
ANALYSIS OF INTER-
MODULE ERROR

PROPAGATION PATHS IN
MONOLITHIC OPERATING

SYSTEM KERNELS

Roberto J. Drebes† Takashi Nanya‡

 †University of Tokyo ‡Canon Inc.

MOTIVATION

   Operating System (OS):

   most critical component in a computer system

   consists of a kernel and system libraries

   Kernel:

   responsible for directly controlling hardware

   particularly sensitive to timing constraints and

errors originating from hardware

   should be efficient in performance, but also

deal with failures: a trade-off
2

MOTIVATION (CONT.)

   In monolithic OS kernels (like Linux):

   kernel modules are not isolated from each other,

i.e. same address space & privilege level.

   Errors can easily propagate between modules.

   Isolation techniques exist:

   Improve dependability of OS kernels,

   but impose a performance overhead

   How can we utilize the structure of the kernel to
improve performance while maintaining
dependability ?

3

KERNEL DEPENDABILITY

   Operating systems are among the most critical
software components in computer systems.

   Developers tend to prefer performance over

dependability.

   Device drivers (DD) are usually provided by
third-party developers.

   occupy about 70% of the code; reported error rate of

3 to 7 times higher than ordinary code.

   Application/OS/hardware interactions
influence the system dependability.

4

KERNEL DEPENDABILITY (CONT.)

   In monolithic kernels, both kernel and device
drivers

   share a single address space

   run under the same (maximum) privilege mode

   Components communicate based on mutual
trust: direct function calls and pointers.

   Errors in defective DDs may propagate to the
kernel, leading to degraded service or system
failure.

5

KERNEL DEPENDABILITY (CONT.)

   Device drivers are a common source of errors.
They:

   may reference an invalid pointer,

   may enter into an infinite loop,

   may execute an illegal instruction,

   have to handle uncommon combinations of

events,

   have to deal with timing constraints,

   are usually written in C or C++ and make heavy

use of pointers.

6

KERNEL DEPENDABILITY (CONT.)

   Main dependability problem in monolithic
kernels is the lack of execution isolation
between subsystems.

   Errors originating in device drivers may
propagate to other subsystems.

   Isolation techniques have been proposed.

   They work by isolating module execution.

   But module partitioning is fixed!

7

OBSERVATION

   The overhead in isolation environments comes from
frequent module execution switching.

   Some modules belong to the same OS subsystem

   Can such modules be grouped into the same
protection domain?

   to improve performance by minimizing overhead

   while maintaining subsystem isolation for dependability

8

No Module Isola,on 

9

Module

Execution Domain

Full Module Isola,on 

10

Module

Execution Domain

Par,al Module Isola,on 

11

Module

Execution Domain

EXTRACTING THE
INTER-MODULE STRUCTURE

   To find group candidates, we first identify
module coupling, i.e. a dependency graph.

   The dependency graph can be obtained by
extracting symbols defined and used by the
different modules

   Symbols: function calls and external variables.

   The list of such symbols can be extracted from the
binary image of modules

12

FINDING GROUP CONFIGURATIONS

   Three step process:
1. Create basic groups:
• module-independent modules are identified
• all modules that dependent on the modules

in the group are also added

2. Combine basic groups
• groups that share a same module are merged

3. Isolate hardware dependent modules
•  if there are more than one hardware-

dependent module in a group, they are
separated into different isolation domains 13

ENVIRONMENT SETUP

   Test a real isolation environment under different
configurations.

   Evaluate performance overhead and dependability

   Target platform:

   AMD Athlon 64 3800+ based desktop system with 1GB

of RAM running version 9.10 of the Ubuntu Linux
distribution (kernel version 2.6.31)

   RTL8111 Gigabit Ethernet interface (running at
100Mbps)

   ATI Radeon X1200 graphics controller

   ATI Azalia (sound interface) 14

Module dependency graph for our target desktop Linux
system

Inter-module structure

1 = {exportfs, nfsd}

2 = {eata}*

3 = {sunrpc, nfsd, nfs_acl, auth_rpcgss, lockd, nfs}

4 = {atm}*

5 = {mii, r8169}

6 = {x_tables, ip_tables, iptable_filter}

9 = {nfsd}

8 = {lockd, nfsd}

7 = {nfs_acl, nfsd}

10 = {nfs}

1’ = {exportfs, nfsd, sunrpc, nfs_acl, auth_rpcgss, lockd, nfs}

2 = {eata}

4 = {atm}

5 = {mii, r8169}

6 = {x_tables, ip_tables, iptable_filter}

Module Grouping

* These modules are isolated because they belong to
different subsystems.

ENVIRONMENT SETUP (CONT.)

   Isolation environment

   Set of modifications to the kernel that separate
module execution:

   creates a new execution stack

   Reconfigures memory protection domains

   Works by using wrappers between modules and the
kernel

   Based on Nooks (by the University of Washington),
had to be adapted to run any module into any
execution domain: this was needed to compare the
configurations. 17

PERFORMANCE EVALUATION

   Three workloads were defined:

   Idle - idle session of the GNOME graphical user

environment (just background processes run).

   Archive - extraction of a large file archive on a FAT file
system

   Media - playback of a video file (with the associated audio)

   Goal: exercise device drivers/modules, which cause
domain switches under isolation.

   Execution time in kernel mode for the 3 workloads is
measured under 3 configurations, for a 5 minute (300
seconds) execution:

   No isolation, Full isolation, Partial Isolation

18

PERFORMANCE EVALUATION
(CONT.)

   Idle workload

   No isolation: 42 ms

   Full isolation: 881 ms

(0.28% overhead to
300s)

   Partial isolation: 332
ms (0.09% overhead to
300s)

   Since the machine is
idle, there are not
many switches and
the overhead is small

19

PERFORMANCE EVALUATION
(CONT.)

   Archive workload

   No isolation: 1.9s

   Full isolation: 2.387s

(0.16% overhead to
300s)

   Partial isolation: 2.308s
(0.14% overhead to
300s)

   Most of the switches
are not in a same
protection domain.
The technique is not
so effective 20

PERFORMANCE EVALUATION
(CONT.)

   Video workload

   No isolation: 1.157s

   Full isolation: 16.312s

(5.05% overhead to
300s)

   Partial isolation: 6.332s
(1.72% overhead to
300s)

   In this case, there is
a significant
reduction in the
isolation overhead

21

PERFORMANCE EVALUATION
(CONT.)

 The gains from module grouping is quite
limited when the modules causing the most
frequent switches do not have explicit call
paths from the dependency graph

DEPENDABILITY EVALUATION

   To evaluate the impact of the grouping technique
on dependability, we use fault injection.

   The fault injector itself should not affect the normal
execution of the system.

   It should have minimum intrusiveness.

   We have developed our own fault injection tool:
Zapmem

   It can corrupt physical memory without kernel
instrumentation (works below the kernel).

   Supports experiment automation. (fault injection
runs in a batch.)

23

DEPENDABILITY EVALUATION
(CONT.)

   Workload: modified version of the video workload,
including periodic interrupt handling.

   400 faults injected: modify instruction stream of
kernel modules and mimic various common
programming errors, like uninitialized variables, bad
parameters and inverted test conditions

   Target: one module. It runs by itself in a protection
domain under full isolation, and shares execution
with others in partial isolation.

   Instructions are selected randomly, but consistently
under the 3 different configurations.

24

DEPENDABILITY EVALUATION
(CONT.)

   No isolation: 14
crashes, 23 service
errors (37 total).

   Full isolation: 6 system
crashes, 29 service
errors (35 total).

   Partial isolation: 7
system crashes, 30
service errors (37 total).

25

DEPENDABILITY EVALUATION
(CONT.)

   Partial isolation exhibits a behavior closer to
full isolation, that is, fewer system crashes.

   Service errors can be detected by the
applications.

   Improved dependability.

   There was no reduction in total number of
errors, though.

26

CONCLUSIONS

   We propose a technique to identify module
relationships and group them together under
partial isolation for monolithic kernels.

   Improve performance, by reducing the overhead.

   Not impacting dependability significantly.

   Performance and dependability were evaluated:

   it could reduce switching overhead from 5% to 1.7%
of the execution time when modules which switch
most have direct dependencies. 27

CONCLUSIONS (CONT.)

   Even though it may not reduce the total
number of errors in a system (compared to no
isolation), it can limit their severity, like full
isolation.

   These less severe errors can be handled by other
fault-tolerance mechanisms.

   Performance gains may be limited if modules
do not have explicit dependencies.

28

