i is active in round
t + 1, which happens with probability 1/2, then the probability that i chooses
j is 1/(|i − j| · νi), where νi is the normalizing factor

∑
1≤k≤n, k 6=i(1/|i − k|),

which is in the range lnn < νi < 2 lnn. Thus, i chooses j with probability
1/(|i − j| · 2νi) ≥ 1/(|i − j| · 4 lnn). Further, the probability that node j is not
active and not chosen by any other node k 6= i in the round is

1

2

∏
1≤k≤n, k 6=i,j

(
1− 1/(|i− k| · 2νj)

)
≥ 1

2

(
1−

∑
1≤k≤n, k 6=i,j

1/(|i− k| · 2νj)

)
≥ 1/4.

From all the above it follows that the expected drop in the potential as a result
of the likelihood of i choosing j and swapping values with it is at least

2|i− j| · |Rj,t −Ri,t| ·
(
1/(|i− j| · 4 lnn)

)
(1/4) = |Rj,t −Ri,t|/(8 lnn).

We saw earlier that there are at least |U ∩W | = di,t/3 such nodes j, and for each
we have Ri,t−Rj,t ≥ di,t/3 since Rj,t ∈W . It follows that the expected decrease
in the potential as a result of i choosing and swapping values with some inactive
node in round t+1 it at least (di,t/3)(di,t/3)/(8 lnn) = Ψi,t/(72 lnn). Therefore,
the total expected potential difference is E[Ψt − Ψt+1 | Ψt] ≥

∑
i Ψi,t/(72 lnn) =

Ψt/(72 lnn). This completes the proof of Lemma 4. ut

Applying Lemma 4 repeatedly and using that Ψ0 < n3, we obtain for t∗ =
(β + 3)(lnn)2/c,

E[Ψt∗ ] ≤ (1− c/ lnn)t
∗
Ψ0 ≤ e−ct

∗/ lnnΨ0 ≤ e−(β+3) lnnn3 = n−β .
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Markov’s Inequality then yields Pr(Ψt∗ > 0) = Pr(Ψt∗ ≥ 1) ≤ n−β/1, and thus
Pr(Ψt∗ = 0) ≥ 1 − n−β . Since Ψt∗ = 0 implies that sorting is completed in at
most t∗ rounds, Theorem 3 follows. ut

4 Conclusion

We presented and analyzed gossip-based protocols for two fundamental tasks,
renaming and sorting. The protocols are simple and natural, and they are fault-
tolerant in the sense that they still succeed even if a (random) constant fraction
of the communication channels fail to get established. For our sorting protocol it
is necessary to use non-uniform peer-sampling in order to achieve polylogarith-
mic round complexity. A DHT-like overlay network can be used to implement
this service, but we suggest that further research on non-uniform peer-sampling
should be pursued.

The probability distribution that we chose for the peer-sampling in our sort-
ing algorithm is the same power law distribution as the one used in Klein-
berg’s small world graph model [26, 25]. There, the distribution determines ad-
ditional edges (long range contacts) to augment the ring network, in order to
achieve decentralized greedy routing in O(log2 n) expected time. It is known
that no other distance-based probability distribution for those augmentations
can achieve faster greedy routing time [11]. Since sorting is intuitively harder
than routing, it seems unlikely that a faster sorting algorithm can be obtained
by a change in the probability distribution of the peer-sampling mechanism.
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APPENDIX

A Peer-Sampling with Chord

We explain now how a peer-sampling service based on Chord can be used with
our sorting algorithm without increasing its O(log2 n) round complexity, and
by just increasing the message-size complexity from O(log n) to O(log2 n). Each
node chooses the Θ(log2 n) IDs to use in the sorting algorithm in advance, and
sends parallel routing requests via Chord to find the addresses of the nodes
with those IDs. Routing in Chord takes O(log n) steps, however, we now have
to route many messages in parallel, and each node can communicate with just
one (Chord) neighbor in each round. We employ the following ideas: (1) when a
node contacts a neighbor in Chord, it forwards to it all the requests that should
be routed through that node; and (2) in each round a node chooses which one of
its log n neighbors to call uniformly at random, and with probability 1/2 it does
not call any. A node responds to a call only if it does not itself call a neighbor in
that round (if it receives more than one calls it responds to a randomly chosen
one). It follows that a given request is forwarded to the next hop after Θ(log n)
rounds in expectation, and it reaches the destination after O(log2 n) rounds both
in expectation and w.h.p.

For the message sizes a bound of O(log3 n) bits is obtained as follows. From
the symmetry of the Chord topology and the fact that all nodes use the same
sampling distribution that depends only on the distance, we can show that the
total number of requests that must be routed through a given edge is O(log2 n)
in expectation and also w.h.p.; thus at most O(log3 n) bits are sent through
that edge. To show the stronger O(log2 n) bound we must use a more careful
argument, which takes into account the specific sampling distribution used.


