Examen terminal - Théorie de la complexité

THX

17 décembre 2020

La précision et la clarté de la rédaction est prise en compte dans l'évaluation. Certaines questions peuvent demander une formalisation très lourde : favorisez alors la pédagogie. Écrivez assez grand. N'hésitez pas à réutiliser des résultats vus en cours ou en TD/DM. Rédigez soigneusement.

1 Graphe acyclique

Question 1. 5 pts Étudier la complexité théorique du problème de décision suivant :

ACYCLIQUE

```
\frac{entr\'{e}:}{sortie:} un graphe orient\'{e} G=(S,A)
```

Donner une démonstration d'appartenance de ce problème à une certaine classe, puis montrer que ce problème est complet pour cette même classe.

2 Factorisation de nombres

On admettra que le problème **PRIMES** suivant est dans P (résultat difficile montré en 2004) :

PRIMES

On définit le problème **FACTORISATION** :

FACTORISATION

Question 2. 4.5 pts Montrer que **FACTORISATION** est dans NP \cap coNP.

3 BPP est dans Σ_2^p

On considère une machine de Turing M qui prend en entrée deux mots (x,y), où x est de longueur n, et qui s'exécute en temps n^c . Sans perte de généralité, on suppose que y est un mot sur l'alphabet $\{0,1\}$ de longueur n^c . On note :

- $A_x := \{y \in \{0,1\}^{n^c} \mid \text{l'exécution } M(x,y) \text{ est acceptante}\}$;
- $\mathcal{R}_x := \{ y \in \{0,1\}^{n^c} \mid \text{l'exécution } M(x,y) \text{ est rejetante} \}.$

Notons $m = n^c$.

Question 3. 0.5 pts Donner une équation qui relie A_x et R_x .

On dit qu'un problème de décision A est dans la classe BPP (pour bounded-error probabilistic polynomial time) s'il existe une machine de Turing comme ci-dessus et un polynôme n^c avec (en reprenant les notations ci-dessus) :

- si $x \in A$, alors $|\mathcal{R}_x| \leq 2^{m-n}$;
- si $x \notin A$, alors $|A_x| \leq 2^{m-n}$.

On note \oplus l'opération ou exclusif (aussi appelé somme modulo 2) bits à bits. Par exemple $1101 \oplus 0110 = 1011$.

Question 4. 0.5 pts Calculer $10000 \oplus 01101$.

Étant donné deux ensembles W_1 et W_2 de mots de longueur m, on note

$$W_1 \oplus W_2 := \{ w_1 \oplus w_2 \mid w_1 \in W_1 \text{ et } w_2 \in W_2 \}.$$

On considère un problème de décision A dans BPP. Soit x un mot de longueur n et $m=n^c$. Nous allons montrer l'équivalence suivante, lorsque n est suffisamment grand :

$$x \in A$$
 ssi il existe $(z_1, \dots, z_m) \in (\{0, 1\}^m)^m$ tels que $\mathcal{A}_x \oplus \{z_1, \dots, z_m\} = \{0, 1\}^m$.

Dans l'équivalence, chaque z_i est un mot de longueur m. La question qui suit consiste à montrer le sens \Rightarrow par contraposée.

Question 5. 1 pts Montrer que, pour n assez grand, si $x \notin A$, alors il n'existe pas $(z_1, \ldots, z_m) \in (\{0,1\}^m)^m$ tels que $\mathcal{A}_x \oplus \{z_1, \ldots, z_m\} = \{0,1\}^m$.

Nous allons maintenant montrer le sens \Rightarrow . Considérons $x \in A$. On dira que le m-uplet (z_1, \ldots, z_m) est mauvais s'il existe $w \in \{0,1\}^m$ avec $\{w\} \oplus \{z_1,\ldots,z_m\} \subseteq \mathcal{R}_x$. Sinon, on dira que (z_1,\ldots,z_m) est bon.

Question 6. 2 pts Montrer qu'il y a strictement moins de 2^{m^2} mauvais (z_1, \ldots, z_m) .

Question 7. 0.5 pts En déduire qu'il existe de bons (z_1, \ldots, z_m) .

Question 8. 1 pts Conclure la démonstration du sens \Rightarrow .

Nous sommes maintenant prêt pour démontrer le résultat de l'exercice.

Question 9. $\frac{4}{9}$ pts Montrer que A est dans Σ_2^p .

Question 10. 1 pts Montrer que A est aussi dans Π_2^p .

4 Taille de circuits (bonus)

Question 11. 2 pts Montrer qu'il existe une fonction $f: \{0,1\}^n \to \{0,1\}$ qui n'est pas calculable par un circuit avec moins de $\frac{2^n}{10n}$ portes.

5 Dessin! (bonus)

Question 12. O.07 pts Donner les relations entre les classes LOGSPACE, NLOGSPACE, coNLOGSPACE, P, NP, CONP, PSPACE, NPSPACE, coNPSPACE, EXPTIME, NEXPTIME, coNEXPTIME, Σ_1^p , Π_1^p , Σ_2^p , Π_2^p , PH, NC, voire d'autres classes que vous aimez bien.

Suggestion de présentation : un diagramme d'Euler (des patates) qui représente les inclusions.