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Abstract

We present a Garey/Johnson-style list of problems known to be complete for the second

and higher levels of the polynomial-time Hierarchy (polynomial hierarchy, or PH for short).

We also include the best-known hardness of approximation results. The list will be updated

as necessary.

Updates

The compendium currently lists more than 80 problems. Latest changes include:

• added [GT26] SUCCINCT k-KING,

• added [GT25] SUCCINCT k-DIAMETER,

• added [GT4] SUCCINCT k-RADIUS at third level,

• added [GT24] MINIMUM VERTEX COLORING DEFINING SET,

• added [GT23] GRAPH SANDWICH PROBLEM FOR Π,

• added [L24] MINIMUM 3SAT DEFINING SET,

• added [L23] ∃∃t! 3SAT,

• open problem MEE solved, now [L22],

• open problem THUE NUMBER solved, now [GT22],

∗ c©Marcus Schaefer and Chris Umans, 2002
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• added open problem [O9] THUE CHROMATIC NUMBER,

• added open problem [O8] STRONG CHROMATIC NUMBER,

• added [L21] ∃∃!-3SAT,

• added [GT21] UNIQUE k-LIST COLORABILITY,

• added open problem [O7] THUE NUMBER,

• added [GT20] PEBBLING NUMBER,

1 Introduction

In this paper we have compiled a Garey/Johnson-style list of complete problems in the polynomial-

time hierarchy, at the second level and above. For optimization problems, we also include any

known hardness of approximation results. This list is based on a thorough, but not infallible,

literature search. We should also point out that we have not verified all of the quoted results.

We realize that the list is incomplete (and will in all likelihood remain so), but we are planning

on regularly updating it, as further problems come to our attention.

Definitions relevant to specific problems are contained in the list below. We briefly review

the definition of the polynomial hierarchy (PH). PH is defined recursively from the classes P

and NP by:

Σp
0 = Πp

0 = P

Σp

i
= NPΣ

p

i−1

Πp

i = coNPΠ
p

i−1

where coNP = {L : L ∈ NP}.

In the next three sections we list problems complete for the second level of PH, problems

complete for the third level of PH, and a selection of problems in PH whose complexity

remains open. We should mention that there are natural problems complete for higher levels

in nonclassical logics. Within each section the problems are categorized by area, and individual

problems are labeled in Garey/Johnson style (e.g., GT3 for the third graph theory problem).

We distinguish optimization problems by an asterisk at the beginning of their label.

2 The Second level

2.1 Logic

[L1] ∀∃3SAT

Given: Boolean formula ϕ(x, y) in 3-CNF.
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Question: Is it true that (∀x)(∃y)ϕ(x, y)?

Reference: Stockmeyer [75], Wrathall [88].

Comments: Πp
2 -complete. Remains Πp

2-complete if ϕ is representable by a planar circuit

(Gutner [28]). Stockmeyer and Wrathall showed that deciding QSATk, the set of true

formulas with k−1 quantifier alternations beginning with an ∃ quantifier, is Σp

k
-complete.

Earlier, Meyer and Stockmeyer [56] had shown that QUANTIFIED BOOLEAN FORMU-

LAE, the problem of deciding the truth of quantified Boolean formulas (without restric-

tion on the number of alternations), is PSPACE-complete. See MINMAX SAT for the

optimization variant.

[L2] NOT-ALL-EQUAL∀∃3SAT

Given: 3-CNF formula ϕ(x, y).

Question: Is it true that for every truth-assignment to x there is a truth-assignment to y

such that each clause in ϕ(x, y) contains both a true and a false literal?

Reference: Eiter, Gottlob [21].

Comments: Πp
2 -complete.

[*L3] MONOTONE MINIMUM WEIGHT WORD

Given: A Π1 nondeterministic circuit C that accepts a nonempty monotone set (although C

may contain NOT gates) and an integer k. A Π1 nondeterministic circuit is an ordinary

Boolean circuit with two sets of inputs x and y. We say that C accepts an input x iff

(∀y)C(x, y) = 1. A monotone set is a subset S for which x ∈ S implies x′ ∈ S for all

x′ � x, where � is the bitwise partial order on bitstrings.

Question: Does C accept an input x with at most k ones?

Reference: Umans [81].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1−ǫ, where n is the size

of circuit C [81, 78]. The generalized version with m sets of inputs x and y1, y2, . . . , ym−1

in which C accepts an input x iff (∀y1)(∃y2)(∀y3) . . . C(x, y1, y2, . . . ym−1) is Σp
m-complete

and Σp
m-hard to approximate to within n1−ǫ [83, 78]. Maximization version of MONO-

TONE MAXIMUM ZEROS.

[*L4] MONOTONE MAXIMUM ZEROS

Given: A Π1 nondeterministic circuit C that accepts a nonempty monotone set (although C

may contain NOT gates) and an integer k. See MONOTONE MINIMUM WEIGHT WORD

above for the relevant definitions.

Question: Does C accept an input x with at least k zeros?

Reference: Umans [83].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/8−ǫ, where n is the

size of circuit C. The generalized version with m sets of inputs x and y1, y2, . . . , ym−1 in
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which C accepts an input x iff (∀y1)(∃y2)(∀y3) . . . C(x, y1, y2, . . . ym−1) is Σp
m-complete

and Σp
m-hard to approximate to within n1/8−ǫ. Minimization version of MONOTONE

MINIMUM WEIGHT WORD.

[L5] GENERALIZED 3-CNF CONSISTENCY

Given: Two sets A and B of Boolean formulas.

Question: Is there a Boolean formula ϕ such that ϕ ∧ ψ is satisfiable for all ψ ∈ A, and

unsatisfiable for all ψ ∈ B?

Reference: Ko, Tzeng [44].

Comments: Σp
2-complete. Similar in structure to PATTERN CONSISTENCY, and GRAPH

CONSISTENCY.

[*L6] MIN DNF

Given: A DNF formula ϕ and an integer k. The size of a formula is the number of occurrences

of literals in the formula.

Question: Is there a DNF formula ψ such that ψ ≡ ϕ and ψ has size at most k?

Reference: Umans [84].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/4−ǫ (resp., n1/3−ǫ),

where n is the size of ϕ (resp., n is the number of terms in ϕ) [81, 83, 78]. The variant in

which the size is the number of terms is also Σp
2-complete, and Σp

2-hard to approximate

to within the same factors. The problem is also known as MEEDNF, and MIN. If we drop

the restriction to DNF formulas, we obtain MEE. The complexity of the variant MINIMAL

is not known.

[*L7] IRREDUNDANT

Given: A DNF formula ϕ and an integer k.

Question: Is there a subset of at most k terms from ϕ whose disjunction is equivalent to ϕ?

Reference: Umans [81].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/4−ǫ (resp., n1/3−ǫ),

where n is the number of occurrences of literals in ϕ (resp., n is the number of terms

in ϕ) [81, 83, 78]. Minimization version of MAXIMUM TERM DELETION. The variant

in which ϕ is a 3-DNF tautology is called MIN DNF TAUTOLOGY and remains Σp
2-

complete [24, 70], and Σp
2-hard to approximate to within nǫ [70].

[*L8] MAXIMUM TERM DELETION

Given: A DNF formula ϕ and an integer k.

Question: Can one delete at least k terms from ϕ so that the remaining DNF is equivalent

to ϕ?

Reference: Umans [83].
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Comments: Σp
2-complete. Also Σp

2-hard to approximate to within nǫ for some constant

ǫ > 0, where n is the number of occurrences of literals in ϕ [83, 78]. Maximization

version of IRREDUNDANT.

[*L9] SHORT CNF

Given: A DNF formula ϕ and an integer k in unary. The size of a formula is the number of

occurrences of literals in the formula.

Question: Is there a CNF formula ψ such that ψ ≡ ϕ and ψ has size at most k?

Reference: Schaefer, Umans [70].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within a factor nǫ, where n is

the size of ϕ. The problem was proposed by Papadimitriou [61, Problem 17.3.12].

[*L10] SHORTEST IMPLICANT CORE

Given: A DNF formula ϕ, an implicant C of ϕ, and an integer k. An implicant of ϕ is a set

of literals whose conjunction implies ϕ. The size of an implicant is its size as a set.

Question: Is there an implicant C ′ ⊆ C of ϕ of size at most k?

Reference: Umans [84].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1−ǫ, where n is the

number of occurrences of literals in ϕ [81, 78]. Minimization version of MAXIMUM

LITERAL DELETION.

[*L11] MAXIMUM LITERAL DELETION

Given: A DNF formula ϕ, an implicant C of ϕ, and an integer k. See SHORTEST IMPLICANT

CORE above for the relevant definitions.

Question: Is there a subset D ⊆ C of size at least k for which C ′ = C \D is an implicant of

ϕ?

Reference: Umans [83].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within nǫ for some constant ǫ > 0,

where n is the number of occurrences of literals in ϕ [83, 78]. Minimization version of

SHORTEST IMPLICANT CORE.

[*L12] SHORTEST IMPLICANT

Given: A Boolean circuit ϕ, and an integer k.

Question: Is there an implicant C of ϕ of size at most k? See SHORTEST IMPLICANT CORE

above for the relevant definitions.

Reference: Umans [84].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1−ǫ, where n is the

number of occurrences of literals in ϕ. The variant in which ϕ is a Boolean formula

remains Σp
2-complete and Σp

2-hard to approximate to within the same factor [82]. The
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variant in which ϕ is a DNF formula is complete for a class between coNP and Σp
2

called GC(log2 n, coNP) [84], and GC(log2 n, coNP)-hard to approximate to within an

(1/3 − ǫ) log n additive factor, where n is the number of terms in ϕ [83].

[L13] CIRCUIT RESTRICTION

Given: Two circuits C1 and C2 on the same set of variables V . Two circuits are equivalent if

they compute the same truth-table on V . A restriction of a circuit is obtained by setting

some of the variables to constant values in {0, 1}.

Question: Is C1 a restriction of C2?

Reference: Borchert, Ranjan [7].

Comments: Σp
2-complete. Three other variants are also Σp

2-complete: allowing variables to

be renamed, allowing variables to be set and renamed, or replacing variables by literals [7].

If variables are renamed bijectively, the problem turns into BOOLEAN ISOMORPHISM

which is likely to be intermediary between the first and second level of the hierarchy [1, 8].

[*L14] MINMAX SAT

Given: 3-CNF formula ϕ(x, y) and integer k.

Question: For every truth-assignment to x, is there a truth-assignment to y making at least

k clauses in ϕ(x, y) true?

Reference: Meyer, Stockmeyer [56].

Comments: Πp
2 -complete. Optimization version of ∀∃3SAT. Let us call f(ϕ) the largest k

such that for every x there exists a y making at least k clauses in ϕ(x, y) true. Then there

is a c > 0 such that approximating f(ϕ) to within a factor of c is Πp
2-hard. This follows

from work on debate systems (generalizing the PCP characterization of NP) [13, 41] as

pointed out in [42]. Ko and Lin [43] showed that the c-approximation problem remains

Πp
2-hard if the number of occurrences of each variable is bounded by a constant B

(MINMAX SAT B). This result is used in the proof that LONGEST DIRECTED CIRCUIT

is Πp
2-complete. Havev, Regev, and Ta-Shma [33] showed that MINMAX SAT B remains

Πp
2-complete, even if we know that in positive instances all clauses are true.
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[L15] ∃∗∀∗ SATISFIABILITY IN FOL WITH ONE UNARY FUNCTION

Given: A first-order formula ϕ whose quantifier part is of the form ∃∗∀∗, where ϕ may contain

equality and one unary function, but no other constant, function, or relation symbols.

Question: Is there a model for ϕ?

Reference: Börger, Grädel, Gurevich [9, Theorem 6.4.19].

Comments: Σp
2-complete; the harder part being membership in Σp

2 . This is a special case of

Ramsey’s decidability result of the satisfiability problem for ∃∗∀∗ formulas with equality,

but no other relation symbols (which is NEXP-complete). The following variants of

the satisfiability problem are also Σp
2-complete: quantifier part of the form ∃∗∀∗, and no

relation or function symbols except for equality; quantifier part of the form ∃∗∀∗, and at

most one unary relation (no function symbols, no equality); quantifier part of the form

∃2∀∗, and relations of arbitrary arity (no functions, no equality). See [9, Theorem 6.4.7].

Also, see ∃∗∀∗ CNF SATISFIABILITY WITH EQUALITY.

[L16] ∃∗∀∗ CNF SATISFIABILITY WITH EQUALITY

Given: A first-order formula ϕ whose quantifier part is of the form ∃∗∀∗, and whose quantifier-

free part is in 3-CNF and may contain equality, but no function, or relation symbols.

Question: Is there a model for ϕ of cardinality three?

Reference: Pichler [63].

Comments: Σp
2-complete. Remains Σp

2-complete if cardinality is any fixed integer at least

three. See ∃∗∀∗ SATISFIABILITY IN FOL WITH ONE UNARY FUNCTION.

[L17] CONSTRAINTS OVER PARTIALLY SPECIFIED FUNCTIONS

Given: A set of partially specified Boolean functions f1, . . . , fn, and a Boolean formula ϕ over

f1, . . . , fn. A partially specified Boolean function f is a circuit with three output values:

1, 0, and d (for “don’t care”).

Question: Can the “don’t care” values in f1, . . . , fn be set to 0 and 1 such that ϕ, when

interpreted over the resulting Boolean functions, is always true?

Reference: Sriram, Tandon, Dasgupta, Chakrabarti [73].

Comments: Πp
2 -complete.

[L18] ∃∀∃∃ PRESBURGER ARITHMETIC

Given: A first-order formula ϕ of Presburger arithmetic, that is, allowing addition and equal-

ity, whose quantifier part is of the form ∃∀∃∃.

Question: Is ϕ true in the natural numbers?

Reference: Schöning [72].

Comments: Σp
2-complete. Truth in Presburger Arithmetic of formulas with prefix ∃1∀2 . . . ∀m∃

3

is Σp
m-complete if m is even, and the truth of formulas with prefix ∃1∀2 . . . ∃m∃

3 is Σp
m-

complete if m is odd. The ∃∀ case is NP-complete.
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[L19] GRAPH SATISFIABILITY

Given: 3-CNF formula ϕ. With a formula ϕ we associate a graph G(ϕ) on the variables and

clauses of ϕ with an edge between a variable and a clause, if the variable occurs in the

clause (positively, or negatively). We call ϕ graph-satisfiable if every ψ with G(ϕ) = G(ψ)

is satisfiable (i.e. the satisfiability of ϕ only depends on the graph G(ϕ)).

Question: Is ϕ graph satisfiable?

Reference: Szeider [76, 77].

Comments: Πp
2 -complete. For 2-CNF formulas graph satisfiability can be recognized in linear

time. Reduction from 2-COLORING EXTENSION.

[L20] ARGUMENT COHERENCE

Given: Digraph (without self-loops) H = (X,A), called an argument system. X is the set of

arguments, and A the set of attacks; we say x attacks y if (x, y) ∈ A. An argument x ∈ X

is attacked by S ⊆ X if (y, x) ∈ A for some y ∈ S. A set of arguments S is conflict-free if

no argument in S is attacked by S. An argument x ∈ X is acceptable with respect to S

if for every y ∈ X that attacks x there is a z ∈ S that attacks y. A set of arguments S is

admissible if every argument in S is acceptable with respect to S. A preferred extension

is a maximal admissible set. A stable extension S is a conflict free set that attacks every

argument in S. H is coherent if every preferred extension is stable.

Question: Is H coherent?

Reference: Dunne, Bench-Capon [17].

Comments: Πp
2 -complete. The proof also shows that the question of whether a given argu-

ment occurs in every preferred extension is Πp
2-complete as well.

[L21] ∃∃!-3SAT

Given: 3-CNF formula ϕ. “∃!” is interpreted as “there is exactly one”.

Question: Is ∃x∃!yϕ(x, y) true?

Reference: Marx [52].

Comments: Σp
2-complete. Used to show UNIQUE k-LIST COLORABILITY Σp

2-complete.

[*L22] MINIMUM EQUIVALENT EXPRESSION

Given: A well-formed Boolean formula ϕ, integer k. The size |ϕ| of a formula is the number

of occurrences of literals in the formula.

Question: Is there a well-formed Boolean formula ψ for which ψ ≡ ϕ, and |ψ| < k?

Reference: Buchfuhrer, Umans [10]. Mentioned as an open problem in Garey, Johnson [25].

Comments: Σp
2-complete under Turing-reductions [10] if all Boolean formulas are over sig-

nature {∨,∧,¬}; trivially hard for coNP, and hard for PNP
|| (P with parallel access

to NP) as shown by Hemaspaandra and Wechsung [35]. MEEd, the problem restricted
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to {∨,∧,¬}-Boolean formulas of depth at most d is also Σp
2-complete under Turing re-

ductions for any fixed d ≥ 3 [10]. Completeness under many-one reductions of MEE

and MEEd is open, as is the original version suggested by Garey, Johnson with Boolean

formulas over signature {∨,∧,¬,→}. Restricted to DNF formulas, the problem is MIN

DNF, which is Σp
2-complete. Also see MINIMAL.

[L23] ∃∃!t-3SAT

Given: 3-CNF formula ϕ(x, y) with a proper partial assignment over y. A partial assignment

over S assigns truth-values to a subset of the S-variables. It is proper if every clause

in ϕ contains a true literal. An assignment assigns truth-values to all variables in the

formula. It respects a partial assignment, if it agrees with the truth-values of the partial

assignment.

Question: Is ∃x∃!tyϕ(x, y) true? That is, is there a partial assignment t′ over x so that there

is a unique proper assignment of ϕ which respects t′?

Reference: Hatami, Maserrat [31].

Comments: Σp
2-complete. Used to show MINIMUM 3SAT DEFINING SET Σp

2-complete.

[L24] MINIMUM 3SAT DEFINING SET

Given: 3-CNF formula ϕ, integer k. A defining set is a partial assignment of truth-values to

variables of ϕ which has a unique extension to a satisfying assignment of ϕ. The size of

a defining set is the number of variables that are assigned truth-values.

Question: Does ϕ have a defining set of size at most k?

Reference: Hatami, Maserrat [31].

Comments: Σp
2-complete. Reduction from ∃∃t! 3SAT. Used to show MINIMUM VERTEX

COLORING DEFINING SET Σp
2-complete.

2.2 Graph Theory

[GT1] GRAPH CONSISTENCY

Given: Two sets A and B of (finite) graphs.

Question: Is there a graph G such that every graph in A is isomorphic to a subgraph of G,

but no graph in B is isomorphic to a subgraph of G?

Reference: Ko, Tzeng [44] (GRAPH RECONSTRUCTION).

Comments: Σp
2-complete. Similar in structure to PATTERN CONSISTENCY, and GENER-

ALIZED 3-CNF CONSISTENCY.

[*GT2] MINMAX CLIQUE

Given: Graph G = (V,E), a partition (Vi,j)i∈I,j∈J of V , integer k. For a function t : I → J

let ft be the size of the largest clique in G restricted to
⋃

i∈I Vi,t(i).

Question: Is mint∈JI ft(G) ≥ k?
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Reference: Ko, Lin [42].

Comments: Πp
2 -complete. There is a c > 0 such that approximating ft(G) to within a factor

c is Πp
2-hard. Also see MAXMIN VERTEX COVER.

[*GT3] MINMAX CIRCUIT

Given: Graph G = (V,E), a partition (Vi,j)i∈I,j∈J of V , integer k. For a function t : I → J

let ft be the length of the longest cycle in G restricted to
⋃

i∈I Vi,t(i).

Question: Is mint∈JI ft(G) ≥ k?

Reference: Ko, Lin [42].

Comments: Πp
2 -complete. It is not known whether the c-approximation version of this prob-

lem remains Πp
2-complete.

[GT4] DYNAMIC HAMILTONIAN CIRCUIT

Given: Graph G = (V,E), subset B of E. For a subset D of E, define GD = (V,E −D).

Question: Is it true that for all D ⊆ B with |D| ≤ |B|/2, GD has a Hamilton cycle.

Reference: Ko, Lin [42].

Comments: Πp
2 -complete.

[*GT5] LONGEST DIRECTED CIRCUIT

Given: Directed graph G = (V,E), and a subset E′ of E of alterable edges, integer k. For

D ⊆ E let GD be the graph obtained from G by substituting each edge (u, v) in D by

its reverse edge (v, u). Define fD to be the length of the longest cycle in GD.

Question: Is l(G) = minD⊆E′ fD ≥ k?

Reference: Ko, Lin [43].

Comments: Πp
2 -complete. There is a constant c > 0 such that approximating l(G) to within

a factor of c is Πp
2-hard.

[GT6] SUCCINCT TOURNAMENT REACHABILITY

Given: Circuit C representing a tournament graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E), and two vertices s, t. A tournament graph has exactly one edge between

each pair of vertices.

Question: Is t reachable from s in G?

Reference: Nickelsen, Tantau [79, 60].

Comments: Πp
2 -complete. The more interesting part is showing that the problem lies in Πp

2 .

Remains in Πp
2 for graphs of bounded independence number (instead of tournaments); a

generalization of this variant lies in Πp
3 , but is not known to be complete. The variant

of the tournament problem in which G must be strongly connected is also Πp
2-complete.

[*GT7] SUCCINCT TOURNAMENT DOMINATING SET

10



Given: Circuit C representing a tournament graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E), and an integer k. A tournament graph has exactly one edge between each

pair of vertices.

Question: Does G have a dominating set of size at most k? A dominating set is a subset

V ′ ⊆ V such that every vertex is reachable in zero or one steps from V ′.

Reference: Umans [83].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/2−ǫ, where n is the size

of the circuit C [83, 78]. The nonsuccinct version is considered in [62].

[GT8] 3-COLORING EXTENSION

Given: Graph G.

Question: Can any 3-coloring of the leaves of G be extended to a 3-coloring of all of G?

Reference: Ajtai, Fagin, Stockmeyer [2].

Comments: Πp
2 -complete, even if G has maximum degree at most 4. The general version

of the problem has two players alternating in k rounds with vertices of degree i being

colored in round i < k, and all remaining vertices colored in round k. This last player

wins, if he can complete a legal coloring. This problem is Σp

k-complete if k is odd, and

Πp
2-complete if k is even, even if the graph has maximum degree at most max{k, 4}. Also

see 2-COLORING EXTENSION.

[GT9] GENERALIZED GRAPH COLORING

Given: Graphs F , G.

Question: Is there a two-coloring of the vertices of F which does not contain a monochromatic

G as a subgraph?

Reference: Rutenburg [64].

Comments: Σp
2-complete even if G is restricted to be complete. The completeness proof also

works for other coNP-complete families of graphs, see, for example, the GENERALIZED

NODE DELETION problem. For edge colorings compare to ARROWING and STRONG

ARROWING.

[*GT10] GENERALIZED NODE DELETION

Given: Graphs F , G, integer k.

Question: Can we remove at most k vertices from F such that the resulting graph does not

contain G as a subgraph?

Reference: Σp
2-completeness is claimed in Rutenburg [64] without proof.

Comments: Σp
2-complete even if G is restricted to be complete. No nonapproximability

results are known.

[GT11] GENERALIZED RAMSEY NUMBER
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Given: Graph F , a partial two-coloring of the edges of F , integer k.

Question: Does every two-coloring of F which extends the given two-coloring contain a clique

on k vertices.

Reference: Ko, Lin [42]. A proof can also be found in [16].

Comments: Πp
2 -complete. See also ARROWING.

[GT12] ARROWING

Given: Graphs F , G, and H.

Question: Does F → (G,H), i.e., does every edge-coloring of F with colors red and green

contain either a red G, or a green H as a subgraph?

Reference: Schaefer [67].

Comments: Πp
2 -complete even if G is a fixed tree on at least three vertices, and H a com-

plete graph. The problem is coNP-complete for fixed three-connected graphs G and

H [12]. If F is a complete graph, then the problem is NP-hard [11], but not known

to be Πp
2-complete. Kn → (Km,Kℓ) is unlikely to be Πp

2-complete, since it lies in

coNPLOGCLIQUE, where LOGCLIQUE is the problem of deciding whether a graph F has

a clique of size at least log |F |. This version is particularly interesting since it corresponds

to computing Ramsey numbers. Also see STRONG ARROWING, and GENERALIZED

RAMSEY NUMBER. The vertex-coloring version of this problem is called GENERALIZED

GRAPH COLORING.

[GT13] STRONG ARROWING

Given: Graphs F , G, and H.

Question: Does F ֌ (G,H), i.e. does every edge-coloring of F with colors red and green

contain either a red G, or a green H as an induced subgraph of F?

Reference: Schaefer [67].

Comments: Πp
2 -complete if G is a fixed star K1,p (p ≥ 2), and H a complete graph, or

G = H = K1,n (the diagonal case). The noninduced version F → (K1,n,K1,m) is in

P [12]. Also see ARROWING.

[GT14] 2-COLORING EXTENSION

Given: Graph G, set of vertices S.

Question: Can any 2-coloring of S be extended to a 3-coloring of G?

Reference: Szeider [76].

Comments: Πp
2 -complete. Reduction from NAE∀∃3SAT. Used to show GRAPH SATISFIA-

BILITY Πp
2-complete. Also see 3-COLORING EXTENSION.

[GT15] BIPARTITE GRAPH (2, 3)-CHOOSABILITY
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Given: Bipartite graph G, function f : V → {2, 3}. G is called f -choosable, if for every

assignment of f(v) colors to each node v, one color can be chosen for each node to obtain

a proper coloring; that is, a coloring in which adjacent vertices have different colors.

Question: Is G f -choosable?

Reference: Attributed to Rubin in Erdős, Rubin, Taylor [22].

Comments: Πp
2 -complete. Remains Πp

2-complete if G is restricted to be planar (Gutner [28]).

Also see LIST CHROMATIC NUMBER.

[*GT16] LIST CHROMATIC NUMBER

Given: Graph G, integer k. G is called k-choosable, if for every assignment of k colors to

every node, one color can be chosen for each node to obtain a proper coloring; that is,

a coloring in which adjacent vertices have different colors. The list chromatic number,

χℓ(G), also known as the choice number of G is the smallest k such that G is k-choosable.

Question: Is χℓ(G) ≤ k?

Reference: Gutner, Tarsi [29].

Comments: Πp
2 -complete for any fixed k ≥ 3. Reduction from BIPARTITE GRAPH (2, 3)-

CHOOSABILITY. Remains Πp
2-complete if G is bipartite. For k = 2, the problem is

solvable in polynomial time using a result of Erdős, Rubin, Taylor [22]. Gutner [28] shows

that the following planar versions of the problem remain Πp
2-complete: determining

whether a planar triangle-free graph is 3-choosable, determining whether a planar graph

is 4-choosable, determining whether a union of two forests (on a shared vertex set) is

3-choosable. Also see BIPARTITE GRAPH (2, 3)-CHOOSABILITY and UNIQUE k-LIST

COLORABILITY.

[*GT17] GROUP CHROMATIC NUMBER

Given: Graph G = (V,E), integer k. For a fixed Abelian group A, G is said to be A-colorable

if for every orientation of the edges of G, and every edge-labelling φ : E → A, there

is a vertex-coloring c : V → A, such that φ(u, v) 6= c(u) − c(v) for all directed edges

(u, v) of G. The group chromatic number χg(G) is the smallest number ℓ such that G is

A-colorable for all Abelian groups of order at least ℓ.

Question: Is χg(G) ≤ k?

Reference: Král’ [46]. Also in Král’ and Nejedlý [47].

Comments: Πp
2 -complete for any fixed k ≥ 3. Also see GROUP CHOOSABILITY.

[GT18] GROUP CHOOSABILITY

Given: Graph G = (V,E), integer ℓ. For a fixed Abelian group A, G is said to be A-ℓ-

choosable if for every orientation of the edges of G, every list assignment L : V →
(

A
ℓ

)

,

and every edge-labelling φ : E → A, there is a vertex-coloring c : V → A with c(u) ∈ L(u),

such that φ(u, v) 6= c(u)− c(v) for all directed edges (u, v) of G.

13



Question: Is G A-ℓ-choosable?

Reference: Král’ and Nejedlý [47].

Comments: Πp
2 -complete for any fixed group A of order at least 3 and any fixed ℓ ≥ 3.

In particular, it is Πp
2-complete to decide whether G is A-colorable (also in [46]). The

problem becomes polynomial-time solvable if ℓ ≤ 2. GROUP CHOOSABILITY gener-

alizes LIST CHROMATIC NUMBER. Also see the closely related GROUP CHROMATIC

NUMBER.

[*GT19] CLIQUE COLORING

Given: Graph G = (V,E), integer k. A k-clique-coloring is a function c : V → {1, . . . , k} such

that every maximal clique of G contains two vertices of different color.

Question: Does G have a k-clique-coloring?

Reference: Marx [51].

Comments: Σp
2-complete for any fixed k ≥ 2. A k-clique-coloring of G is not necessarily a

k-clique-coloring of the subgraphs of G. The variant HEREDITARY CLIQUE COLORING,

in which the graph and all its induced subgraphs are required to be k-clique colorable

turns out to be Πp
3-complete. CLIQUE CHOOSABILITY is another Πp

3-complete variant.

[*GT20] PEBBLING NUMBER

Given: Graph G = (V,E), integer k. Vertices of the graph can contain pebbles. A pebbling

move along an edge uv ∈ E removes two pebbles from u and adds one pebble to v. The

pebbling number π(G) is the smallest number k of pebbles such that for all distributions

of k pebbles on G and for all target vertices v ∈ V there is a sequence of pebbling moves

that places a pebble on v.

Question: Is π(G) ≤ k?

Reference: Milans, Clark [57].

Comments: Πp
2 -complete. Remains Πp

2 -complete for a single target vertex which is part of

the input. Determining the optimal pebbling number, π̂(G), the smallest number k of

pebbles such that there is a distribution of k pebbles on G such that for every target

vertex v ∈ V there is a sequence of pebbling moves that places a pebble on v, is NP-

complete. The complexity of deciding π(G) = |V | remains open (note that π(G) ≥ |V |).

[*GT21] UNIQUE k-LIST COLORABILITY

Given: Graph G = (V,E), integer k. A k-list coloring L assigns k colors to each node of G.

The graph is L-colorable if there is a proper coloring of the graph such that every vertex

v is assigned a color from its list L(v). A graph is k-list colorable (or k-choosable) if there

is a k-list coloring L such that G is L-colorable. A graph is uniquely k-list colorable if

there is a k-list coloring L such that there is exactly one L-coloring of G.

Question: Is G uniquely k-list colorable?
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Reference: Marx [52].

Comments: Σp
2-complete. Reduction from ∃∃!-3SAT. Remains Σp

2-complete for k = 3 or if

each of the lists contains 2 or 3 elements. Can be decided in polynomial time for k = 2

(Mahdian and Mahmoodian, see [52]). Also, see LIST CHROMATIC NUMBER.

[*GT22] THUE NUMBER

Given: A graph G = (V,E), integer k. A word w is square-free (or non-repetitive) if there are

no u, v, w such that w = uvvw (with v not the empty word). A non-repetitive k-edge

coloring of G is a k-edge coloring of G such that for any path in G, the sequence of colors

along the path is square-free. The smallest k such that G has a non-repetitive k-edge

coloring is called the Thue number of G.

Question: Is the Thue number of G at most k?

Reference: Manin [50].

Comments: Σp
2-complete. Deciding whether a given edge coloring is non-repetitive is coNP-

complete. If we only have to avoid non-repetitive sequences up to a certain length, the

problem is NP-complete. Thue number was first defined in Alon, Grytczuk, Hauszczak,

Riordan [4]. Named after Axel Thue who proved that there are infinite square-free words.

Also see THUE CHROMATIC NUMBER (open problems).

[*GT23] GRAPH SANDWICH PROBLEM FOR Π

Given: Graphs F,F ′ so that F ⊆ F ′.

Question: Is there a graph G satisfying Π so that F ⊆ G ⊆ F ′?

Reference: Schaefer [69].

Comments: Σp
2-complete for the property of being Pk-free where k = Θ(|V (G)|1/2). Open

whether there is a natural property Π, such as being well-covered, for which problem is

Σp
2-complete.

[GT24] MINIMUM VERTEX COLORING DEFINING SET

Given: Graph G, integer k. A defining set for a vertex coloring is a partial vertex coloring

which has a unique extension to a legal vertex coloring of G. The size of a defining set

is the number of vertices colored.

Question: Does G have a vertex coloring defining set of size at most k?

Reference: Hatami, Maserrat [31].

Comments: Σp
2-complete for vertex 3-colorings. Reduction from MINIMUM 3SAT DEFINING

SET. For a discussion on the relationship to the forcing chromatic number, see [30].

[*GT25] SUCCINCT k-DIAMETER

Given: Circuit C representing a directed graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E). The diameter of a directed graph is the largest distance between any

two vertices of the graph. The distance between two vertices is the length of a smallest

directed path between the vertices.
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Question: Does G have diameter at most k?

Reference: Hemaspaandra, Hemaspaandra, Tantau, Watanabe [34].

Comments: Σp
2-complete for any fixed k ≥ 2. Remains Σp

2-complete for tournaments (di-

rected graphs for which there is exactly one edge between any two vertices) and undirected

graphs [80]. Also see SUCCINCT k-DIAMETER and SUCCINCT k-RADIUS.

[*GT26] SUCCINCT k-KING

Given: Circuit C representing a directed graph G = (V,E) (i.e., C(u, v) = 1 if and only if

(u, v) ∈ E), integer k. A vertex is a k-king is every vertex in the graph can be reached

by a directed path of length at most k.

Question: Does G contain a k-king?

Reference: Hemaspaandra, Hemaspaandra, Tantau, Watanabe [34].

Comments: Πp
2 -complete for any fixed k ≥ 2. Remains Πp

2-complete for tournaments (di-

rected graphs for which there is exactly one edge between any two vertices). Also see

SUCCINCT k-KING and SUCCINCT k-DIAMETER.

2.3 Sets and Partitions

[*SP1] SUCCINCT SET COVER

Given: A collection S = {ϕ1, ϕ2, . . . , ϕm} of 3-DNF formulas on n variables, and an integer

k.

Question: Is there a subset S′ ⊆ S of size at most k for which ∨ϕ∈S′ϕ ≡ 1?

Reference: Umans [81].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1−ǫ, where n is the

number of occurrences of literals in ϕ1, ϕ2, . . . , ϕm [81, 78]. The restriction in which

all the φi except φ1 are single literals, and φ1 evaluates to 1 on at least 1/2 of the

domain remains Σp
2-complete and Σp

2-hard to approximate to within the same factor.

This restriction can be seen as a succinct version of RICH HYPERGRAPH COVER [83],

whose complexity was considered in [62].

[SP2] GENERALIZED SUBSET SUM

Given: Two vectors u and v of integers, and an integer t.

Question: Is (∃x)(∀y)[ux + vy 6= t] true, where the variables x and y are binary vectors of

the same length as u and v?

Reference: Berman, Karpinski, Larmore, Plandowski, Rytter [6].

Comments: Σp
2-complete. Used to show FULLY COMPRESSED TWO-DIMENSIONAL PAT-

TERN MATCHING Πp
2-complete.

[*SP3] MAXMIN VERTEX COVER
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Given: Graph G = (V,E), a partition (Vi,j)i∈I,j∈J of V , integer k. For a function t : I → J

let ft be the size of a smallest vertex cover of G restricted to
⋃

i∈I Vi,t(i).

Question: Is maxt∈JI ft(G) ≤ k?

Reference: Ko, Lin [42].

Comments: Πp
2 -completeness follows from Πp

2-completeness of MINMAX CLIQUE using the

standard transformation between vertex covers and cliques. The nonapproximability

result for MINMAX CLIQUE does not carry over, and no nonapproximability results are

currently known.

[*SP4] MINMAX THREE DIMENSIONAL MATCHING

Given: Set W , partition (Wi,j)i∈I,j∈J of W , set S of three-element subsets of W , and an

integer k. Call a set S′ ⊆ S a matching in W ′ ⊆W , if the sets in S′ are mutually disjoint

subsets of W ′. For a function t : I → J let ft(W ) be the size |S′| of a largest matching

S′ in
⋃

i∈I Wi,t(i).

Question: Is mint∈JI ft(W ) ≥ k?

Reference: Ko, Lin [42].

Comments: Πp
2 -complete; reduction from MINMAX SAT YB. There is a c > 0 such that

approximating mint∈JI ft(W ) to within a factor c is Πp
2-hard.

[SP5] ∀∃ THREE DIMENSIONAL MATCHING

Given: Three disjoint sets X1, X2, X3 of the same cardinality, and two disjoint subsets M1

and M2 of X1 × X2 × X3. A matching of X1, X2, X3 is a set S ⊆ X1 × X2 × X3 of

size |X1| = |X2| = |X3| such that the components of the elements of S contain all the

elements of X1 ∪X2 ∪X3.

Question: For any subset S1 of M1, is there a subset S2 of M2 such that S1∪S2 is a matching?

Reference: McLoughlin [55].

Comments: Used to show Πp
2-completeness of COVERING RADIUS. A gap version of this

problem remains Πp
2-hard which implies Πp

2-hardness of approximation for COVERING

RADIUS [27].

2.4 Algebra and Number Theory

[AN1] INTEGER EXPRESSION INEQUIVALENCE

Given: Two integer expressions e1, and e2 built from binary numbers with operators +, and

∪. For an integer expression e define L(e) = {n} if e is the binary representation of n,

L(e+ f) = {n+m : n ∈ L(e),m ∈ L(f)}, and L(e ∪ f) = L(e) ∪ L(f).

Question: Is L(e1) 6= L(e2)?

Reference: Stockmeyer, Meyer [25]. The result appears in a 1973 conference paper by Stock-

meyer and Meyer, and a 1976 paper by Stockmeyer.
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Comments: Σp
2-complete. Probably the first natural problem to be shown Σp

2-complete.

The subset problem L(e1) ⊆ L(e2) is Πp
2-complete. The same is true for expressions

represented in the general hierarchy input language (GHIL) which according to Wag-

ner [87] was shown by Bentley, Ottmann, and Widmayer (1983). Huynh [39] observes

that his result that 1 LETTER TERMINAL ALPHABET GRAMMAR INEQUIVALENCE is

Σp
2-complete implies that deciding the inequivalence of integer expressions over a unary

alphabet with operations ∪, ·, 2, and ∗ is also Σp
2-complete. See INTEGER EXPRESSION

CONNECTEDNESS, and INTEGER EXPRESSION COMPONENT LENGTH.

[AN2] INTEGER EXPRESSION CONNECTEDNESS

Given: An integer expression e built from binary numbers with operators +, and ∪. See IN-

TEGER EXPRESSION INEQUIVALENCEabove for the definition of an integer expression.

A set of integers S is called connected if for every x, z ∈ S and any y, if x < y < z then

y ∈ S.

Question: Is L(e) connected?

Reference: Wagner [87].

Comments: Πp
2 -complete. The result also holds if the input is specified using the general

hierarchic input language (GHIL).

[*AN3] BOOLEAN EXPRESSION COMPONENT LENGTH

Given: A Boolean formula ϕ, integer k. If ϕ has n Boolean input variables x1, . . . , xn we let

L(ϕ) = {x1 · · · xn : ϕ(x1, . . . , xn)} interpreting the binary vector as a natural number. A

set of numbers L is called connected if for every x, z ∈ L and any y, if x < y < z then

y ∈ L. A maximal connected subset of a set is called a component.

Question: Does L(ϕ) have a component of size at least k?

Reference: Wagner [87].

Comments: Σp
2-complete. For integer expressions the problem is Σp

3-complete (INTEGER

EXPRESSION COMPONENT LENGTH). No nonapproximability results are known.

[AN4] BOUNDED EIGENVECTOR

Given: n×n integer matrix M , eigenvalue λ of M , subset I ⊆ {1, . . . , n}, rational number y.

Question: Is there an eigenvector x = (x1, . . . , xn) (for λ) such that x1 = y, |xi| ≤ c (for

some fixed c), and x has maximal ℓ2-norm among vectors identical to x on I?

Reference: Eiter, Gottlob [21].

Comments: Σp
2-complete for any fixed c ≥ 1, and y = 0.

[AN5] SEMILINEAR SET EQUIVALENCE

Given: Finite sets Ci, Pi, C
′
i, P

′
i ⊆ N

k (1 ≤ i ≤ n). Let L(C,P ) = {c +
∑

p∈P λpp : c ∈ C, p ∈

P, λ ∈ N}, and SL(C1, . . . , Cn;P1, . . . Pn) =
⋃n

i=1 L(Ci, Pi). Sets of the form L are called

linear, sets of the form SL semilinear.
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Question: Is SL(C1, . . . , Cn;P1, . . . Pn) = SL(C ′
1, . . . , C

′
n;P ′

1, . . . P
′
n)?

Reference: Huynh [40].

Comments: Πp
2 -complete, even for k = 1.

2.5 Automata and Languages

[AL1] PATTERN CONSISTENCY

Given: Two sets A and B of strings over {0, 1}. A pattern is a string over {0, 1} and a set of

variables. The language L(p) associated with a pattern p is the set of strings that can

be obtained from p by substituting all variables in p by strings over {0, 1}.

Question: Is there a pattern p such that A ⊆ L(p) ⊆ B.

Reference: Ko, Tzeng [44].

Comments: Σp
2-complete. Similar in structure to GRAPH CONSISTENCY, and GENERAL-

IZED 3-CNF CONSISTENCY.

[AL2] FULLY COMPRESSED TWO-DIMENSIONAL PATTERN MATCHING

Given: Two images succinctly represented by straight-line programs. One image is called the

pattern, the other the text. A straight-line program is a sequence of instructions of types

A← B⊘C (put image B next to image C if images have same height), and A← B⊖C

(put image B on top of image C if images have same width). Terminal symbols are 0

and 1.

Question: Is the pattern contained in the text (as a subrectangle)?

Reference: Berman, Karpinski, Larmore, Plandowski, Rytter [6].

Comments: Σp
2-complete. Reduction from GENERALIZED SUBSET SUM. The fully com-

pressed pattern matching problem for strings (one-dimensional patterns) can be solved

in polynomial time (see [65] for a survey on compressed pattern matching).

[AL3] 1LTA GRAMMAR INEQUIVALENCE

Given: Two context-free grammars G1 and G2 over a 1-letter terminal alphabet. Let L(G)

be the language generated by a grammar G.

Question: Is L(G1) 6= L(G2)?

Reference: Huynh [39].

Comments: Σp
2-complete. Reduction from INTEGER EXPRESSION INEQUIVALENCE. The

more difficult part here is showing that the problem lies in Σp
2 by using a variant of

Parikh’s theorem. The result has consequences for a unary variant of INTEGER EX-

PRESSION INEQUIVALENCE.

[AL4] POMSET LANGUAGE CONTAINMENT
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Given: Two POMSETS P , Q. A POMSET (partially ordered multiset) is a directed acyclic

graph (V,E) whose vertices have labels in Σ. The language L(P ) associated with a POM-

SET P is the set of words of length n = |V | over Σ that corresponds to a permutation

of the vertices in V which is consistent with the partial order generated by (V,E).

Question: Is L(P ) ⊆ L(Q)?

Reference: Feigenbaum, Kahn, Lund [23].

Comments: Πp
2 -complete. The language membership problem is NP-complete, and deter-

mining the size of L(P ) is span-P complete. Determining whether L(P ) = L(Q) obviously

lies in Πp
2 , and Feigenbaum, Kahn, and Lund showed that it is at least as hard as GRAPH

ISOMORPHISM.

[AL5] STAR-FREE REG. EXPRESSION W/ INTERLEAVING EQUIVALENCE

Given: Two regular expressions e1, e2 using union, concatenation, and interleaving. For two

words x, y ∈ {0, 1}∗ the operation | of interleaving x and y results in the set x|y containing

all words x1y1 . . . xkyk such that x = x1 . . . xk, and y = y1 . . . yk, where the yi can have

any length (including zero).

Question: Are e1 and e2 equivalent, i.e., do they describe the same set of words?

Reference: Mayer, Stockmeyer [54].

Comments: Πp
2 -complete. The proof is based on Stockmeyer’s INTEGER EXPRESSION

INEQUIVALENCE result. There are many versions of the regular expression problem.

The standard version has union, concatenation, and Kleene star, and it is PSPACE-

complete [25, AL9]. Adding interleaving, or intersection (Hunt, 1973; according to [54])

makes it exponential space-complete. Removing both the Kleene star and interleaving

gives an NP-complete problem (Hunt, Stockmeyer and Mayer, 1973; according to [54]).

[AL6] TRIE2

Given: A sequence Π of patterns of length n and an integer k. A pattern is a string in {0, 1, ∗}∗ .

A call is a string over {0, 1} (∗ matches both 0 and 1). A TRIE T is an ordered rooted

tree (i.e. the order of a depth-first search traversal is specified) whose edges have labels

in {1, 2, . . .} × {0, 1, ∗}. A TRIE T for Π is a TRIE which has as many leaves as Π has

patterns. Furthermore if τ is the set of labels along the path to the jth leaf reached in

the fixed depth-first search traversal of T , then τ needs to be equal to the jth pattern in

Π (for all j). For a call c let m(c, T ) be the number of edges that a depth-first traversal

of T will visit (we do not continue along an edge whose label is not consistent with c).

Intuitively m(c, T ) is the number of matches performed by the TRIE to find all patterns

in Π matching c.

Question: Is there a call c such that m(c, T ) ≥ k for all TRIEs T for Π.

Reference: Lin [49].
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Comments: Πp
2 -complete. There is a constant 0 < c < 1 for which approximating f(Π) =

minT maxcm(c, T ) to within a factor of c is Πp
2-hard. For a fixed TRIE the problem is

NP-complete (Dawson, Ramakrishnan, Ramakrishnan, Swift, 1994; according to [49]).

[AL7] BOOLEAN ALGEBRA UNIFICATION

Given: Two terms φ and ψ over a Boolean algebra (operations +, ×, ¬ and constants 0, 1)

with free constants.

Question: Can φ and ψ be unified; that is, is there a substitution σ of the free constants

by terms of the Boolean algebra such that σ(φ) and σ(ψ) are congruent in the Boolean

algebra?

Reference: Baader [5].

Comments: Πp
2 -complete. Is NP-complete, if free constants are not allowed.

[AL8] SIMPLE XPATH CONTAINMENT

Given: Simple XPath expressions P1 and P2. The application of a simple XPath expression

P to an XML document results in a set of nodes (of the XML document). We write

P1 ⊆ P2 if for all XML documents the nodes returned by P1 are contained in the set of

nodes returned by P2. For precise definitions see [14] and references mentioned there.

Question: Does P1 ⊆ P2? hold?

Reference: Deutsch, Tannen [14].

Comments: Πp
2 -complete, as are several variants of the problem.

[AL9] TRACE MONOID PRESENTATION

Given: Two trace monoids M = M(A,D), and M ′ = M(A,D′) such that D ⊆ D′. A trace

monoid M(A,D) is a set of traces, that is, the quotient set A∗/{ab = ba|(a, b) 6∈ D} of

equivalence classes of words over the (finite) alphabet A, where two words are equivalent

if one can be transformed into the other by repeatedly transposing pairs of letters (a, b)

not in D. The dependence relation D is required to be reflexive and symmetric. A trace

replacement system for a trace monoid M = M(A,D) is a subset R of M ×M . An

element (l, r) or R is considered as a rewriting rule l ⇒ r over M . R is called complete

if it is Noetherian (no infinite chains), and confluent.

Question: Is there a finite, complete trace replacement system R such that M/R = M ′?

Reference: Diekert, Ochmański, Reinhardt [15].

Comments: Σp
2-complete. The paper also shows that a similar question about semi-commutation

systems is equivalent, and therefore also Σp
2-complete.

[AL10] PLANAR NET DEADLOCK

Given: A nondeterministic finite automaton A, and an integer n. We construct a planar

cellular automaton by placing n2 copies of A on the n2 grid points of an n × n square

grid. Neighboring automata communicate by sending and receiving messages. A deadlock
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occurs if a group of automata permanently enter a waiting state (that is, they wait to

receive a message which never arrives). An input to the network is a binary string of

length n whose ith bit is sent to the ith automaton in the first row.

Question: Does the cellular automaton enter a deadlock in at most n time steps, for any

possible input?

Reference: Durand, Fabret [18].

Comments: Πp
2 -complete. Reduction from FINITE TILING EXTENSION. Recognizing whether

a network enters a deadlock in at most n steps for a given input is, of course, NP-

complete.

2.6 Databases

[D1] MONOTONIC RELATIONAL EXPRESSION CONTAINMENT

Given: Two monotonic relational expressions e1, and e2, i.e. only using operators select,

project, join, and union. We write νD(e) to denote the extension of the relational ex-

pression e for a particular database state D.

Question: Is e1 contained in e2; that is, is it true that νD(e1) ⊆ νD(e2) for all database states

D?

Reference: Sagiv, Yannakakis [66].

Comments: Πp
2 -complete. Implies that testing equivalence of monotonic relational expres-

sions is also Πp
2-complete.

[D2] RESTRICTED RELATIONAL EXPRESSION CONTAINMENT (INEQ)

Given: Two restricted relational expressions e1, and e2, i.e. only using operators select,

project, and join. The select conditions are allowed to contain inequalities (≤, <, 6=).

We write νD(e) to denote the extension of the relational expression e for a particular

database state D.

Question: Is e1 contained in e2; that is, is it true that νD(e1) ⊆ νD(e2) for all database states

D?

Reference: van der Meyden [85].

Comments: Πp
2 -complete. Remains Πp

2-complete if only one type of inequality (≤, <, or 6=)

is allowed in the select conditions [85]. It also remains Πp
2-complete, if the expressions

are assumed to be safe (only variables that occur as arguments of relations can appear

in inequalities), and certain other conditions (see [45]). Becomes coNP-complete, if all

relations are unary. Without inequalities, the problem is NP-complete.

[D3] DISJUNCTIVE DATABASE LITERAL INFERENCE

Given: A disjunctive database D, and a literal w. A disjunctive database is a collection of

formulas of the form a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bk ∧ bk+1 ∧ . . . ∧ bm where the ai and bj

are variables. There are different notions of D |= w depending on the semantics chosen.
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Question: Does D |= w?

Reference: Eiter, Gottlob [20].

Comments: Πp
2 -complete for the following semantics: (Extended) Generalized Closed World

Assumption, Extended Closed World Assumption, Iterated Closed World Assumption,

Perfect Model Semantics, and Disjunctive Stable Semantics. It remains Πp
2-complete in

all these cases, if the formulas of the disjunctive database do not contain negation, and

there are no integrity clauses (i.e. n > 0 in all formulas). The problem is Πp
2-hard, and

in PΠ
p
2 [O(log n)] for the Careful Closed World Assumption.

[D4] DISJUNCTIVE DATABASE MODEL EXISTENCE

Given: A disjunctive database D, and a literal w. A disjunctive database is a collection of

formulas of the form a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bk ∧ bk+1 ∧ . . . ∧ bm where the ai and bj

are variables. There are different semantics for what it means to be a model of D.

Question: Is there a model for D?

Reference: Eiter, Gottlob [20].

Comments: Πp
2 -complete for Perfect Model Semantics, and Disjunctive Stable Semantics.

2.7 Games and Puzzles

[GP1] STRONG NASH EQUILIBRIUM

Given: A game G in graphical normal form. A game G consists of a set P of players, and,

for every player, a set of neighbors N(p) ⊆ P − {p}, a set of actions A(p), and a utility

function up : ×x∈N(p)∪{p}A(x)→ R. The game is in graphical normal form, if the utility

function of each player is represented as a table. For a collection of players P ′ ⊆ P ,

an element of ×p∈P ′A(p) is called a strategy. A strategy is global, if P ′ = P . A global

strategy x is called a strong Nash equilibrium if there is no collection of players P ′ for

whom there is a strategy y ∈ ×p∈P ′A(p) which would strictly increase all of their gains;

i.e. for all p ∈ P ′ we would have up(x) < up(x|y), where by x|y we denote the strategy

which on P ′ agrees with y, and with x otherwise.

Question: Does G have a strong Nash equilibrium?

Reference: Gottlob, Greco, Scarello [26].

Comments: Σp
2-complete. Strong Nash equilibria generalize the notion of pure Nash equilib-

ria whose definition is similar, but instead of arbitrary collection of players only requires

local optimality for singleton sets of players. Deciding the existence of pure Nash equi-

libria is NP-complete.

[GP2] FINITE TILING EXTENSION

Given: A finite set C of c colors (including a blank color), a tile set T ⊆ C4, an integer n.

We say the four sides of the tile (t, r, b, l) are colored t (top), r (right), b (bottom), l

(left). In a tiling of the plane tiles cannot be rotated or reversed. In a legal tiling, any

two adjacent tiles must meet in the same color.
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Question: Is there a legally tiled row R of n tiles which cannot be extended to a legal tiling of

an n× n square such that R is the first row of that square and the square is surrounded

by blank tiles?

Reference: Durand, Fabret [18]. Also see van Emde Boas [86]. The finite tiling variant of

the problem, in which we ask whether an n× n square can be tiled using the tiles in T

is NP-complete. This result is attributed to many different authors in different sources,

including Lewis (in [86]), Garey, Johnson, and Papadimitriou (in [25]). The ideas for

the reduction go back to papers by Robinson, Wang, and Berger (see [86]). The same

reduction gives the Σp
2-completeness result for FINITE TILING EXTENSION. However, it

seems that Durand and Fabret were the first authors to make this observation explicitly

in print (they actually attribute the result to van Emde Boas).

Comments: Σp
2-complete. There are many versions of the tiling problem; for a detailed

discussion see the survey by van Emde Boas [86]. Durand and Fabret use the tiling

problem to show that PLANAR NET DEADLOCK is Πp
2-complete.

2.8 Coding and Cryptography

[*CC1] COVERING RADIUS

Given: A linear code, given by a binary parity-check matrix H of dimensions m× n, integer

r. The code associated with H is the set C = {x : xHt = 0}. The covering radius of

the code C is ρ = maxx∈{0,1}n minc∈C d(x, c), where d(x, c) is the Hamming distance

between x and c.

Question: Is ρ ≤ r?

Reference: McLoughlin [55].

Comments: Πp
2 -complete. Reduction from ∀∃ THREE DIMENSIONAL MATCHING. Πp

2 -hard

to approximate to within some constant factor c < 2; however it can be approximated

to within a factor of 2 in AM [27].

[*CC2] IDENTIFYING LINEAR CODE

Given: A linear code, given by a binary parity-check matrix H of dimensions m× n, integer

r. The code associated with H is the set C = {x : xHt = 0}. C is called r-identifying,

if the sets Br(x) ∩ C are all nonempty and pairwise different for x ∈ {0, 1}n.

Question: Is C an r-identifying code?

Reference: Honkala, Lobstein [36].

Comments: Πp
2 -complete. Reduction from ∀∃ THREE DIMENSIONAL MATCHING and COV-

ERING RADIUS. A code is called r-locating-dominating, if the sets Br(x) ∩ C are all

nonempty and pairwise different for x 6∈ C. Deciding, whether C is r-locating-dominating

is also Πp
2-complete.
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2.9 Miscellaneous

[*M1] MINIMUM BLOCK ENCODER AND DECODER

Given: Directed graph G, integers p, q, k1, and k2. G is a DIF, that is, it is a strongly

connected graph whose edges are labeled with 0 and 1 such that every vertex has at

most one outgoing edge of each label. Define S(G) to be the set of all binary strings that

can be obtained by following a directed path in G. A DIF G is called block-feasible, if

there is a set C ⊆ {0, 1}q of size at least 2p whose closure is contained in S(G); that is,

there are 2p codewords fulfilling the constraints described by G. A circuit D computing

an injective function {0, 1}p → C is called an encoder, a circuit E computing an injective

function C → {0, 1}p is called an decoder. The size of a circuit is the number of gates in

the circuit.

Promise: G is block-feasible.

Question: Is there a decoder D of size at most k1, and an encoder of size at most k2?

Reference: Stockmeyer, Modha [74].

Comments: Σp
2-complete under randomized reduction. MINIMUM BLOCK DECODER is Σp

3-

complete, and the complexity of MINIMUM BLOCK ENCODER is open.

[M2] PETRI NET MARKING EQUIVALENCE

Given: Petri nets (N1,M1), (N2,M2) which share the same set of places. The two nets are

called marking equivalent if they have the same set of reachable markings. The Petri nets

are assumed to be sinkless and normal, or conflict-free.

Question: Are (N1,M1) and (N2,M2) marking equivalent?

Reference: Howell, Rosier [37], and Howell, Rosier, Yen [38].

Comments: The general problem is undecidable (Rabin), but it is Πp
2 -complete if the Petri

nets are sinkless and normal [38], or conflict-free [37]. The problem remains complete if

instead of equivalence we ask for containment.

[M3] CONSTRAINT RANKING

Given: A regular set X ⊆ {0, 1}m, given by a finite automaton, called attested surface set,

and a collection of constraints {C1, . . . , Cn}. A constraint C of an attested surface set

X is a function from X to the natural numbers (also computed by a finite automaton).

A ranking of the constraints is an ordering ~C of {C1, . . . , Cn}. An element x of X is

consistent with a ranking (Ci1 , . . . , Cin) if (Ci1(x), . . . , Cin(x)) ≤lex (Ci1(y), . . . , Cin(y))

for all y ∈ {0, 1}m, where ≤lex is the lexicographical ordering.

Question: Is there an x ∈ X consistent with some ranking ~C of C?

Reference: Eisner [19].

Comments: Σp
2-complete. Learning-theory problem from phonology.
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3 The Third Level

3.1 Graph Theory

[*GT1] PATH VC DIMENSION

Given: A graph G = (V,E), and a integer k. Let V Cpath(G) be the size of the largest set

X ⊆ V which is shattered by subpaths of G, i.e. such that for each S ⊆ X there is a

subpath of G containing all vertices in S, but no vertex of X \ S.

Question: Is V Cpath(G) ≥ k?

Reference: Schaefer [68].

Comments: Special case of the GRAPH VC DIMENSION problem defined for types of sub-

graphs of a given graph. Introduced by Kranakis, et al. [48] building on an idea of Haus-

sler and Welzl [32]. The problem is also Σp
3-complete for cycles instead of paths [68]. All

other cases investigated so far turn out to be in P (stars, neighborhoods), or NP-complete

(trees, connected sets) [48]. Also see VC DIMENSION and Q-ARY VC DIMENSION. No

nonapproximability results are known.

[*GT2] CLIQUE CHOOSABILITY

Given: Graph G = (V,E), integer k. A k-list assignment assigns a list L(v) of k colors to

every vertex v of G. A k-clique-list-coloring chooses for every vertex v a color from L(v)

such that every maximal clique of G contains two vertices of different color. The graph

is k-clique-choosable if there is a k-clique-list-coloring for every k-list assignment.

Question: Is G a k-clique-choosable graph?

Reference: Marx [51].

Comments: Πp
3 -complete for any fixed k ≥ 2. The colorability version, CLIQUE COLORING

is Σp
2-complete. Also see HEREDITARY CLIQUE COLORING.

[*GT3] HEREDITARY CLIQUE COLORING

Given: Graph G = (V,E), integer k. A k-clique-coloring is a function c : V → {1, . . . , k} such

that every maximal clique of G contains two vertices of different color. G is hereditarily

k-clique-colorable if there it has a k-coloring which is a k-clique-coloring for all induced

subgraphs of G.

Question: Does G have a hereditary k-clique-coloring?

Reference: Marx [51].

Comments: Πp
3 -complete for any fixed k ≥ 3. The complexity of the case k = 2 remains

open. Also see CLIQUE COLORING and CLIQUE CHOOSABILITY.

[*GT4] SUCCINCT k-RADIUS

Given: Circuit C representing a directed graph G = (V,E) (i.e., C(u, v) = 1 if and only if

(u, v) ∈ E), integer k. The r-neighborhood of a vertex is the set of vertices that are
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reachable from the vertex by a path of length at most r. The radius of a directed graph

is the radius r of the smallest r-neighborhood that contains all of G.

Question: Does G have radius at most k?

Reference: Hemaspaandra, Hemaspaandra, Tantau, Watanabe [34].

Comments: Σp
3-complete for any fixed k ≥ 2. Not known to remain Σp

3-complete for tour-

naments (directed graphs for which there is exactly one edge between any two vertices).

For undirected graphs, the problem is also Σp
3-complete and becomes Σp

2-complete for

k = 1 [80]. Also see SUCCINCT k-DIAMETER and SUCCINCT k-KING.

3.2 Sets and Partitions

[*SP1] VC DIMENSION

Given: A collection C of subsets of a finite set U , represented succinctly by a Boolean circuit

C such that C(i, x) = 1 if and only if element x is in the i-th set Si, and an integer k.

Question: Is V C(C) ≥ k, i.e. is there a set X ⊆ U of size at least k, such that for every

S ⊆ X there is an i such that S = Si ∩X?

Reference: Schaefer [71].

Comments: Σp
3-complete. Also Σp

3-hard to approximate to within a factor of 2 − ǫ, but

can be approximated to within a factor of 2 in AM [58]. If C is represented nonsuc-

cinctly by a matrix the problem is LOGNP-complete as shown by Papadimitriou and

Yannakakis [62]. Also see PATH VC DIMENSION and Q-ARY VC DIMENSION.

[*SP2] Q-ARY VC DIMENSION

Given: A collection C of vectors in {1, 2, . . . q}U , where U is a finite set, represented succinctly

by a Boolean circuit C such that C(i, x) is the x-th element of the i-th vector, and an

integer k.

Question: Is V Cq(C) ≥ k, i.e. is there a set X ⊆ U of size at least k, such that {(vx)x∈X |v ∈

C} = {1, 2, . . . q}X?

Reference: Mossel, Umans [59].

Comments: Σp
3-complete. Also Σp

3-hard to approximate to within a factor of q − ǫ, but can

be approximated to within a factor of q in AM. Also see PATH VC DIMENSION and VC

DIMENSION.

3.3 Algebra and Number Theory

[*AN1] INTEGER EXPRESSION COMPONENT LENGTH

Given: An integer expression e built from binary numbers with operators +, and ∪, and a

number k. For an integer expression e define L(e) = {n}, if e is the binary representation

of n, L(e + f) = {n +m : n ∈ L(e),m ∈ L(f)}, and L(e ∪ f) = L(e) ∪ L(f). A set of

numbers L is called connected if for every x, z ∈ L and any y, if x < y < z then y ∈ L.

A maximal connected subset of a set is called a component.
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Question: Does L(e) have a component of size at least k?

Reference: Wagner [87].

Comments: Σp
3-complete. The result also holds if using the general hierarchic input language

(GHIL) for specifying the input. If the set of integers is specified by a Boolean formula,

the problem is Σp
2-complete (BOOLEAN EXPRESSION COMPONENT LENGTH). See

INTEGER EXPRESSION INEQUIVALENCE, INTEGER EXPRESSION CONNECTEDNESS.

3.4 Miscellaneous

[*M1] MINIMUM BLOCK DECODER

Given: Directed graph G, integers p, q, and k. G is a DIF, that is, it is a strongly connected

graph whose edges are labeled with 0 and 1 such that every vertex has at most one

outgoing edge of each label. Define S(G) to be the set of all binary strings that can be

obtained by following a directed path in G. A DIF G is called block-feasible, if there is

a set C ⊆ {0, 1}q of size at least 2p whose closure is contained in S(G); that is, there

are 2p codewords fulfilling the constraints described by G. A circuit D computing an

injective function {0, 1}p → C is called an encoder, a circuit E computing an injective

function C → {0, 1}p is called an decoder. The size of a circuit is the number of gates in

the circuit.

Promise: G is block-feasible.

Question: Is there a decoder D of size at most k?

Reference: Stockmeyer, Modha [74].

Comments: Σp
3-complete. Remains Σp

3-complete if p > αq for any α < 1 and G has finite

memory (from a certain length onward the acceptance of each string byG ends in a unique

vertex only depending on the string). MINIMUM BLOCK ENCODER AND DECODER lies

in Σp
2, and is hard for Σp

2 under randomized reductions. The complexity of the variant

MINIMUM BLOCK ENCODER is open.

4 Open Problems

[O1] RAMSEY

Given: Finite Graphs G, and H.

Question: Does Kn → (G,H), i.e. does every edge-coloring of Kn with colors red and green

contain either a red G, or a green H as a subgraph.

Comments: The problem is NP-hard [11], but not known to be Πp
2-complete. Also see

ARROWING.

[*O2] MINIMUM EQUIVALENT EXPRESSION

Comments: Solved for {∨,∧,¬}-Boolean formulas, open over signature {∨,∧,¬,→}. See

[L22].

28



[*O3] MINIMAL

Given: A well-formed Boolean formula ϕ. The size |ϕ| of a formula is the number of occur-

rences of literals in the formula.

Question: There is no well-formed Boolean formula ψ such that ψ ≡ ϕ and |ψ| < |ϕ|.

Reference: Meyer, Stockmeyer [56].

Comments: coNP-hard [35], and in Πp
2 . Also see MEE, and MIN DNF.

[*O4] MINIMUM BLOCK ENCODER

Given: Directed graph G, integers p, q, and k. G is a DIF, that is, it is a strongly connected

graph whose edges are labeled with 0 and 1 such that every vertex has at most one

outgoing edge of each label. Define S(G) to be the set of all binary strings that can be

obtained by following a directed path in G. A DIF G is called block-feasible, if there is

a set C ⊆ {0, 1}q of size at least 2p whose closure is contained in S(G); that is, there

are 2p codewords fulfilling the constraints described by G. A circuit D computing an

injective function {0, 1}p → C is called an encoder, a circuit E computing an injective

function C → {0, 1}p is called an decoder. The size of a circuit is the number of gates in

the circuit.

Promise: G is block-feasible.

Question: Is there an encoder E of size at most k?

Reference: Stockmeyer, Modha [74].

Comments: Lies in Σp
2, and is NP-hard. The similar MINIMUM BLOCK DECODER problem

is Σp
3-complete. Finding an encoder and a decoder of total size at most k also lies in

Σp
2 , with complexity open. Putting separate bounds on the size of decoder and encoder

leads to MINIMUM BLOCK ENCODER AND DECODER which is Σp
2-complete under

randomized reducibility.

[O5] POMSET LANGUAGE EQUALITY

Given: Two POMSETS P , Q. A POMSET (partially ordered multiset) is a directed acyclic

graph (V,E) whose vertices have labels in Σ. The language L(P ) associated with a POM-

SET P is the set of words of length n = |V | over Σ that corresponds to a permutation

of the vertices in V which is consistent with the partial order generated by (V,E).

Question: Is L(P ) = L(Q)?

Reference: Feigenbaum, Kahn, Lund [23].

Comments: In Πp
2 , and at least as hard as GRAPH ISOMORPHISM. See POMSET LAN-

GUAGE CONTAINMENT.

[O6] DISJUNCTIVE DATABASE FORMULA INFERENCE

Given: A disjunctive database D, and a formula ϕ. A disjunctive database is a collection of

formulas of the form a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bk ∧ bk+1 ∧ . . . ∧ bm where the ai and bj

are variables. There are different notions of D |= w depending on the semantics chosen.
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Question: Does D |= w?

Reference: Eiter, Gottlob [20].

Comments: The problem is Πp
2-hard, and lies in PΠ

p
2 [O(log n)] for the Generalized Closed

World Assumption, and the Careful Closed World Assumption. If ϕ is a literal, it is

known to be Πp
2-complete in the Generalized Closed World Assumption semantics.

[*O7] THUE NUMBER

Comments: Solved. See [GT22].

[*O8] STRONG CHROMATIC NUMBER

Given: A graph G = (V,E), integer k. If k divides |G| we call G strongly k-colorable if for

every partition of V into pairwise disjoint sets of size k there is a proper coloring of G

such that every color occurs exactly once in each set of the partition. If k does not divide

G we add at most k isolated vertices to G so it does. The strong chromatic number of G

is the smallest k such that G is strongly k-colorable.

Question: Is the strong chromatic number of G at most k?

Reference: The strong chromatic number was defined by Alon [3].

Comments: In Πp
2 . Alon points out that in case the graph has bounded degree and the

partition is given it can be decided in polynomial time whether a strong coloring exists

using Beck’s effective version of the Lovasz Local Lemma.

[*O9] THUE CHROMATIC NUMBER

Given: A graph G = (V,E), integer k. A word w is square-free (or non-repetitive) if there are

no u, v, w such that w = uvvw (with v not the empty word). A non-repetitive k-(vertex)

coloring of G is a k-coloring of G such that for any path in G, the sequence of colors

along the path is square-free. The smallest k such that G has a non-repetitive k-coloring

is called the Thue chromatic number of G.

Question: Is the Thue chromatic number of G at most k?

Reference: The Thue chromatic number first defined in Alon, Grytczuk, Hauszczak, Rior-

dan [4].

Comments: In Σp
2 . Given a 4-coloring of a graph, it is coNP-complete to decide whether it is

non-repetitive [53]. Named after Axel Thue who proved that there are infinite square-free

words. Also see THUE NUMBER.
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