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Chapter 1

Introduction

In this course we will de�ne important modal logics where we consider both a
relation and its transitive and re�exive closure.

For instance with CTL, we can express things happening tomorrow (∃X, ∀X)
and what is happening in the future (∃F, ∀F, ∃G,∀G).

We will de�ne several logics that have the same behaviour and speak about
many domains: program veri�cation, logical reasoning, economy, philosophy... We
will prove EXPTIME-hardness of those logics (by introducing alternating Turing
machine). We �nally prove EXPTIME-ness by considering an axiomation of those
logics, �lter the canonical model and see that we can construct a �ltrated version
of the canonical model deterministically in exponential time! Waouh!
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Chapter 2

A museum of logic with a relation

and its transitive closure

We will see three applications of logics with a relation and its transitive closure:

• a general notion in modal logic: global consequence (modal logic in general)

• Propositional Dynamic Logic (program veri�cation)

• Common knowledge (economy, philosophy)

2.1 Global consequence in K

We have seen:
Σ |= ϕ is by de�nition for all pointed model M, w of C, we have M, w |= Σ

impliesM, w |= ϕ.
[p. 32, Blackburn] We de�neM, ϕ i� for all w ∈ W ,M, w |= ϕ.
We de�ne also Σ |=global

C ϕ is by de�nition for all models M of C, we have
(M |= Σ) implies (M, |= Σ).

Example 1 We do not have p |= �p
We have p |=global �p

Remark 1 We have those following facts:

• Σ |=global ϕ i� {�nψ, n ∈ N, ψ ∈ Σ} |= ϕ;

• Σ |=global
S4 ϕ i� {�ψ, ψ ∈ Σ} |= ϕ
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2.2 Propositional Dynamic logic

2.2.1 History

• Pratt's idea: associer à chaque programme π une modalité [π] et [π]ϕ signi�e
`une fois le programme π terminé, ϕ est vrai'.

• PDL de�ned by Fischer and Ladner (1979)

2.2.2 Application: abstraction of Dynamic logic

[π]ϕ

prover Key

2.2.3 Syntax

De�nition 1 ()

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ[π]ϕ

π ::= a | π ∪ π | π∗ | ϕ? | π; π

2.2.4 Standard models

De�nition 2 ()
A Kripke modelM = (W, (Rπ)π∈PROG, V ) is said to be a standard model of PDL
i�:

• Rψ? = {(w,w) | M, w |= ψ};

• Rπ1;π2 = Rπ1 ◦Rπ2 ;

• Rπ1∪π2 = Rπ1 ∪Rπ2 ;

• Rπ∗ = (Rπ)∗.

De�nition 3 ()
M, w |= [π]ϕ i� for all u ∈ Rπ(w) we haveM, u |= ϕ



2.3. COMMON KNOWLEDGE 7

Branching Contrary to K and S4, in PDL we can enforce a branch of the model
to be exponential.

Example 2 (x = k)[x := x+ 1](x = k + 1)...

• [a∗]
∨n
i=1

(
¬pi ∧

∧n
j=i+1 pj → [a](

∧n
j=i+1 ¬pj) ∧ pi ∧ (

∧i−1
j=1(pj → [a]pj) ∧ (¬pj → [a]¬pj)

)
•
∧n
j=1 ¬pj

• [a∗]〈a〉>

enforces to have a branch of exponential length.

2.3 Common knowledge

2.3.1 Syntax

Let AGT a set of agents.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kjϕ | CKJϕ

where j ∈ AGT and J ∈ 2AGT.

2.3.2 Semantics

De�nition 4 ()
LetM = (W,R, V ) a Kripke model.

• M, w |= Kjϕ i� for all u ∈ Rj(w), we haveM, u |= ϕ;

• M, w |= CKJϕ i� for all u ∈ (∪j∈JRj))∗, we haveM, u |= ϕ.
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Chapter 3

EXPTIME-hard

3.1 Alternating Turing machine

3.1.1 De�nitions

[Papadimitriou for non-deterministic machine, p.45] [Alternation p. 100]

De�nition 5 ()
An alternating Turing machine is a triple M = (Q,U, δ, s) where:

• Q is a �nite set of states;

• U ⊆ Q the set of universal states (other states are existential);

• δ ⊆ (Q× Σ)× ((Q ∪ {no, yes})× Σ× {−1, 0, 1} is a transition relation;

• s ∈ Q is the initial state;

[la déf de Papadimitriou est trop lourde je trouve]

De�nition 6 ()
A con�guration is a triple (q, k, w) where q is a state, k a positive integer and w a
�nite word.

De�nition 7 ()
(q, k, w)→ (q′, k′, w′) i� there exists ((q, σ), (q′, ρ, dir)) ∈ δ such that:

• w[k] = σ;

• w′ = w except w′[k] = ρ;

• k′ = k + dir;

• k′ ≥ 0.

We note C the set of con�gurations of TM M .
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3.1.2 Computation

De�nition 8 ()
The computation (tree) of an alternating machineM on input x is (possibly in�nite
tree) where the nodes correspond to TM con�gurations and children of a node c
are the con�guration c′ such that c → c′. Formally, we can see a computation T
as a map from {0 . . . }∗ in C.

De�nition 9 ()
A labeling L : {0 . . . }∗ → {0, 1} of T is said to be acceptable if:

• L(i) = 1 if T (i) is an accepting con�guration;

• L(i) =
∨
i.n L(i.n) if T (i) is a non accepting existential con�guration;

• L(i) =
∧
i.n L(i.n) if T (i) is a non accepting universal con�guration.

Remark 2 There is a unique acceptable labelings on �nite computation trees.

[alternation, p. 100]

De�nition 10 ()
M accepts x i� L(ε) = 1 for all labeling L that labels the computation tree where
the root is the initial con�guration with x on the tape.

De�nition 11 ()
M accepts L i� M accepts x for all x ∈ L.

[Alternation p. 100-101]

De�nition 12 ()
M accepts L in time f i� M accepts L and for all x ∈ Σ∗, the computation tree
of M on input x is of depth at most f(|x|).

Remark 3 We may remove the condition that for rejecting worlds x the compu-
tation tree is of depth at most f(|x|) for good functions f .

De�nition 13 ()
M accepts L in space f i� M accepts L and for all x ∈ Σ∗, the computation tree
ofM on input x only contains con�gurations where the size of the tape is bounded
by f(|x|).

De�nition 14 ()
AP = the class of langages L such that there exists a polynomial f such that L
can be accepted by a ATM in time f .

De�nition 15 ()
APSPACE = the class of langages L such that there exists a polynomial f such
that L can be accepted by a ATM in space f .
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3.2 Comparison of complexity classes

Theorem 1 AP = PSPACE

Proof.

⊆ Let L ∈ AP . There exists an ATM M and a polynomial f such that
M accepts L in time f . Let x ∈ Σ∗. We simulate the execution of the ATM by
performing a �rst-depth search in the computation tree of M,x in PSPACE. As
the length of a branch is polynomial we only use a polynomial amount of memory
for the backtrack process.
⊇ Let L ∈ PSPACE. Thus, as QBF is PSPACE-hard, there is a reduction

f from L to QBF such that x ∈ L i� f(x) ∈ L.
We design an alternating algorithm running in polynomial time that solves the

QBF-SAT problem.
�
[Alternation, p. 102]
[Finite model theory and descriptive complexity, Grädel]

Theorem 2 APSPACE = EXPTIME

Proof.

⊆
Let L ∈ APSPACE. It is accepted by an alternating Turing machineM using

a polynomial amount of memory. Let f be this polynomial.
In order to see if x ∈ L. We compute the graph G = (V,E) where:

• V is the set of all con�gurations of the machine M where the length of the
tape f(|x|).

• E is the set of edges (c, c′) such that c→ c′.

We then decide for each con�guration c ∈ G whether c is accepting or refusing
by the following algorithm:

ACC := the set of all con�gurations in state yes
pendantQue ACC changes

for c ∈ G
if c is existential and there exists c′ such that c→ c′ and c′ ∈ ACC

ACC.add(c′)
endIf
if c is universal and for all c′ such that c→ c′ we have c′ ∈ ACC

ACC.add(c′)
endIf

endFor
�nPendantQue
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The algorithm is a deterministic algorithm running in exponential time. The
initial con�guration where x is written in the tape is in ACC i� x ∈ L.
⊇
Let L be accepted by a Turing machine M in exponential time. Let f be the

polynomial such that the computation of x on M is of length 2f(|x|).

By abuse of notation, we suppose that the tape also contains the information
of the state and the position of the cursor (as usual). For instance the tape at the
initial con�guration is:

(s, x0) x1 x2 ...
x[0] x[1] x[2] ...

From δ we can create a function µ that takes 3 characters (α, β, γ) and returns
what is written at the place of b.

α β γ
⇓ ...

µ(α, β, γ)

Here is an alternating algorithm running in polynomial space accepting L:

//returns 'yes' i� the kth-cell of the tape contains c at time t of the execution of
M on x.
function tape(t, k, c)

if t = 0
if x[k] = c accept else reject

else
choose (∃)c′k−1, c

′
k, c
′
k+1

if µ(c′k−1, c
′
k, c
′
k+1) 6= c reject

choose (∀)j ∈ {k − 1, k, k + 1}
tape(t− 1, j, c′j)

endIf
endFunction

function acceptL(x)
choose (∃)t ∈ {1 . . . 2f(|x|)}
choose (∃)k ∈ {1 . . . 2f(|x|)}
choose a character (c, ok).
tape(t, k, (c, ok))

endFunction

We have to prove by induction that tape(t, k, c) succeeds i� the execution of
M on the input x is such that at time t, the kth cell of the tape contains c.

�
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3.2.1 An EXPTIME-hard problem

[Blackburn, p. 395] utilise la preuve avec le TWO PERSON CORRIDOR PROB-
LEM... mais je n'ai pas la preuve que c'est EXPTIME-hard... l'encodage du début
du cours ne marche pas

[Dynamic logic, p. 217] : ils font un encodage direct depuis la machine de
Turing non déterministe

Theorem 3 The satis�ability problem of PDL is EXPTIME-hard.

Proof.

Let L be a APSPACE problem. Let M be an alternating Turing machine
accepting L running in space f . We can suppose that the machine stops running
after 2O(f(|x|)) steps.

We introduce the following propositions:

• cai : the cell of the tape in the column i contains a a;

• sqi : the machine is currently scanning the column i and is in the state q

• s`i means that the scanning cursor is at j < i;

• sri means that the scanning cursor is at j > i;

• accept means that the current state is accepting.

We note δ(q, σ) = {(q′, ρ, dir) | ((q, σ), (q′, ρ, dir)) ∈ δ}.
Let us consider an input x for M . Let n = f(|x|).
The machine M accepts x i� the following conjunction is satis�able in PDL:

• ss0 ∧
∧
i c
xi
i

• [α∗]
∧

0≤i≤n+1

∨
cai : a symbol everywhere

• [α∗]
∧

0≤i≤n+1

∨
a∈Σ(cai →

∧
b∈Σ,b 6=a c

b
i) : unicity of the symbol written on the

tape

• the machine is always in a state (and the state is unique)

• [α∗]
∧
i

∧
q∈Q∪{`} s

q
i → s`i+1;

• [α∗]
∧
i

∧
q∈Q∪{`} s

q
i → sri−1;

• [α∗](
∧
i(s

`
i ∨ sri → (

∧
a c

a
i → [α]cai );
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• [α∗]
∧
i

∧
a∈Σ,q∈Q s

q
i ∧ cai → (

∧
(q′,ρ,dir)∈δ(q,σ)〈α〉(c

ρ
i ∧ s

q′

i+dir)

[α](
∨

(q′,ρ,dir)∈δ(q,σ)(c
ρ
i ∧ s

q′

i+dir)

All transitions are represented... and only transitions!

• accept

• [α∗]
∧
i

∧
q existential

sqi → (accept↔ 〈α〉accept)

• [α∗]
∧
i

∧
q universal

sqi → (accept↔ [α]accept)

• count = 0

• [α∗](count = i)→ (count = i+ 1)

• [α∗](count = cn − 1)→ [α]¬accept

where c is big enough.
�



Chapter 4

Axiomatization

4.1 Compacity

Proposition 1 Logic K is compact, that is for all set of formulas Σ, Σ is satis�-
able i� for all �nite Σ′ ⊆ Σ, we have Σ′ is satis�able.

Or Σ is unsatis�able i� there exists Σ′ ⊆ Σ such that Σ′ is unsatis�able.

Proof.

Comes from the strong completness.
Σ unsat implies Σ |= ⊥ implies Σ ` ⊥ implies there exists Σ′ ⊆ Σ such that

Σ′ ` ⊥ implies there exists Σ′ ⊆ Σ such that Σ′ |= ⊥ implies there exists Σ′ ⊆ Σ
such that Σ′ unsatis�able. �

Proposition 2 PDL is not compact. That is we can �nd Σ unsatis�able but every
�nite subset Σ′ ⊆ Σ is satis�able.

Proof.

Σ = {[an]p, n ∈ N} ∪ {〈a∗〉¬p}
�

4.2 Nonstandard models

[Dynamic logic, p. 199]

De�nition 16 ()
A Kripke modelM = (W, (Rπ)π∈PROG, V ) is said to be a non-standard model of
PDL i�:

• Rψ? = {(w,w) | M, w |= ψ};

15
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• Rπ1;π2 = Rπ1 ◦Rπ2 ;

• Rπ1∪π2 = Rπ1 ∪Rπ2 ;

• Rπ∗ is a re�exive, transitive relation containing (Rπ)∗;

• for all w ∈ W , for all ϕ, for all π,M, w |= (ϕ ∧ [π][π∗]ϕ)↔ [π∗]ϕ;

• for all w ∈ W , for all ϕ, for all π,M, w |= ϕ ∧ [π∗](ϕ→ [π]ϕ)→ [π∗]ϕ.

Example 3 N∪ {+∞} where a is interpreted as the successor function S and a∗
as ≤ and p is true everwhere is a nonstandard model.

Example 4 N∪ {+∞} where a is interpreted as the successor function S and a∗
as ≤ and p is true over N and not over +∞ is NOT a nonstandard model.

4.3 Filtration

4.3.1 Fischer-Ladner closure

To prove decidability, we can proceed by �ltration. But �lter by the set of subfor-
mulas does not work.

Example 5 If we �lter

•([a2]¬p, p)→a •([a2]¬p, p)

by the set of subformulas of [a2]¬p we obtain:

•([a2]¬p, p)loopa

[Dynamic logic, Harel, Kozen, Tiuryn]

De�nition 17 ()
We de�ne FL and FL� by induction:

• FL(p) = {p};

• FL(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ FL(ϕ) ∪ FL(ψ);

• FL(¬ϕ) = {¬ϕ} ∪ FL(ϕ);

• FL([π]ϕ) = FL�([π]ϕ) ∪ FL(ϕ).

• FL�([a]ϕ) = {[a]ϕ};
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• FL�([π1 ∪ π2]ϕ) = {[π1 ∪ π2ϕ} ∪ FL�([π1]ϕ) ∪ FL�([π2]ϕ);

• FL�([π1; π2]ϕ) = {[π1; π2]ϕ} ∪ FL�([π1][π2]ϕ) ∪ FL�([π2]ϕ);

• FL�([π∗]ϕ) = {[π∗]ϕ} ∪ FL�([π][π∗]ϕ)

• FL�([ψ?]ϕ) = {[ψ?]ϕ} ∪ FL(ψ).

Proposition 3 • For any formula ϕ, card(FL(ϕ)) ≤ |ϕ|;

• For any formula [π]ϕ, card(FL�([π]ϕ)) ≤ |π|.

Proof.

Double induction. [Dynamic logic, p.194] �

4.3.2 Filtered model

[p. 196]
Given a nonstandard model M = (W,R, V ) we de�ne the �ltrated standard

modelM/FL(ϕ) = (W/FL(ϕ), R/FL(ϕ), V/FL(ϕ)) where:

• W/FL(ϕ) = {[w] | w ∈ W} where [w] denotes the class of w according to the
equivalence relation w ≡ u i� for all ψ ∈ FL(ϕ), (M, w |= ϕ i�M, u |= ϕ);

• R/FL(ϕ)a
= {([w], [u]) | (w, u) ∈ Ra} for all atomic program a;

• for all complex programs π, R/FL(ϕ)π
is de�ned as in a standard model;

• V/FL(ϕ)(p) = {[u], u ∈ V (p)}.

[p. 196 and p. 200]

Proposition 4 LetM be a nonstandard Kripke model and w, u two worlds.

1. For all ψ ∈ FL(ϕ),M, w |= ψ i�M/FL(ϕ), [w] |= ψ;

2. For all [π]ϕ ∈ FL(ϕ),

(a) if wRπu then [w]R/FL(ϕ)π
[u];

(b) if [w]R/FL(ϕ)π
[u] andM, w |= [π]ψ thenM, u |= ψ.

Proof.

Induction on the well-founded subexpression relation.
1.
[π]ψ
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M, w |= [π]ψ implies for all [u] ∈ Rπ([w]),M, u |= ψ by 2. (b)
implies for all [u] ∈ Rπ([w]),M/FL(ϕ), [u] |= ψ by 1.
equivalent toM/FL(ϕ), [w] |= [π]ψ

M/FL(ϕ), [w] |= [π]ψ equivalent to for all [u] ∈ Rπ([w]),M/FL(ϕ), [u] |= ψ
for all u ∈ Rπ(w),M/FL(ϕ), [u] |= ψ by 2. (a)
for all u ∈ Rπ(w),M, u |= ψ by 1.
M, w |= [π]ψ.

2. (a)

[π∗]ψ
[Dynamic logic p. 201]

Remark 4 M is nonstandard: Rπ∗ contains but is not the re�exive and transitive
closure of Rπ.
M/FL(ϕ) is standard by de�nition: R/FL(ϕ)π∗ has been de�ned as the re�exive

and transitive closure of R/FL(ϕ)π
.

Suppose that uRπ∗v. And let us prove that [u]R/FL(ϕ)π∗[v], or equivalently that
v ∈ E where

E = {t ∈ W | [u]R/FL(ϕ)π∗[t]}.
There is a PDL formula ψE de�ning E inM, i.e. E = {t ∈ W | M, t |= ψE}.

Indeed, E is the union of equivalence classes de�ned by truth assignments to the
elements of Fl(ϕ) and:

ψE =
∨

[t]|t∈E

∧
ψ∈FL(ϕ)|M,t|=ψ

ψ ∧
∧

ψ∈FL(ϕ)|M,t 6|=ψ

¬ψ.

Remark that w ∈ E and wRπu implies u ∈ E (hyp ind 2.a).
For all worlds x ∈ W , we have:
M, x |= ψE → [π]ψE.
Hence for all worlds w ∈ W ,M, w |= [π∗](ψE → [π]ψE).
As M is a non-standard model, the last condition of the de�nition of a non-

standard model gives M, w |= ψE ∧ [π∗](ψE → [π]ψE) → [π∗]ψE. we then have
M, w |= ψE → [π∗]ψE (*).

As u ∈ E we haveM, u |= ψE. By (*) we haveM, u |= [π∗]ψE. As uRπ∗v we
haveM, v |= ψE. So v ∈ E.

2. (b)
easy.
�
The thing to keep in mind:
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Corollary 1 If a formula ϕ is satis�able in a non standard model M, w, then it
is satis�able in a standard one (for instanceM/FL(ϕ), |w|)

4.4 Axiomatization

4.4.1 Axioms

[p. 203]

• axioms for propositional logic

• K([π]);

• [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ;

• [π1; π2]ϕ↔ [π1][π2]ϕ;

• [ψ?]ϕ↔ (ψ → ϕ);

• [π∗]ϕ↔ (ϕ ∧ [π][π∗]ϕ);

• ϕ ∧ [π∗](ϕ ∧ [π]ϕ)→ [π∗]ϕ.

+ MP and necessitation

Question 1 Why are the last axioms important? What is going on if we drop
them?

Theorem 4 (Soundness of PDL) ` ϕ implies |= ϕ.

4.4.2 Completness of the axiomatization

[Dynamic logic, p. 205]

Lemma 1 (Lindenbaum's lemma) For all Σ′ consistent, there exists Σ maxi-
mal consistent such that Σ′ ⊆ Σ.

De�nition 18 ()
The canonical modelM = (W,R, V ) is de�ned as follows:

• W is the set of maximal consistent sets of formulas of PDL;

• wRπv i� for all ψ, if [π]ψ ∈ w then ψ ∈ v.

• V (p) = {w ∈ W | p ∈ w}.
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Lemma 2 (Truth lemma) M, w |= ϕ i� ϕ ∈ w.

Theorem 5 The canonical model is a nonstandard Kripke model.

Theorem 6 (Completeness of PDL) ` ϕ i� |= ϕ.

Proof.

We are going to prove that 6` ϕ implies 6|= ϕ.
Let ϕ such that 6` ϕ. Then {¬ϕ} is consistent. (Indeed, if not, we would have

` ¬ϕ→ ⊥, hence ` ϕ.) According to the Lindenbaum's lemma, we can �nd a mcs
w such that {¬ϕ} ⊆ w. According to Truth lemma, we haveM, w |= ¬ϕ.

HenceM/FL(ϕ), w |= ¬ϕ.
Hence 6|= ϕ.
�



Chapter 5

Satis�ability problem in EXPTIME

Let ¬FL(ϕ) = FL(ϕ) ∪ {¬ψ | ψ ∈ FL(ϕ)}.
A Hintikka set w ⊆ ¬FL(ϕ) is a set where for all ψ ∈ FL(ϕ), exactly one of ψ

or ¬ψ is in w, and that is satisfying the following condition:

• if [π1; π2]ϕ ∈ w then [π1][π2]ϕ ∈ w;

• if [π1 ∪ π2]ϕ ∈ w then [π1]ϕ ∈ w or [π2]ϕ ∈ w;

• if [π∗]ϕ ∈ w then ψ ∈ w and [π][π∗]ϕ ∈ w;

• if [ψ?]ϕ ∈ w then (if ψ ∈ w then ϕ ∈ w);

• if ϕ ∧ ψ ∈ w then ϕ, ψ ∈ w;

• if ¬(ϕ ∧ ψ) ∈ w then ¬ϕ ∈ w or ¬ψ ∈ w.

LetM = (W,R, V ) the canonical model �ltrated by FL(ϕ). There is a one-to-
one correspondance between an equivalence class [s] ∈ W and the set s∩¬FL(ϕ).

Proposition 5 uRav i� for all [a]ψ ∈ FL(ϕ), we have [a]ψ ∈ u implies ψ ∈ v.

Proof.

Suppose that uRav.
�
A world w ∈ Wn is happy for [π]ψ ∈ FL(ϕ) inMn i� (for all u ∈ Rnπ(w) such

that ψ ∈ u) implies [π]ψ ∈ w.
A world w ∈ Wn is happy for Γ inMn i� w is happy for all [π]ψ ∈ Γ inMn.

[Dynamic logic, p. 213]

21
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function PDLsat(ϕ)
ConstructM0 = (W0, R0a, V0):

• W0 := the set of all Hintikka set over FL(ϕ);

• R0a := {(w, u) ∈ W 2
0 | for all [a]ψ ∈ FL(ϕ), if [a]ψ ∈ w then ψ ∈ u};

• V0(p) = {w ∈ W0 | p ∈ w}.

repeat
wtodelete =?
for [π]ψ ∈ FL(ϕ), sorted by the length of |π|
for w ∈ Wi−1

if w is not happy with [π]ψ inMi−1

wtodelete = w
break
endIf

endFor
ConstructMi = (Wi, Ria, Vi):

• Wi := Wi−1 \ {wtodelete};

• Ria := {(w, u) ∈ W i2 | for all [a]ψ ∈ FL(ϕ), if [a]ψ ∈ w then ψ ∈ u};

• Vi(p) = {w ∈ Wi | p ∈ w}.
until wtodelete 6=?
if there exists w ∈M2|ϕ| such that ϕ ∈ w

return yes
else

return no
endIf

endFunction

Proposition 6 W ⊆ W0.

Proof.

A world of W is a Hintikka set. �

Proposition 7 Let i > 0 such that W ⊆ Wi. Let χ ∈ FL(ϕ) and u ∈ Wi such
that u is happy with FL(χ).

1. For all ψ ∈ FL(χ) and u ∈ Wi we have ψ ∈ u i�Mi, u |= ψ;

2. For all [π]ψ ∈ Fl(χ) and u, v ∈ Wi,
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(a) if uRπv then uRi
πv; (holds also if π is minimum)

(b) if uRi
πv and [π]ψ ∈ u then ψ ∈ v.

Proof.

1. By induction on ψ.
p

p ∈ w i� w ∈ Vi(p)
i�Mi, w |= p

[π]ψ

[π]ψ ∈ w implies for all v ∈ Ri
π(w), ψ ∈ v (by inductive hypothesis 2.(b))

i� for all v ∈ Ri
π(w),Mi, v |= ψ by inductive hypothesis 1.

i�Mi, w |= [π]ψ by truth condition.

Mi, w |= [π]ψ i� for all v ∈ Ri
π(w), ψ ∈ v (see above)

[π]ψ ∈ w becauseMi, w is happy for [π]ψ ∈ w

2. (a)
By induction on π.

uRav i� for all [a]ψ ∈ FL(ϕ), [a]ψ ∈ u implies ψ ∈ v (becauseM is the �ltration of the canonical model)
uRi

av (by de�nition of Ri
a)

Remark 5 The case ψ? uses 1.

2. (b) [a]π

uRi
av and [a]ψ ∈ u implies ψ ∈ v by de�nition of Ri

av.

[π∗]π
Suppose that uRi

π∗v and [π∗]ψ ∈ u.
There exists u = u0R

iπu1 . . . R
iπun = v.

[π∗]ψ ∈ u0 hence [π][π∗]ψ ∈ u0. By induction hypothesis 2. (b), [π∗]ψ ∈ u1...
[π∗]ψ ∈ un hence ψ ∈ un.

Remark 6 The case ψ? also uses 1.

�

Proposition 8 For all i ≥ 0, W ⊆ Wi.
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Proof.

By induction.
Basic case i = 0 is done.

Inductive case Suppose W ⊆ Wi and let us prove that W ⊆ Wi+1.
Let u ∈ W . Suppose that u is deleted at step i+ 1.
It means that w is not happy with [π]ψ in Mi. I.e. the implication �(for all

u ∈ Ri
π(w) such that ψ ∈ u) implies [π]ψ ∈ w� is false. Let us prove that it is

true.
The statement (∀v ∈ Wi (uR

i
π implies ψ ∈ v)) implies (∀v ∈ W , (uRπv implies

ψ ∈ v) by Proposition 7.
It is equivalent to (∀v ∈ W , (uRπv implies M, v |= ψ) because M is the

�ltrated model of the canonical model.
It is equivalent toM, u |= [π]ψ by truth conditions of [π]. It is equivalent to

[π]ψ ∈ u.
So the implication �(for all u ∈ Ri

π(w) such that ψ ∈ u) implies [π]ψ ∈ w� is
true. Contradiction.

u is not deleted at step i+ 1 and thus W ⊆ Wi+1.
�

Proposition 9 At the end,Mn =M.

Proof.

At the end, by Proposition 7, every u ∈ W n is satis�able and is satis�ed in
the pointed model Mn, u. Hence u can be extended as a mcs û in the canonical
model. After �ltration, [û] ∈M. But [û] = u. So Wn ⊆ W .

If wRau then wRn
au. (2. (a) of Proposition 7.

If uRn
av then for all [a]ψ ∈ FL(ϕ), we have [a]ψ ∈ u implies ψ ∈ v (2. (b) of

Proposition 7).
This is equivalent to uRav becauseM is the �ltration of the canonical model.
�

Theorem 7 The algorithm succeeds on ϕ i� the formula ϕ is satis�able.

Proof.

⇒ If it succeeds, the algorithm has constructed a model Mn satisfying ϕ.
Hence ϕ is satis�able.
⇐ If ϕ is satis�able, it can be extended in a mcs u and hence is satis�able

in the canonical model. It is also satis�ed in the �ltrated model of the canonical
model. The algorithm constructs the �ltrated model of the canonical model hence
it succeeds. �
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