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Introduction

In this paper we show that nondeterministic space s(n) is closed under com-
plementation, for s(n) greater than or equal to logn. It immediately follows
that the context-sensitive languages are closed under complementation, thus
settling a question raised by Kuroda in 1964 [9]. See Hartmanis and Hunt [4]
for a discussion of the history and importance of this problem, and Hopcroft
and Ullman [5] for all relevant background material and definitions.

The history behind the proof is as follows. In 1981 we showed that
the set of first-order inductive definitions over finite structures is closed
under complementation [6]. This holds with or without an ordering relation
on the structure. If an ordering is present the resulting class is P. Many
people expected that the result was false in the absence of an ordering. In
1983 we studied first-order logic, with ordering, with a transitive closure
operator. We showed that NSPACE[log n] is equal to (FO + pos TC), i.e.
first-order logic with ordering, plus a transitive closure operation, in which
the transitive closure operator does not appear within any negation symbols
[7]. Now we have returned to the issue of complementation in the light of
recent results on the collapse of the log space hierarchies [10, 2, 14]. We have
shown that the class (FO + pos TC) is closed under complementation. Our
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main result follows. In this paper we give the proof in terms of machines and
then state the result for transitive closure as Corollary 3. The question of
whether (FO + pos TC) without ordering is closed under complementation
remains open.

Our work in first-order expressibility led to our proof that nondetermin-
istic space is closed under complementation. However, because first-order
expressibility classes are not directly relevant to the proofs in this paper,
we omit those definitions here. The interested reader should refer to [7]
for all these definitions. Note that the proof of Theorem 3.3 in [7] is more
complicated than the proof of Theorem 1, but quite similar to it. The same
is true of the proof in [6] that the first-order inductive formulas are closed
under complementation.

Results

Theorem 1 For any s(n) > logn,

NSPACE[s(n)] = co-NSPACE[s(n)] .

Proof We do this by two lemmas. We will show that counting the exact
number of reachable configurations! of an NSPACE[s(n)] machine can be
done in NSPACE[s(n)] (Lemma 2). Lemma 1 says that once this number
has been calculated we can detect rejection as well as acceptance. Note the
similarity between Lemma 1 and a similar result about census functions in
[12].

Lemma 1 Suppose we are given an NSPACE[s(n)] machine M, a size s(n)
initial configuration, START, and the exact number N of configurations of
size s(n) reachable by M from START. Then we can test in NSPACE[s(n)]
if M rejects.

Proof Our NSPACE[s(n)] tester does the following. It initializes a counter
to 0, and a target configuration to the lexicographically first string of length
s(n). For each such target either we guess a computation path of M from
START to target, and increment both counter and target; or we simply

'The configuration of a Turing machine is the contents of its work tapes, the positions of
its heads, and its state. Note that for s(n) > logn, the number of possible configurations
is less than ¢*(™ for some constant ¢, and thus can be written in O[s(n)] space.



increment target. For each target that we have found a path to, if it is
an accept configuration of M then we reject. Finally, if when we are done
with the last target the counter is equal to N, we accept; otherwise we
reject. Note that we accept iff we have found N reachable configurations,
none of which is accepting. (Suppose that M accepts. In this case there
can be at most N — 1 reachable configurations that are not accepting, and
our machine will reject. On the other hand, if M rejects then there are N
non-accepting reachable configurations. Thus our nondeterministic machine
can guess paths to each of them in turn and accept.) That is we accept iff
M rejects. O

Lemma 2 Given START, as in Lemma 1, we can calculate N — the total
number of configurations of size s(n) reachable by M from START - in
NSPACE[s(n)].

Proof Let Ny be the number of configurations reachable from START
in at most d steps. The computation proceeds by calculating Ng, N1, and
so on. By induction on d we show that each Ng may be calculated in
NSPACE[s(n)]. The base case d = 0 is obvious.

Inductive step. Given N, we show how to calculate Ng;;. As in Lemma
1 we keep a counter of the number of d + 1 reachable configurations, and we
cycle through all the target configurations in lexicographical order. For each
target we do the following: Cycle through all Ny configurations reachable in
at most d steps, again we find a path of length at most d for each reachable
one, and if we don’t find all Ny of them then we will reject. For each of
these N4 configurations check if it is equal to target, or if target is reachable
from it in one step. If so then increment the counter, and start on target+1.
If we finish visiting all Ny configurations without reaching target, then just
start again on target+1 without incrementing the counter. When we’ve
completed this algorithm for all targets our counter contains Ng,1. Since N
is bounded above by ¢*(") for some constant ¢, the space needed is O[s(n)].

To complete the proof of the lemma and the theorem note that N is
equal to the first N4 such that Ng = Ngi1. O

Remark: In our original statement of Theorem 1 we made the assump-
tion that s(n) is space constructible. However, the standard definition of a
nondeterministic Turing machine having space complexity s(n) is that, ...
no sequence of choices enables it to scan more than s(n) cells ...,” [5]. Thus,



the above proof works even if s(n) is not space constructible. We just let
s(n) increase as needed.

The following corollary is immediate:

Corollary 1 The class of context sensitive languages is closed under com-
plementation.

Proof Kuroda showed in 1964 that CSL = NSPACE[n] [9]. O

The k*h level of the log space alternating hierarchy (3;ALOG) is defined
to be the set of problems accepted by alternating log space Turing machines
that make at most £ — 1 alternations and begin in an existential state. Re-
cently Lange, Jenner, and Kirsig [10] showed that this hierarchy collapsed
to the second level, X2 ALOG. This result was then extended by several
authors [2, 14] who showed that the log space oracle hierarchy collapses to
LNL. Here L=DSPACE[log n], and NL = NSPACE][log n]. The logspace or-
acle hierarchy is given by $;0LOG = N L, and %;,10LOG = N Z+OLOG
In the case of the polynomial time hierarchy, the oracle and alternating hier-
archies are identical, but they appeared to be different in the log space case.
We knew that the logspace oracle hierarchy is equal to (FO + TC). This,
together with the above results, led us to expect Theorem 1. The following
is again immediate.

Corollary 2 The Log Space Alternating Hierarchy and the Log Space Oracle
Hierarchy both collapse to NSPACE[flogn].

In [7] we showed that NL is equal to (FO + pos TC). In Theorem 3.3
of [7] we also showed that any problem in NL may be expressed in the form
TC[¢](0, max) where ¢ is a quantifier free first-order formula, and 0 and
max are constant symbols. It now follows that the same is true for the class

(FO + TC).

Corollary 3 1. NSPACEflogn] = (FO + pos TC) = (FO + TC) .

2. Any formula in (FO + TC) may be expressed in the form TC[¢](0, max)
where ¢ is a quantifier free first-order formula.

Michael Fischer has observed that one can now diagonalize nondeter-
ministic space and thus easily prove a tight hierarchy theorem for nonde-
terministic space. Although Corollary 4 is not new, our techniques give a



much simpler proof than was previously known. (See Chapter 12 in [5] for
the old proof.)

Corollary 4 For any tape constructible s(n) > logn,

im @ =
P s(n)
implies
NSPACE[t(n)] # NSPACE[s(n)] .

Conclusions and Directions for Future Work

Most of the interesting questions concerning the power of nondeterminism
remain open. We still do not know whether nondeterministic space is equal
to deterministic space, or whether Savitch’s Theorem [15] is optimal. It is
interesting to consider whether our proof method can be extended to answer
these questions, or to tell us anything new about nondeterministic time.
Soon after we proved Theorem 1, Tompa et. al. [1] gave two extensions:
they proved that LOG(CFL) — the set of problems log space reducible to a
context free language — is closed under complementation, and they showed
that Symmetric Log Space (cf. [11, 13]) is contained in ZPLP, “... the
class of errorless probabilistic Turing machines running in O[logn]| space
and polynomial expected time.” We suggest the following open problems:

1. Is (FO without < + pos TC) closed under complementation?

2. Is Symmetric Log Space, equivalently (FO + pos STC), closed under
complementation?

3. Is NL equal to a complexity class that was previously known to be
closed under complementation, e.g., L, AC!, or DSPACE[log2 n|?

4. In the proof of Theorem 1 we made use of the linear space compression
theorem, Theorem 12.1 in [5]. Our actual construction multiplies the
space bound by about eight. It is interesting to ask how much this
can be reduced. Note in particular that if we could complement logn
times, while only increasing the space bound by a constant factor, then
it would follow that NL = AC'.
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