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MOTIVATION 


   Operating System (OS):  

   most critical component in a computer system 

   consists of a kernel and system libraries 


   Kernel: 

   responsible for directly controlling hardware 

   particularly sensitive to timing constraints and 

errors originating from hardware 

   should be efficient in performance, but also 

deal with failures: a trade-off 
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MOTIVATION (CONT.) 


   In monolithic OS kernels (like Linux): 

   kernel modules are not isolated from each other, 

i.e. same address space & privilege level. 

   Errors can easily propagate between modules. 


   Isolation techniques exist: 

   Improve dependability of OS kernels,  

   but impose a performance overhead 


   How can we utilize the structure of the kernel to 
improve performance while maintaining 
dependability ? 
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KERNEL DEPENDABILITY 


   Operating systems are among the most critical 
software components in computer systems. 

   Developers tend to prefer performance over 

dependability. 


   Device drivers (DD) are usually provided by 
third-party developers. 

   occupy about 70% of the code; reported error rate of 

3 to 7 times higher than ordinary code. 


   Application/OS/hardware interactions 
influence the system dependability. 
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KERNEL DEPENDABILITY (CONT.)  


   In monolithic kernels, both kernel and device 
drivers 


   share a single address space 


   run under the same (maximum) privilege mode 


   Components communicate based on mutual 
trust: direct function calls and pointers. 


   Errors in defective DDs may propagate to the 
kernel, leading to degraded service or system 
failure. 
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KERNEL DEPENDABILITY (CONT.)  


   Device drivers are a common source of errors. 
They: 

   may reference an invalid pointer, 

   may enter into an infinite loop, 

   may execute an illegal instruction, 

   have to handle uncommon combinations of 

events, 

   have to deal with timing constraints, 

   are usually written in C or C++ and make heavy 

use of pointers. 
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KERNEL DEPENDABILITY (CONT.)  


   Main dependability problem in monolithic 
kernels is the lack of execution isolation 
between subsystems. 


   Errors originating in device drivers may 
propagate to other subsystems. 


   Isolation techniques have been proposed. 


   They work by isolating module execution. 


   But module partitioning is fixed! 

7




OBSERVATION 


   The overhead in isolation environments comes from 
frequent module execution switching. 


   Some modules belong to the same OS subsystem 


   Can such modules be grouped into the same 
protection domain? 


   to improve performance by minimizing overhead 


   while maintaining subsystem isolation for dependability 
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EXTRACTING THE 
INTER-MODULE STRUCTURE 


   To find group candidates, we first identify 
module coupling, i.e. a dependency graph. 


   The dependency graph can be obtained by 
extracting symbols defined and used by the 
different modules 


   Symbols: function calls and external variables. 


   The list of such symbols can be extracted from the 
binary image of modules 
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FINDING GROUP CONFIGURATIONS 


   Three step process: 
1. Create basic groups:  
• module-independent modules are identified 
• all modules that dependent on the modules 

in the group are also added 

2. Combine basic groups 
• groups that share a same module are merged 

3. Isolate hardware dependent modules  
•  if there are more than one hardware- 

dependent module in a group, they are 
separated into different isolation domains 13




ENVIRONMENT SETUP 


   Test a real isolation environment under different 
configurations.  


   Evaluate performance overhead and dependability 


   Target platform: 

   AMD Athlon 64 3800+ based desktop system with 1GB 

of RAM running version 9.10 of the Ubuntu Linux 
distribution (kernel version 2.6.31) 


   RTL8111 Gigabit Ethernet interface (running at 
100Mbps) 


   ATI Radeon X1200 graphics controller 

   ATI Azalia (sound interface) 14




Module dependency graph for our target desktop Linux 
system 

Inter-module structure




1 = {exportfs, nfsd}


2 = {eata}*


3 = {sunrpc, nfsd, nfs_acl, auth_rpcgss, lockd, nfs}


4 = {atm}*


5 = {mii, r8169}


6 = {x_tables, ip_tables, iptable_filter}


9 = {nfsd}


8 = {lockd, nfsd}


7 = {nfs_acl, nfsd}


10 = {nfs}


1’ = {exportfs, nfsd, sunrpc, nfs_acl, auth_rpcgss, lockd, nfs}


2 = {eata}


4 = {atm}


5 = {mii, r8169}


6 = {x_tables, ip_tables, iptable_filter}


Module Grouping


* These modules are isolated because they belong to 
different subsystems. 



ENVIRONMENT SETUP (CONT.) 


   Isolation environment 


   Set of modifications to the kernel that separate 
module execution: 


   creates a new execution stack 


   Reconfigures memory protection domains 


   Works by using wrappers between modules and the 
kernel 


   Based on Nooks (by the University of Washington), 
had to be adapted to run any module into any 
execution domain: this was needed to compare the 
configurations. 17




PERFORMANCE EVALUATION 


   Three workloads were defined: 

   Idle - idle session of the GNOME graphical user 

environment (just background processes run). 


   Archive - extraction of a large file archive on a FAT file 
system 


   Media -  playback of a video file (with the associated audio) 


   Goal: exercise device drivers/modules, which cause 
domain switches under isolation. 


   Execution time in kernel mode for the 3 workloads is 
measured under 3 configurations, for a 5 minute (300 
seconds) execution: 

   No isolation, Full isolation, Partial Isolation 
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PERFORMANCE EVALUATION 
(CONT.) 


   Idle workload 

   No isolation: 42 ms 

   Full isolation: 881 ms 

(0.28% overhead to 
300s) 


   Partial isolation: 332 
ms (0.09% overhead to 
300s) 


   Since the machine is 
idle, there are not 
many switches and 
the overhead is small 
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PERFORMANCE EVALUATION 
(CONT.) 


   Archive workload 

   No isolation: 1.9s 

   Full isolation: 2.387s 

(0.16% overhead to 
300s) 


   Partial isolation: 2.308s 
(0.14% overhead to 
300s) 


   Most of the switches 
are not in a same 
protection domain. 
The technique is not 
so effective 20




PERFORMANCE EVALUATION 
(CONT.) 


   Video workload 

   No isolation: 1.157s 

   Full isolation: 16.312s 

(5.05% overhead to 
300s) 


   Partial isolation: 6.332s 
(1.72% overhead to 
300s) 


   In this case, there is 
a significant 
reduction in the 
isolation overhead 
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PERFORMANCE EVALUATION 
(CONT.)


 The gains from module grouping is quite 
limited when the modules causing the most 
frequent switches do not have explicit call 
paths from the dependency graph 



DEPENDABILITY EVALUATION 


   To evaluate the impact of the grouping technique 
on dependability, we use fault injection. 


   The fault injector itself should not affect the normal 
execution of the system. 


   It should have minimum intrusiveness. 


   We have developed our own fault injection tool: 
Zapmem 


   It can corrupt physical memory without kernel 
instrumentation (works below the kernel). 


   Supports experiment automation. (fault injection 
runs in a batch.) 
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DEPENDABILITY EVALUATION 
(CONT.) 


   Workload: modified version of the video workload, 
including periodic interrupt handling. 


   400 faults injected: modify instruction stream of 
kernel modules and mimic various common 
programming errors, like uninitialized variables, bad 
parameters and inverted test conditions 


   Target: one module. It runs by itself in a protection 
domain under full isolation, and shares execution 
with others in partial isolation. 


   Instructions are selected randomly, but consistently 
under the 3 different configurations. 
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DEPENDABILITY EVALUATION 
(CONT.) 


   No isolation: 14 
crashes, 23 service 
errors (37 total). 


   Full isolation: 6 system 
crashes, 29 service 
errors (35 total). 


   Partial isolation: 7 
system crashes, 30 
service errors (37 total). 
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DEPENDABILITY EVALUATION 
(CONT.) 


   Partial isolation exhibits a behavior closer to 
full isolation, that is, fewer system crashes. 


   Service errors can be detected by the 
applications. 


   Improved dependability. 


   There was no reduction in total number of 
errors, though. 
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CONCLUSIONS 


   We propose a technique to identify module 
relationships and group them together under 
partial isolation for monolithic kernels. 


   Improve performance, by reducing the overhead. 


   Not impacting dependability significantly. 


   Performance and dependability were evaluated: 


   it could reduce switching overhead from 5% to 1.7% 
of the execution time when modules which switch 
most have direct dependencies. 27




CONCLUSIONS (CONT.) 


   Even though it may not reduce the total 
number of errors in a system (compared to no 
isolation), it can limit their severity, like full 
isolation. 


   These less severe errors can be handled by other 
fault-tolerance mechanisms. 


   Performance gains may be limited if modules 
do not have explicit dependencies. 
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