
Finding Error Handling Bugs in OpenSSL
using Coccinelle

(Practical Experience Report)

Julia Lawall (University of Copenhagen/INRIA-Regal)

Ben Laurie (Google),
René Rydhof Hansen (Aalborg University),
Nicolas Palix (University of Copenhagen),

Gilles Muller (INRIA-Regal)

1

Context: Error handling in C code

The C language doesn’t provide any error handling abstractions

I Convention 1: 1 indicates success, 0 indicates failure.

I Convention 2: 0 indicates success, -n indicates failure.

OpenSSL
I Toolkit for implementing secure network communication.

I Some OpenSSL functions return both 0 and -n on failure.

2

Problem 1

CVE-2008-5077 (January 2009)

I OpenSSL 0.9.8i and earlier does not properly check the
return value from the EVP_VerifyFinal function, which
allows remote attackers to bypass validation of the
certificate chain via a malformed SSL/TLS signature for
DSA and ECDSA keys.

Example:

if (!EVP_VerifyFinal(&md_ctx,p,(int)n,pkey)) {
/* bad signature */
al=SSL_AD_DECRYPT_ERROR;
SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SIGNATURE);
goto f_err;

}

But: EVP_VerifyFinal() returns 1 for a correct signature, 0 for
failure and -1 if some other error occurred.

3

Problem 2

CVE-2009-0591 (March 2009)

I The CMS_verify function in OpenSSL 0.9.8h through
0.9.8j, when CMS is enabled, does not properly handle
errors associated with malformed signed attributes, which
allows remote attackers to repudiate a signature that
originally appeared to be valid but was actually invalid.

Example:

if (!CMS_SignerInfo_verify_content(si, cmsbio)) {
CMSerr(CMS_F_CMS_VERIFY, CMS_R_CONTENT_VERIFY_ERROR);
goto err;

}

CMS_SignerInfo_verify_content() also returns 1, 0, or -1

4

Do similar bugs occur elsewhere?

Bugs in the CVE functions were fixed. Are there others?

Potential bug-finding methodology
I Find functions that return both 0 and negative values in

error cases.

I Find uses of these functions that only test for 0.

Issues
I OpenSSL-1.0.0-stable-SNAP-20090911 contains almost

250 000 lines of C code and almost 6000 functions.

I Potentially many such functions and call sites, so
automation is needed.

5

Our technology: Coccinelle

Features:
I Code-like notation for expressing searches.
I Patch features for expressing transformations

(Semantic Patches).
I Isomorphisms for handling syntactic variations.

@@ expression list args; @@
- !EVP_VerifyFinal(args)
+ EVP_VerifyFinal(args) <= 0

@@ expression list args; @@
- !CMS_SignerInfo_verify_content(args)
+ CMS_SignerInfo_verify_content(args) <= 0

Problem: All function names must be known.

6

An iterative process, developed for Linux [DSN 2009]

Define a semantic patch to find functions having some property

Define a semantic patch template to find bugs in the use of an
arbitrary function

Then, apply these semantic patches to the code base

7

An iterative process, developed for Linux [DSN 2009]

Define a semantic patch to find functions having some property
I A function that returns a negative constant directly.
I A function that stores a negative constant in a variable and

returns that variable.
I A function that checks that a variable is negative and

returns that variable.

Define a semantic patch template to find bugs in the use of an
arbitrary function

Then, apply these semantic patches to the code base

8

An iterative process, developed for Linux [DSN 2009]

Define a semantic patch to find functions having some property

Define a semantic patch template to find bugs in the use of an
arbitrary function

I Code that only checks whether the result is 0, not whether
it is negative.

Then, apply these semantic patches to the code base

9

An iterative process, developed for Linux [DSN 2009]

Define a semantic patch to find functions having some property

Define a semantic patch template to find bugs in the use of an
arbitrary function

Then, apply these semantic patches to the code base
I Run the first semantic patch on the code base to collect a

list of function names.
I Instantiate the semantic patch template for each collected

function.
I Run the instantiated semantic patches on the code base to

find and fix the bugs.

10

An iterative process, developed for Linux [DSN 2009]

BugSP
i
'BugSP

i
'

MakeBugReportMakeBugReport

SearchSearch InstantiateInstantiate

BugSP
i
''BugSP

i
'' BugSP

i
'''BugSP

i
'''

Collected
Info

Collected
Info

Bug
Report
Bug

Report

Project
(e.g. OpenSSL)

Protocol
Finding
Semantic
Patch

Bug
Finding
Semantic
Patch
Template

i

11

Results

387 functions of the three types identified

@@
expression list args;
identifier virtual.FN;
@@
- (FN(args)) == 0
+ FN(args) <= 0

@@
expression list args;
identifier virtual.FN;
@@
- (FN(args)) != 0
+ FN(args) > 0

Bugs: 26
False positives: 20
Unknown: 3
Files: 30

@match@
expression x, E; constant C;
identifier virtual.FN;
position p;
@@

x@p = FN(...)
<+... when != x <= (0 | -C)

when != x < (0 | -C)
when != (x > 0 | x == -C)

(x != 0 | x == 0)
...+>
(return ...; | x = E)

Bugs: 6
False positives: 14
Unknown: 2
Files: 19

12

Bug history

2006
2007

2008
2009

next

Versions/Date

D
ef

ec
ts

BIO_ctrl
EVP_SealInit
RAND_bytes
SSLStateMachine_read_extract
UI_UTIL_read_pw
UI_UTIL_read_pw
X509_check_purpose
X509_STORE_get_by_subject
X509_check_purpose
X509_verify_cert
asn1_cb
asn1_cb
asn1_template_noexp_d2i
asn1_check_tlen
asn1_check_tlen
ocsp_check_issuer
EVP_VerifyFinal
X509_verify_cert
X509_verify_cert
X509_verify_cert
get_cert_chain
dtls1_retrieve_buffered_fragment
EVP_VerifyFinal

13

Issues

OpenSSL-specific macros
I STACK_OF(SSL_COMP) *sk; is not valid C.

I Solution: Configure Coccinelle to ignore STACK_OF
(4 problematic macros in all)

Functions using 0 for success
I Some functions return 0 for success and negative values

for failure.

I Solution: Filter out functions that never return positive
values.

14

Issues

Comparison functions
I Some functions return -1 for <, 0 for =, and 1 for >

I Solution: Filter out function names ending in cmp.

Value dependencies
I Function arguments may control whether a negative result

is possible.
if ((a != NULL) && (sk_num(a) != 0)) M_ASN1_I2D_put_SET(a,f);

I Solution: Manual inspection.

I Potential solution: Data flow analysis (integration with
Clang).

15

Conclusions

Our technique that was developed for Linux code has been
shown useful for (user-level) OpenSSL code too.

Different projects have different conventions, bug histories and
bug profiles.

I Our previous efforts with OpenSSL found few bugs, and
those found did not interest the OpenSSL community.

I Bug-finding requires project-specific expertise.

I Automated bug-finding tools must be easily adaptable by
the user.

Coccinelle can meet this challenge.

http://coccinelle.lip6.fr/

16

