TD6 - Conception et vérification de programmes

Bastien Maubert et François Schwarzentruber

1 Une chose compliquée qu'on simplifie peut rester compliquée

En vous appuyant sur la preuve que le problème de satisfiabilité de K est PSPACE-complet, montrer qu'il reste PSPACE-complet pour K sans variables propositionnelles.

Soit une instance de QBF $\Phi = Q_1 p_1 \dots Q_n p_n \varphi$. On définit une formule de K dont le problème de satisfiabilité est équivalent de la manière suivante :

- $-f(\psi) = \psi$ if ψ is propositional
- $f(\forall_i p_i \psi) = \Diamond (f(\psi) \wedge \Box^{n-i} p_i) \wedge \Diamond (f(\psi) \wedge \Box^{n-i} \neg p_i)$
- $f(\exists_i p_i \psi) = \Diamond (f(\psi) \wedge \Box^{n-i} p_i) \vee \Diamond (f(\psi) \wedge \Box^{n-i} \neg p_i)$

Il s'agit maintenant de transformer cette formule en une formue de K sans variable pour laquelle le problème de la satisfiabilité est équivalent.

2 Deux logiques équivalentes

On considère le langage suivant :

$$\varphi ::= \bot \mid p \mid \varphi \lor \varphi \mid \boxminus \varphi \mid \Box \varphi$$

On définit la logique [S5; S5] par l'axiomatique suivante :

- les tautologies de la logique propositionnelle
- S5 pour ⊟ et □, c'est à dire les instances de :
 - $\Box(p \to q) \to (\Box p \to \Box q)$
 - $-\Box p \rightarrow p$;
 - $-\Box p \to \Box \Box p;$
 - $\neg \Box p \to \Box \neg \Box p$
 - où \square est soit \square ou \square .
- les instances de l'axiome de commutation : $\Box\Box p \to \Box\Box p$;
- le modus ponens;
- les règles de nécessitation.

On définit la logique $S5^2$ comme la logique des cadres $\mathcal{F}=(W_1\times W_2,R_-,R_|)$ où :

- $-(x,y)R_{-}(x',y')$ ssi y=y';
- $-(x,y)R_{1}(x',y')$ ssi x=x'.

La sémantique est naturelle.

Cet exercice a pour but de montrer que $S5^2 = [S5; S5]$, i.e. les validités de $S5^2$ sont exactement les théorèmes de [S5; S5].

Q1) Donner une classe $\mathcal{C}_{[S5;S5]}$ de cadres pour [S5;S5] telle que φ est un théorème de [S5;S5] ssi φ est valide sur les modèles basés sur les cadres de $\mathcal{C}_{[S5;S5]}$. (indice : à quoi correspond la formule $\boxminus \square p \to \square \boxminus p$ sur les cadres?)

Un modèle basé sur un cadre de $C_{[S5;S5]}$ est appelé un modèle de [S5;S5].

Le but est maintenant de montrer que si φ est satisfiable dans un modèle de [S5; S5] alors φ est satisfiable dans un modèle de [S5; S5] de taille au plus $2^{|\varphi|}$.

- Q2) Expliquer pour quoi on peut se restreindre aux modèles où $R_-\circ R_{|}=W\times W.$
- Q3) Donner une filtration, et montrer que le modèle filtré d'un modèle de [S5; S5] est un modèle de [S5; S5]. Conclure.

L'objectif est ici de transformer un modèle fini de [S5; S5] en un modèle de $S5^2$ qui lui est bisimilaire. Soit \mathcal{M} un modèle fini de [S5; S5].

- Q3) Expliquer comment on peut transformer \mathcal{M} en un modèle bisimilaire où les classes de la relation $R_- \cap R_{\parallel}$ ont le même nombre de mondes.
- Q4) Expliquer comment transformer le modèle résultat en modèle de $S5^2$ bisimilaire (le faire sur un exemple suffira).