Temporal logics LTL, CTL and CTL"

Francois SCHWARZENTRUBER

Chapter 1

The framework ‘Computation Tree
Logic*’

1.1 Syntax
Let ATM be a set of atomic propositions.
[vérification de logiciels, p. 33]

Definition 1 ()

pu=Llpl-eleVelOp|Fo|GeleUp|Ip| Ve
where p € ATM.
Remark 1 Some people [principles of model checking, p. 422] differantiate CTL*
state formulae (also called CTL* formulae) from Path formulae. They do as fol-

lows. CTL" state formulae (also called CTL* formulae) are formed according to the
following grammar:

Q=1 |p|=P|dVP|Tp|Vep
where p € ATM and ¢ s a path formula. Path formulae are given by the
following grammar:
pu=@ |0 |pVe|Op|eUp
I find it useless and prefer the point of view of [vérification de logiciels, Tech-
niques et outils du model-checking, p. 33/.

Remark 2 Fy:=TUp

4 CHAPTER 1. THE FRAMEWORK ‘COMPUTATION TREE LOGIC*

eWip = pUyp V Gy

YRy := = (mpU—1) (release) [p. 256]

Vi ==d-ep

O and U are called linear temporal operators.
J and V are called path quantifiers.

1.2 Semantics

We evaluate a formula in a model and a path (run) in model. A model is a
transition system, that is a Kripke structure M = (W, R, V) that is serial (for all
w € W, R(w) # (). A path 7 is a sequence 7,7, ... such that m; € W and
7TiR7Ti+1 for all ¢ 2 0.

Definition 2 ()

e M,m E=piff 1o € V(p);

e M, Op iff M,x[l..00] = ¢

o M, |= Fo iff there exists ¢ such that M, w[i,...| |F ¢
o M, 7 = Gy iff for all ¢ such that M, x[i,...] = ¢

o M, |= U iff there exists a integer j such that M, 7[j..c0] = ¢ and for
all i < j, we have M, 7[i..o0] = ¢

e M, 7 |= Jypiff there exists a path 7’ in M starting with mg such that M, 7’ |=
©.

o M, 7 =V iff for all paths 7’ in M starting with m such that M, 7’ |= .

[je différe de principles of model-checking, mais je trouve ¢a plus clair avec les
indices V et J.. eux ils font universels|

e M, s =y @ iff for all path 7 starting from s we have M, 1 = ®;

e M, s =3 @ iff there exists a path 7 starting from s such that M, = ®.

A formula ¢ is satisfiable iff there exists a structure M, s such that M, s =3 ¢.
A formula is valid iff for all structure M, s we have M, s =y .

1.2. SEMANTICS 3

1.2.1 Fragments
|principles of model-checking p. 422]
e LTL = only linear temporal operators (no 3, no V)

e CTL = each linear temporal operator must be immediately preceded by a
path quantifer.

Example 1

1.2.2 Decision problems
The }=3 -model-checking problem of CT'Lx (LTL, CTL) is defined as follows:

e input: a pointed model M, s and a formula ¢ of CT'Lx, LT L or CTL
e output: yes iff M, s = .

The satisfiability problem is defined as follows:

e input: a formula ¢ of CTLx, LT L or C'T'L

e output: yes iff ¢ is satisfiable.

6

CHAPTER 1.

THE FRAMEWORK ‘COMPUTATION TREE LOGIC*

Chapter 2

Linear Temporal Logic

2.1 Examples of properties

2.1.1 Properties LTL can express

Example 2 ‘infinitely often p’: GFyp
‘eventually forever p: FGyp

Example 3 We consider the following Kripke structure:

N = noncritical, T =trying, C = critical r N1, Nzl' | User1 User2
. turn=0
S TN /N1, T2
turn=1 . Y turn=2
¥ b .? b
" e N2 " T,T2 _ CT,T2 " Nt c2
. turn=1 . turn=1 | . tum=2 Lo turn=2
4 ¥ L]) P
loe,T2 " Tm,c2

. turn=1 . turn=2

Safety (streté) (something bad never happens): yes. M, s |y G(—(c1 A ¢3))
Liveness (vivacité) (something good eventually happens): no. M, s ey Fe;

7

8 CHAPTER 2. LINEAR TEMPORAL LOGIC

Liveness: yes. M, s =y G(t1 — Feq)
Fairness (équité): M, s [y GFey
Strong fairness (équité forte): M, s =y GFty — GF ey

Example 4 Alternation: G(p < O—p)
M,m=G(p«— Op) iff {ie N|m e V(p)} = even numbers or odd numbers

2.1.2 Properties that LTL can not express

["temporal logic can be more expressive" from Pierre Wolper]|
Theorem 1 ‘p is true on each even moments’ is not expressible tn LTL.

PROOF.
It seems that the formula p A G(p — O O p) expresses the property. But it is
false in: p,p,p,—p,p,p,p,p... TODO: A

2.2 Axiomatization

[Gabbay, Pnueli, Shelah, and Stavi, 1980]

Axioms for LTL: all instances of:

[proof of completeness can be found in "Temporal logic of Programs, P; 26-
...] [from Reynols paper, the axiomatization of CTL*, a bit strange with Gp —
p A Op A OGp... but Wolper 83, Temporal logic can be more expressive use also
this... warning, in Wolper 83, U is the weak version]|

e Propositional tautologies;

o Fp o =Gp;

* O(p—q) = (Op — Og);

e G(p—q) — (Gp— Gg);

¢ “Op<«= Op

e Gp—pAOpAOGp;

e G(p — Op) — (p — Gp) (induction);
o pUq = qV (pAOPUq);

e pUq — Fyq.

2.3. MODEL-CHECKING AND SATISFIABILITY PROBLEM OF LTL 9

Rules:
e modus ponens;

e Necessitation for G,

2.3 Model-checking and satisfiability problem of
LTL

2.3.1 Satisfiability problem of LTL

[Sistla and Clarke, the complexity of PLTL]
The satisfiability problem is defined as follows:

e a formula ¢;

e is there a model M = (W, R) and a run 7 such that 7 = ¢.

Remark 3 Contrary to S4, K etc. we can have an exponential branch in the
model. We can force it with the following formula:
n n n i—1
G Vo —pi A /\j:i+1 bj — X(/\j:i—H —pj) A pi A (/\j:l(pj — Xpj) A (p; —
X=p;)

Let ¢ the formula we want to know whether it is satisfiable of not. We are going
to prove that if ¢ is satisfiable then it is satisfiable in a regular run, called "ulti-
mately periodic run’. In this section, a run 7 is considered as an infinite sequence
of subsets of 247M () where ATM (i) are the atomic propositions appearing in ¢.

We note [i], the set of all formulas ¢ € SF(p) such that «[i..] = .

Lemma 1 Ifi < j and [i|, = [j]» then if we define 7" = (7o, ..., W1, T, Wi, - - -,
then for all k € N\ {i,...,j — 1}, [k], = [k]~.

PROOF.

By induction on 1.

[

Let oo, be the set of S C SF(p) such that there exists an infinity of & such
that [k], = S.

Definition 3 ()
A run 7 is said to be ultimately periodic with starting index ¢ and period p if for
all & Z ’i, Tk = Tk+p-

10 CHAPTER 2. LINEAR TEMPORAL LOGIC

Lemma 2 Leti,p € N such that [i], = [i+p], andVS € oo, Ik € {i,....i+p—1}
such that (k] = S.

Let @' the ultimately periodic run with starting index i and period p defined by
for all k <i+p, m = 7.

Then:

o for allk <i+p, [klo = [kl
o forallk >1i, [kl = [k+ plx.

PROOF.
By induction, we prove that for all ¢ € SF(p) we have:

o forall k <i+p, 7'[k.] v iff n[k.] = ¢
o forall k >, n'[k.| = iff 7'k +p..] E .
|

Theorem 2 A formula ¢ s satisfiable iff it is satisfiable in an ultimately periodic
path with starting index i and period p where:

o | <2l
e D S 4‘99‘

PROOF.

The formula ¢ is satisfiable in a run 7. Let j, ¢ such that [j], = [+ ¢], and
for all S € oo, there exists k € {j,...,7 +¢q — 1} such that [k], = S.

We now shorten the run so that j < 21+lel with Lemma we shorten the
7[0..5 — 1] by removing repetitions.

We then shorten the run so that ¢ < A9l with Lemma : we shorten the
7[j,7 + q + 1] by removing repetitions between two occurrences of [k], € co,.

We conclude with Lemma 2

[|

Theorem 3 LTL-SAT is PSPACE.

PRrRoOOF.
The proof starts with a definition of Hintikka set.

Definition 4 ()
A Hintikka set over Y is a set H saturated in the following way:

o If =Xy € H then X— € H,;

2.3. MODEL-CHECKING AND SATISFIABILITY PROBLEM OF LTL 11

o If pUt) € H then 1) € H or (¢ € H and X (pU);
o If ~(oUv) € H, ~ € H and —p V X (=(oU)).

We design a PSPACE algorithm for satisfiability problem of LTL taking in
account the fact that if a formula ¢ is satisfiable then it suffices to find a ultimately
periodic path with starting index ¢ and period p where:

o | <2l

o p < 4l¥l

2.3.2 PSPACE-hardness of model-checking of LTL
Theorem 4 Model-checking of LTL 1s PSPACE-hard.

PROOF.

We reduce the corridor tiling problem to the LTL model-checking. The model
M encodes the horizontal conditions. The formula ¢ enforces a path that repre-
sents a corridor tiling.

The worlds of the model M are a world "begin" and pairs (¢,7) where ¢ is a
tile type and ¢ € {0,...,n — 1}. Are connected:

e begin to (t,0 for all ¢;
o (t,i) — (t'yi+ 1) iff right(t) = left(t') and i <n — 1;
e (t,n— 1) to begin.

Propositions are p;. p; is true in only pairs (¢,7). The formula ¢ is the conjunction
of:

,,,,,

77777

o G /\tET bt — On+1 Vt’ET\up(t’):down(t’) Dy

B As the model-checking of LTL consists in encoding the problem into the
satisfiability problem of LTL! That is why we study the satisfiability problem!

12 CHAPTER 2. LINEAR TEMPORAL LOGIC

2.3.3 Encoding the model-checking of LTL into the LTL-
satisfiability problem

Theorem 5 The model-checking of LTL is reductible (est réductible en temps poly-
nomial) to the LTL-satisfiability problem.

PROOF.

Let M = (W, R,V) and ¢.

We extend the set of atomic propositions with propositions in, for all s € W
meaning that the current point is the world s € W.

For all w € W, we define:

o herey = py A /\er\{w} TP

o valy = Apuevip) P A Npwgvp) 5

o succy = OV e pu) Mw;

o , = here, Aval, N\ succ,.

We have M, w = ¢ iff the formula ¢ A in, A G\, oy in, is LT L-satisfiable. W

Theorem 6 Model-checking of LTL is PSPACE.

Theorem 7 Satisfiability problem of LTL is PSPACE-hard.

cTL Satisfiability and model-checking

O
. y of LTL
G in PSPACE

Non-deterministic algorithm for satisfiability of a LTL-formula ¢
function satLTL(¢p)
choose i € {1,..., 2/}
choose p € {1,...,4I}
state := hintikkaSaturate({¢})
for j:=1toi—1
| state := hintikkaSaturate({y | Oy € state})
endFor
state; = state
formulaToFulFill = {4 | YUy € state; and ¢ & state;}
for j:=14+1toi+p—1
state := hintikkaSaturate({y | Oy € state})

formulaToFul Fill = state N formulaT oFul Fill
endFor

if state ¢ state; reject
if formulaToFullFill # () reject

accept
function

n

where hintikkaSaturate(X) non-deterministically returns a Hintikka set over
Y. If there is no such Hintikka set, hintikkaSaturate(X) fails.

Algorithm for model-checking of a LTL-formula ¢ based on a reduction from
the LTL-35-model-checking problem to the LTL-satisfiability problem
input: M = (W, R, V), w e W and ¢.
output: the set of worlds w such that M, w |=3 ¢
function mcsLTL(M, ¢)

oneworld says ‘at each step, we are in at most one world of model M’ with
extra-propositions in, saying that ‘the current world is u’.
oneworld == G <\/u€W My = Npew\fu) ﬂinv>;

valuations says ‘at each step, if we are in world uw we copy the corresponding
valuation from M’

valuations := G <\/uEW My — (Ap\ueV(p) pA /\plu€V(p) ﬁp))
path says ‘we are following a path in M

path := G <\/u€W iy — OV yepw) 'mv>;

return {w € W | satLTL(¢ A in,, A oneworld A path A valuations)}
endFunction

Chapter 3
Branching-time logic : CTL*, CTL

3.1 Motivation

[p. 315]
VGAF start: it is always possible to return in the initial state.
VG O Ostart: it is always possible to return in the initial state in two steps.
VGdF start is a CTL formula but VG O Ostart is not.
VXG-pA3IFG(pVV(qUp))
[p. 422, section about CTL*]

3.2 Model-checking

3.2.1 Model-checking of CTL* in PSPACE

The model-checking of CTL* is dynamic programming: it consists in applying
model-checking of LTL on subformulas without path quantification.

3.2.2 Model-checking of CTL in P

The benefit of the fragment of CTL is that for all formulas ¢ of CTL we have
M, = pift M, |3 ¢ iff M, 19 v ¢. That is: we do not care about the path.
Easy! As for K! [p. 341]| [vérification de logiciels. Schnoebelen et al., p. 40]

[Vérification des Systémes Réactifs Temps-Réel, cours école polytechnique, p.
66(pdf)]

Theorem 8 O(|| * (|W|+ |R|)) in time.

Example 5 (p. 356) Let G = (V, E) be a connected and directed graph. We say
that vy, ..., v, is an hamiltonian path iff V = {vq,... v, }.

15

In order to solve the Hamiltonian path we define a Kripke model Mg where
the worlds are the vertices of G plus an extra state b as depicted in

. g H'\‘{/'f'a}

ol (2) Vo) on) {v1) ,f;.li\.l/ o)e —olo3))

__/% A A /_',/' 1 N N T _I_'_J
T T '.,‘ T _— .-"

--""-\.-,_____ d__‘_-i' '.“ ""\-\.__H_ \\ / /
—— I \ Y [
L
\ ’
\ }_ / /
|
A

(a) (b)

The purpose of b is to ensure that Mg is serial.
In order to know whether G has a Hamiltonian path, we define © =\, omusation of {1,y Po

where Y5 = Vg, AT O (Vgy AT O (Vgy A ...).
The length ¢ is exponential in the size of G.

The problem Hamiltonian path problem is defined as:
e input: a graph G;
e output: yes iff the graph G contains a Hamiltonian path.

is NP-complete.

Theorem 9 If for all graph G we find a polynomial sized CTL-formula pg such
that G is Hamiltonian iff there exists a world w of Mg such that M,w = ¢g...
then P = NP.

CTL* O .
J Model-checking of CTL"

E U
v . PSPACE

Algorithm using the model-checking of LTL as a subroutine

input: M = (W, R,V), ¢ CTL*-formula without V
output: the set of worlds s where M, s =35 .
function mcsCTL* (M,)
if ¢ does not contain any 3

| return mcsLTL(M, ¢)

else
1 :=)’ a subformula of ¢ such that ¢’ is I-free.

M := (W, R, V') where:

o V' :=V extended with V'(py) = mcgLTL(M, ') where p,, is
a fresh atomic proposition

Y’ := 1) where we replaced subformulas ¢ by py
return mcsCTL* (M, ¢')

end]f
endFunction

CTL*
= Model-checking of CTL

e
. VO o v o]

+1AD[el)

input: M = (W, R, V), ¢ CTL-formula
output: the set of worlds s where M, s =35 ¢.

function mcCTL(M, p)

match ¢

p: return V(p)

—): return W\ mcCTL(M,)

Yy Vg return mcCTL(M, 1) U meCTL(M, 1)s)
0O ¢Y: return {w e W | Ju € R(w) | u € mcCTL(M,
VO : return {w e W | Vu € R(w) | u € meCTL(M
Fp1Uhs:

Sy, = mcCTL(M,)

Ltotreat = mCCTL<M> 2/}2)

result := Liyeateqd =[]

while Ltotreat 7é @

q = Liotrear-defiler

result := result U {q}

for u — ¢
if u € Ltreated then

Ltreated = Ltreated U {’U,}
if u € Sy, then

‘ Ltotreat = Ltotreat U {u}

9

P
P

endIf
endFor
endWhile

return result

VipUthy:
Sy, = mcCTL(M,)

for w € W, deg[w] := number of successors of w
Liotrear := —mCCTL<M7 ¢2)

result =[]

while Ltotreat 7é @

q = Liotrear-defiler

result := result U {q}

for u — ¢
deglu] := deglu] — 1

‘ Ltotreat = Ltotreat U {u}

endIf
endFor
endWhile

return result

endMatch
endFunction

)}
)}

if deglu] = 0 and u & result and u € Sy, then

3.3 Expressivity

3.3.1 Comparison of LTL, CTL and CTL*
[p. 237] [p. 334, Def 6.17 remanié pour CTL*|

Definition 5 ()
Two CTL" formulae ®; and @, are equivalent iff for all M, s we have M, s =y
iff M, S }:v (I)g.

Theorem 10 Let ® be a CTL* formula.

o Fither ® s equivalent to Y, where ¢ is the LTL formula obtained by elimi-
nating all path quantifiers in ®;

e Or there is no LTL formula that is equivalent to P.

PROOF.
|Clarke and Draghicescu 1985, Th. 1, P. 5 of the article] Suppose that ® is

equivalent to a formula Vy where x is an LTL-formula. Let us prove that & is
equivalent to V.

Let M, s be a pointed-model such that M, s =y ®.

for all path 7 (that begins with s) we have M, 1 = x

for all path 7 of the form xy® we have M, 7 | x

for all path 7 of the form zy" we have M™ s' =y x where M™, s is the model
that contains only the path m

for all path 7 of the form xy* we have M7™, s =y @

for all path 7 of the form xy® we have M™, " =y ¢ (because MT™ is determin-
istic)

for all path 7 of the form xy® we have M, 1 = ¢

for all path m we have M, 1 = ¢

M, s =y Vo

|

Question 1 What is the complexity of knowing if ® has an LTL equivalent for-
mula?

Example 6 VGV Ep is equivalent to GFp.[p. 335, and p. 526, remark 6.8]

We prove that M, s = YGYFp implies that in all paths 7, p is true infinitely
often. So M,s = GFp.

Conversely (yes, we have to prove it) M,s = GFp implies that ...

[p. 424]

Theorem 11 There exist CTL formulae for which no equivalent LTL formula
exists. For instance, VG3Fp has no equivalent in LTL.

PROOF.

P
—3(}— }Cy

VGAFp is not equivalent to GF'p, see the model above:

e GGFp: false in the path where we stay in the state of the left;
e YGIFp: true.

By the previous theorem, the CTL formula VFVGp has no LTL equivalent.
[|

Theorem 12 Other ezample: YVFVGp has no equivalent in LTL.

PROOF.

N N
- |
Y) Y
\J0) Y \>2/

{g} @ {r}
VFYGp is not equivalent to F'Gp, see the model above [p. 335]:
e ['Gp: true in all paths;

e VFVGp: false because in the path (s9)” we do not have FVGp. Indeed, at
each point we can decide to change the path for s;s§ and s; &= —p.

By the previous theorem, the CTL formula VFVGp has no LTL equivalent.

|

TD : VF(p AV O p) is not equivalent to F'(p A Op). |p. 336-337| VGIFp is not
equivalent to GF'p

[p. 424|

Theorem 13 (p. 337. th. 6.21) There exist LTL formulae for which no equiv-
alent CTL formula exists. For instance, the LTL formula FGp has no equivalent
in CTL.

PROOF.
Let M., s be the following model:

e N P F .
ﬁ‘lbﬁo""-———] l___‘_—>ﬂ—'_‘%-.9. | 4
5 (5 <) O

Let M/, s be the following model:

r P
e ——— e —— 9 DT e e —> 0

@) € <) @)

For all n € N, we have M/, s =y FGp.
For all n € N, we have M,,, s =y FGp.

v
b

Lemma 3 For all n € N, for all CTL formula ¢ such that |p| < n, we have
M, | o iff M = e

PROOF.
TODO: 1
|
TD: or F(p A Op)
[p. 424, th. 6.84]

Theorem 14 There exists a CTL* formula that is not expressible in CTL and
also not expressible in LTL. For instance VFGp VvV VG3Fp.

PROOF.

3.3.2 Comparison of CTL with K and S4

Proposition 1 Let M = (W, R, V) be a Kripke model. Let tr be the following
from K to CTL translation: tr() = A O tr(p). Then we have M,w = ¢ iff
M, w =3 tr(p).

Proposition 2 Let M = (W, R,V) be a Kripke model. Let Mx = (W, Rx,V)
where R+ is the reflexive and transitive closure of R. Let tr be the following
from S4 to CTL translation: tr() = AGtr(v). Then we have Mx,w = ¢ iff
M, w =5 tr(yp).

3.3.3 Bissimilation

Definition 6 ()
We say that M, 7 and M’ 7" are bissimilar (noted M, o M ") iff for all

n € N, M, m, and M’ 7/ are bissimilar.

Proposition 3 If M, w < M’ ,w' and let © be a path in M such that m9 = w.
Then there exists a path @ in M’ such that), = w" such that M, 7 — M’ 7.

PROOF.

|

[p. 473]
Proposition 4 If M, 7 < M', 7’ then for all CTL*-formula ¢ we have M, 7 |= ¢
M 7.

PROOF.

By induction on ¢. B

Theorem 15 Let M, w and M’ ,w' two image-finite models. We have equivalence
between:

1. M,w < M w';
2. for all CTL*-formula, M,w =3 ¢ iff M',w' =3 ¢;
3. for all CTL-formula, M,w = ¢ iff M',w'" = .

PROOF.

Done.

Trivial.

[3 = 1]Because CTL embeds logic K. Hence M, w and M, w’ satisfies the same
formulas of K. As they are image-finite models, they are bissimilar.

|

	The framework `Computation Tree Logic*'
	Syntax
	Semantics
	Fragments
	Decision problems

	Linear Temporal Logic
	Examples of properties
	Properties LTL can express
	Properties that LTL can not express

	Axiomatization
	Model-checking and satisfiability problem of LTL
	Satisfiability problem of LTL
	PSPACE-hardness of model-checking of LTL
	Encoding the model-checking of LTL into the LTL-satisfiability problem

	Branching-time logic : CTL*, CTL
	Motivation
	Model-checking
	Model-checking of CTL* in PSPACE
	Model-checking of CTL in P

	Expressivity
	Comparison of LTL, CTL and CTL*
	Comparison of CTL with K and S4
	Bissimilation

