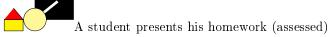


1.3.2 Tseitin's reduction



We exhibit a reduction tr, computable in polynomial time such that φ and $tr(\varphi)$ are equisatisfiable (that is, φ satisfiable iff $tr(\varphi)$ satisfiable) and $tr(\varphi)$ is a CNF.

Example 1 $p \lor (q \land r)$ is satisfiable iff

$$\beta \land (\beta \leftrightarrow (p \lor \delta)) \\ \land (\delta \leftrightarrow (q \land r))$$
 satisfiable iff

$$\beta \land (\beta \rightarrow (p \lor \delta))$$

$$\land (p \rightarrow \beta) \land (\delta \rightarrow \beta)$$

$$\land (\delta \rightarrow q) \qquad satisfiable.$$

$$\land (\delta \rightarrow r)$$

$$\land ((q \land r) \rightarrow \delta)$$

where β and δ are new fresh propositions whose intuitive meanings are respectively ' $p \lor (q \land r)$ is true' and ' $(q \land r)$ is true'.

For translating any formula, we introduce new fresh atomic propositions α_{ψ} for all propositional formulas ψ . The intended meaning of α_{ψ} is 'the subformula ψ is true'. The reduction tr is defined as follows:

$$tr(\varphi) = \bigwedge_{\psi \in SF(\varphi) \backslash ATM} r(\psi) \land \alpha_{\varphi}$$

where $SF(\varphi)$ is the set of subformulas of φ and $r(\psi)$ is defined as follows:

•
$$r(\neg \psi) = (\neg \alpha_{\neg \psi} \lor \neg \alpha_{\psi}) \land (\alpha_{\neg \psi} \lor \alpha_{\psi});$$

21

•
$$r(\psi_1 \lor \psi_2) =$$

$$(\alpha_{\psi_1 \lor \psi_2} \to (\alpha_{\psi_1} \lor \alpha_{\psi_2})) \land (\alpha_{\psi_1} \to \alpha_{\psi_1 \lor \psi_2}) \land (\alpha_{\psi_2} \to \alpha_{\psi_1 \lor \psi_2});$$

•
$$r(\psi_1 \wedge \psi_2) =$$

$$(\alpha_{\psi_1 \wedge \psi_2} \rightarrow \alpha_{\psi_1}) \wedge (\alpha_{\psi_1 \wedge \psi_2} \rightarrow \alpha_{\psi_2}) \wedge ((\alpha_{\psi_1} \wedge \alpha_{\psi_2}) \rightarrow \alpha_{\psi_1 \wedge \psi_2}).$$

The formula $r(\psi)$ expresses the constraints over the truthfulness of ψ with respect to the direct subformula of ψ .

Proposition 1 The length of $tr(\varphi)$ is a $O(\varphi)$.

Proof.

For all subformulas ψ , the size of $rule(\psi)$ is O(1). Therefore the size of $tr(\varphi)$ is $O(SF(\varphi))$. As $card(SF(\varphi)) = |\varphi|$, the proposition is proven.

Theorem 4 φ satisfiable iff $tr(\varphi)$ satisfiable.

Proof.

 \Longrightarrow Suppose that φ is satisfiable. Let V be a valuation such that $V \models \varphi$. We define the valuation V' as follows:

• $\alpha_{\psi} \in V'$ iff $V \models \psi$ for all formulas ψ .

We prove that $V' \models tr(\varphi)$ directly (no need of induction).

- First, as $V \models \varphi$, by definition of V', $\alpha_{\varphi} \in V'$ hence $V' \models \alpha_{\varphi}$.
- Now, we have to prove that for all $\psi \in SF(\varphi) \setminus ATM$, $V' \models r(\psi)$. This is a routine proof. But let us explain one case. For instance, to prove that $V' \models r(\neg \psi)$ where $\neg \psi \in SF(\varphi)$, we have to prove that $V' \models \neg \alpha_{\neg \psi} \lor \neg \alpha_{\psi}$.
 - Either $V \models \psi$. Then $V \not\models \neg \psi$. Thus, by definition of V', $V' \models \neg \alpha_{\neg \psi}$. And $V' \models \neg \alpha_{\neg \psi} \lor \neg \alpha_{\psi}$.
 - Or $V \not\models \psi$. Thus, by definition of $V', V' \models \neg \alpha_{\psi}$. And $V' \models \neg \alpha_{\neg \psi} \lor \neg \alpha_{\psi}$.

The rest of the proof is fastidious and is omitted.

Conclusion

We have $V' \models tr(\varphi)$. Thus $tr(\varphi)$ is satisfiable.

Suppose that $tr(\varphi)$ is satisfiable. Let V' be a valuation such that $V' \models tr(\varphi)$. Let us define $V = \{ p \in ATM \mid \alpha_p \in V' \}$. We prove that for all $\psi \in SF(\varphi)$, $V \models \psi$ iff $V' \models \alpha_{\psi}$, by induction on ψ . More precisely, let $P(\psi)$ be the following property

'if
$$\psi \in SF(\varphi)$$
 then $V \models \psi$ iff $V' \models \alpha_{\psi}$ '.

- p. For all propositions p (even those are not in $SF(\varphi)$), $V \models p$ iff $V' \models \alpha_p$ by definition of V. So the property P(p) is true.
- $\neg \psi$ Let ψ be a formula. Suppose $P(\psi)$. Let us show that $P(\neg \psi)$. Suppose that $\neg \psi \in SF(\varphi)$. By definition of $SF(\varphi)$, we also have $\psi \in SF(\varphi)$. Hence, by $P(\psi)$, we have $V \models \psi$ iff $V' \models \alpha_{\psi}$. In other words, $V \models \neg \psi$ iff $V \not\models \psi$ iff $V' \not\models \alpha_{\psi}$.

But as $\neg \psi \in SF(\varphi)$, $V' \models r(\neg \psi)$ where

$$r(\neg \psi) = (\neg \alpha_{\neg \psi} \lor \neg \alpha_{\psi}) \land (\alpha_{\neg \psi} \lor \alpha_{\psi}).$$

So $V' \not\models \alpha_{\psi}$ is equivalent to $V' \models \alpha_{\neg \psi}$. To sum up, we have $V \models \not \psi$ iff $V' \models \alpha_{\neg \psi}$. That is $P(\neg \psi)$ is true.

• $\psi_1 \wedge \psi_2$. Let ψ_1, ψ_2 be two formulas. Suppose $P(\psi_1)$ and $P(\psi_2)$ and let us show that $P(\psi_1 \wedge \psi_2)$. The ideas are the same that the case $\neg \psi$ and are left to the reader.

We have proved that $P(\psi)$ is true for all formulas ψ .

Conclusion

As $V' \models tr(\varphi)$, we have $V' \models \alpha_{\varphi}$ by definition of $tr(\varphi)$. In particular $P(\varphi)$ is true. So we have $V \models \varphi$. Thus, φ is satisfiable.