Temporal logics LTL, CTL and CTL^*

François SCHWARZENTRUBER

Chapter 1

The framework 'Computation Tree Logic*'

1.1 Syntax

Let ATM be a set of atomic propositions. [vérification de logiciels, p. 33]

Definition 1 ()

$$\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid F\varphi \mid G\varphi \mid \varphi U\varphi \mid \exists \varphi \mid \forall \varphi$$

where $p \in ATM$.

Remark 1 Some people [principles of model checking, p. 422] differentiate CTL* state formulae (also called CTL* formulae) from Path formulae. They do as follows. CTL* state formulae (also called CTL* formulae) are formed according to the following grammar:

$$\Phi ::= \bot \mid p \mid \neg \Phi \mid \Phi \lor \Phi \mid \exists \varphi \mid \forall \varphi$$

where $p \in ATM$ and φ is a path formula. Path formulae are given by the following grammar:

$$\varphi ::= \Phi \mid \neg \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \varphi U \varphi$$

I find it useless and prefer the point of view of [vérification de logiciels, Techniques et outils du model-checking, p. 33].

Remark 2 $F\varphi := \top U\varphi$ $G\varphi := \neg F \neg \varphi = \neg \top U \neg \varphi$
$$\begin{split} \varphi W \psi &:= \varphi U \psi \lor G \varphi \\ \varphi R \psi &:= \neg (\neg \varphi U \neg \psi) \text{ (release) [p. 256]} \\ \forall \varphi &= \neg \exists \neg \varphi \\ \bigcirc \text{ and } U \text{ are called linear temporal operators.} \\ \exists \text{ and } \forall \text{ are called path quantifiers.} \end{split}$$

1.2 Semantics

We evaluate a formula in a model and a path (run) in model. A model is a transition system, that is a Kripke structure $\mathcal{M} = (W, R, V)$ that is serial (for all $w \in W, R(w) \neq \emptyset$). A path π is a sequence π_0, π_1, \ldots such that $\pi_i \in W$ and $\pi_i R \pi_{i+1}$ for all $i \geq 0$.

Definition 2 ()

- $\mathcal{M}, \pi \models p \text{ iff } \pi_0 \in V(p);$
- $\mathcal{M}, \pi \models \bigcirc \varphi \text{ iff } \mathcal{M}, \pi[1..\infty] \models \varphi$
- $\mathcal{M}, \pi \models F\varphi$ iff there exists *i* such that $\mathcal{M}, \pi[i, \ldots] \models \varphi$
- $\mathcal{M}, \pi \models G\varphi$ iff for all *i* such that $\mathcal{M}, \pi[i, \ldots] \models \varphi$
- $\mathcal{M}, \pi \models \varphi U \psi$ iff there exists a integer j such that $\mathcal{M}, \pi[j..\infty] \models \psi$ and for all i < j, we have $\mathcal{M}, \pi[i..\infty] \models \varphi$
- $\mathcal{M}, \pi \models \exists \varphi \text{ iff there exists a path } \pi' \text{ in } \mathcal{M} \text{ starting with } \pi_0 \text{ such that } \mathcal{M}, \pi' \models \varphi.$
- $\mathcal{M}, \pi \models \forall \varphi$ iff for all paths π' in \mathcal{M} starting with π_0 such that $\mathcal{M}, \pi' \models \varphi$.

[je diffère de principles of model-checking, mais je trouve ça plus clair avec les indices \forall et \exists .. eux ils font universels]

- $\mathcal{M}, s \models_{\forall} \Phi$ iff for all path π starting from s we have $\mathcal{M}, \pi \models \Phi$;
- $\mathcal{M}, s \models_\exists \Phi$ iff there exists a path π starting from s such that $\mathcal{M}, \pi \models \Phi$.

A formula φ is satisfiable iff there exists a structure \mathcal{M}, s such that $\mathcal{M}, s \models_\exists \varphi$. A formula is valid iff for all structure \mathcal{M}, s we have $\mathcal{M}, s \models_\forall \varphi$.

1.2. SEMANTICS

1.2.1 Fragments

[principles of model-checking p. 422]

- LTL = only linear temporal operators (no \exists , no \forall)
- CTL = each linear temporal operator must be immediately preceded by a path quantifer.

Example 1

1.2.2 Decision problems

The \models_{\exists} -model-checking problem of CTL* (LTL, CTL) is defined as follows:

- input: a pointed model \mathcal{M}, s and a formula φ of CTL*, LTL or CTL
- output: yes iff $\mathcal{M}, s \models \varphi$.

The satisfiability problem is defined as follows:

- input: a formula φ of CTL*, LTL or CTL
- output: yes iff φ is satisfiable.

6 CHAPTER 1. THE FRAMEWORK 'COMPUTATION TREE LOGIC*'

Chapter 2

Linear Temporal Logic

2.1 Examples of properties

2.1.1 Properties LTL can express

Example 2 'infinitely often φ ': $GF\varphi$ 'eventually forever φ : $FG\varphi$

Example 3 We consider the following Kripke structure:

Safety (sûreté) (something bad never happens): yes. $\mathcal{M}, s \models_{\forall} G(\neg(c_1 \land c_2))$ Liveness (vivacité) (something good eventually happens): no. $\mathcal{M}, s \not\models_{\forall} Fc_1$

Liveness: yes. $\mathcal{M}, s \models_{\forall} G(t_1 \to Fc_1)$ Fairness (équité): $\mathcal{M}, s \not\models_{\forall} GFc_1$ Strong fairness (équité forte): $\mathcal{M}, s \models_{\forall} GFt_1 \to GFc_1$

Example 4 Alternation: $G(p \leftrightarrow \bigcirc \neg p)$ $\mathcal{M}, \pi \models G(p \leftrightarrow \bigcirc \neg p)$ iff $\{i \in \mathbb{N} \mid \pi_i \in V(p)\} = even numbers or odd numbers$

2.1.2 Properties that LTL can not express

["temporal logic can be more expressive" from Pierre Wolper]

Theorem 1 'p is true on each even moments' is not expressible in LTL.

Proof.

It seems that the formula $p \wedge G(p \to \bigcirc \bigcirc p)$ expresses the property. But it is false in: $p, p, p, p, p, p, p, p, \dots$ TODO:

2.2 Axiomatization

[Gabbay, Pnueli, Shelah, and Stavi, 1980]

Axioms for LTL: all instances of:

[proof of completeness can be found in "Temporal logic of Programs, P; 26-...] [from Reynols paper, the axiomatization of CTL*, a bit strange with $Gp \rightarrow p \land \bigcirc p \land \bigcirc Gp...$ but Wolper 83, Temporal logic can be more expressive use also this... warning, in Wolper 83, U is the weak version]

- Propositional tautologies;
- $Fp \leftrightarrow \neg G \neg p;$
- $\bigcirc(p \to q) \to (\bigcirc p \to \bigcirc q);$
- $G(p \rightarrow q) \rightarrow (Gp \rightarrow Gq);$
- $\bullet \ \neg \bigcirc p \leftrightarrow \bigcirc \neg p$
- $Gp \to p \land \bigcirc p \land \bigcirc Gp;$
- $G(p \to \bigcirc p) \to (p \to Gp)$ (induction);
- $pUq \leftrightarrow q \lor (p \land \bigcirc (pUq);$
- $pUq \rightarrow Fq$.

9

Rules:

- modus ponens;
- Necessitation for G;

2.3 Model-checking and satisfiability problem of LTL

2.3.1 Satisfiability problem of LTL

[Sistla and Clarke, the complexity of PLTL]

The satisfiability problem is defined as follows:

- a formula φ ;
- is there a model $\mathcal{M} = (W, R)$ and a run π such that $\pi \models \varphi$.

Remark 3 Contrary to S_4 , K etc. we can have an exponential branch in the model. We can force it with the following formula:

 $\begin{array}{c} G\bigvee_{i=1}^{n}\neg p_{i}\wedge\bigwedge_{j=i+1}^{n}p_{j}\rightarrow X(\bigwedge_{j=i+1}^{n}\neg p_{j})\wedge p_{i}\wedge(\bigwedge_{j=1}^{i-1}(p_{j}\rightarrow Xp_{j})\wedge(\neg p_{j}\rightarrow X\neg p_{j})) \end{array}$

Let φ the formula we want to know whether it is satisfiable of not. We are going to prove that if φ is satisfiable then it is satisfiable in a regular run, called 'ultimately periodic run'. In this section, a run π is considered as an infinite sequence of subsets of $2^{ATM}(\varphi)$ where $ATM(\varphi)$ are the atomic propositions appearing in φ .

We note $[i]_{\pi}$ the set of all formulas $\psi \in SF(\varphi)$ such that $\pi[i..] \models \psi$.

Lemma 1 If i < j and $[i]_{\pi} = [j]_{\pi}$ then if we define $\pi' = (\pi_0, ..., \pi_{i-1}, \pi_j, \pi_{j+1}, ..., then for all <math>k \in \mathbb{N} \setminus \{i, ..., j-1\}, [k]_{\pi} = [k]_{\pi'}$.

PROOF. By induction on ψ .

Let ∞_{π} be the set of $S \subseteq SF(\varphi)$ such that there exists an infinity of k such that $[k]_{\pi} = S$.

Definition 3 ()

A run π is said to be ultimately periodic with starting index *i* and period *p* if for all $k \ge i$, $\pi_k = \pi_{k+p}$.

Lemma 2 Let $i, p \in \mathbb{N}$ such that $[i]_{\pi} = [i+p]_{\pi}$ and $\forall S \in \infty_{\pi}, \exists k \in \{i, \ldots, i+p-1\}$ such that $[k]_{\pi} = S$.

Let π' the ultimately periodic run with starting index *i* and period *p* defined by for all k < i + p, $\pi'_k = \pi_k$.

Then:

- for all k < i + p, $[k]_{\pi'} = [k]_{\pi}$;
- for all k > i, $[k]_{\pi'} = [k+p]_{\pi}$.

Proof.

By induction, we prove that for all $\psi \in SF(\varphi)$ we have:

- for all k < i + p, $\pi'[k..] \models \psi$ iff $\pi[k..] \models \psi$;
- for all k > i, $\pi'[k..] \models \psi$ iff $\pi'[k + p..] \models \psi$.

Theorem 2 A formula φ is satisfiable iff it is satisfiable in an ultimately periodic path with starting index i and period p where:

- $i \leq 2^{|\varphi|};$
- $p \leq 4^{|\varphi|}$.

Proof.

The formula φ is satisfiable in a run π . Let j, q such that $[j]_{\pi} = [j+q]_{\pi}$ and for all $S \in \infty_{\pi}$, there exists $k \in \{j, \ldots, j+q-1\}$ such that $[k]_{\pi} = S$.

We now shorten the run so that $j \leq 2^{1+|\varphi|}$ with Lemma 1: we shorten the $\pi[0..j-1]$ by removing repetitions.

We then shorten the run so that $q \leq 4^{1+|\varphi|}$ with Lemma 1: we shorten the $\pi[j, j+q+1]$ by removing repetitions between two occurrences of $[k]_{\pi} \in \infty_{\pi}$.

We conclude with Lemma 2.

Theorem 3 LTL-SAT is PSPACE.

Proof.

The proof starts with a definition of Hintikka set.

Definition 4 ()

A Hintikka set over Σ is a set H saturated in the following way:

• If $\neg X\psi \in H$ then $X\neg \psi \in H$;

- If $\varphi U\psi \in H$ then $\psi \in H$ or $(\varphi \in H \text{ and } X(\varphi U\psi);$
- If $\neg(\varphi U\psi) \in H$, $\neg \psi \in H$ and $\neg \varphi \lor X(\neg(\varphi U\psi))$.

We design a PSPACE algorithm for satisfiability problem of LTL taking in account the fact that if a formula φ is satisfiable then it suffices to find a ultimately periodic path with starting index *i* and period *p* where:

- $i \leq 2^{|\varphi|};$
- $p \leq 4^{|\varphi|}$.

2.3.2 PSPACE-hardness of model-checking of LTL

Theorem 4 Model-checking of LTL is PSPACE-hard.

Proof.

We reduce the corridor tiling problem to the LTL model-checking. The model \mathcal{M} encodes the horizontal conditions. The formula φ enforces a path that represents a corridor tiling.

The worlds of the model \mathcal{M} are a world "begin" and pairs (t, i) where t is a tile type and $i \in \{0, \ldots, n-1\}$. Are connected:

- begin to (t, 0 for all t;
- $(t,i) \rightarrow (t',i+1)$ iff right(t) = left(t') and i < n-1;
- (t, n-1) to begin.

Propositions are p_t . p_t is true in only pairs (t, i). The formula φ is the conjunction of:

- $\bigwedge_{i \in \{0,\dots,n-1\}} \bigcirc^{i+1} b_i;$
- $F(begin \wedge \bigwedge_{i \in \{0,\dots,n-1\}} \bigcirc^{i+1} e_i);$
- $G \bigwedge_{t \in T} p_t \to \bigcirc^{n+1} \bigvee_{t' \in T \mid up(t') = down(t')} p_{t'}$

■ As the model-checking of LTL consists in encoding the problem into the satisfiability problem of LTL! That is why we study the satisfiability problem!

2.3.3 Encoding the model-checking of LTL into the LTLsatisfiability problem

Theorem 5 The model-checking of LTL is reductible (est réductible en temps polynomial) to the LTL-satisfiability problem.

Proof.

Let $\mathcal{M} = (W, R, V)$ and φ .

We extend the set of atomic propositions with propositions in_s for all $s \in W$ meaning that the current point is the world $s \in W$.

For all $w \in W$, we define:

- $here_w = p_w \land \bigwedge_{v \in W \setminus \{w\}} \neg p_v;$
- $val_w = \bigwedge_{p|w \in V(p)} p \land \bigwedge_{p|w \notin V(p)} \neg p;$
- $succ_w = \bigcirc \bigvee_{u \in R(w)} in_w;$
- $\varphi_w = here_w \wedge val_w \wedge succ_w$.

We have $\mathcal{M}, w \models \varphi$ iff the formula $\varphi \wedge in_w \wedge G \bigvee_{u \in W} in_u$ is LTL-satisfiable.

Theorem 6 Model-checking of LTL is PSPACE.

Theorem 7 Satisfiability problem of LTL is PSPACE-hard.

CTL* Satisfiability and model-checking of LTL U F LTL CTL G in **PSPACE** Non-deterministic algorithm for satisfiability of a LTL-formula φ function $\underline{\operatorname{satLTL}}(\varphi)$ **choose** $i \in \{1, ..., 2^{|\varphi|}\}$ choose $p \in \{1, \ldots, 4^{|\varphi|}\}$ $state := hintikkaSaturate(\{\varphi\})$ for j := 1 to i - 1 $state := hintikkaSaturate(\{\psi \mid \bigcirc \psi \in state\})$ endFor $state_i = state$ $formulaToFulFill = \{\psi \mid \psi'U\psi \in state_i \text{ and } \psi \notin state_i\}$ for i := i + 1 to i + p - 1 $state := hintikkaSaturate(\{\psi \mid \bigcirc \psi \in state\})$ $formulaToFulFill = state \cap formulaToFulFill$ endFor if $state \not\subset state_i$ reject if $formulaToFullFill \neq \emptyset$ reject accept function

where $hintikkaSaturate(\Sigma)$ non-deterministically returns a Hintikka set over Σ . If there is no such Hintikka set, $hintikkaSaturate(\Sigma)$ fails.

Algorithm for model-checking of a LTL-formula φ based on a reduction from the LTL- \models_\exists -model-checking problem to the LTL-satisfiability problem

input: $\mathcal{M} = (W, R, V), w \in W$ and φ . output: the set of worlds w such that $\mathcal{M}, w \models_{\exists} \varphi$ **function** $\underline{\mathrm{mc}}_{\exists} \mathrm{LTL}(\mathcal{M}, \varphi)$ *oneworld* says 'at each step, we are in at most one world of model \mathcal{M} ' with extra-propositions in_u saying that 'the current world is u'. *oneworld* := $G\left(\bigvee_{u \in W} in_u \to \bigwedge_{v \in W \setminus \{u\}} \neg in_v\right)$; *valuations* says 'at each step, if we are in world u we copy the corresponding valuation from \mathcal{M}' *valuations* := $G\left(\bigvee_{u \in W} in_u \to \left(\bigwedge_{p \mid u \in V(p)} p \land \bigwedge_{p \mid u \notin V(p)} \neg p\right)\right)$ *path* says 'we are following a path in \mathcal{M} *path* := $G\left(\bigvee_{u \in W} in_u \to \bigcirc_{v \in R(u)} in_v\right)$; **return** $\{w \in W \mid \underline{\mathrm{satLTL}}(\varphi \land in_w \land oneworld \land path \land valuations)\}$ **endFunction**

Chapter 3

Branching-time logic : CTL*, CTL

3.1 Motivation

[p. 315]

 $\forall G \exists Fstart$: it is always possible to return in the initial state. $\forall G \bigcirc \bigcirc start$: it is always possible to return in the initial state in two steps. $\forall G \exists Fstart$ is a CTL formula but $\forall G \bigcirc \bigcirc start$ is not. $\forall XG \neg p \land \exists FG(p \lor \forall (qUp))$ [p. 422, section about CTL*]

3.2 Model-checking

3.2.1 Model-checking of CTL* in PSPACE

The model-checking of CTL^{*} is dynamic programming: it consists in applying model-checking of LTL on subformulas without path quantification.

3.2.2 Model-checking of CTL in P

The benefit of the fragment of CTL is that for all formulas φ of CTL we have $\mathcal{M}, \pi \models \varphi$ iff $\mathcal{M}, \pi_0 \models_\exists \varphi$ iff $\mathcal{M}, \pi_0 \models_\forall \varphi$. That is: we do not care about the path. Easy! As for K! [p. 341] [vérification de logiciels. Schnoebelen et al., p. 40]

[Vérification des Systèmes Réactifs Temps-Réel, cours école polytechnique, p. 66(pdf)]

Theorem 8 $O(|\varphi| * (|W| + |R|))$ in time.

Example 5 (p. 356) Let G = (V, E) be a connected and directed graph. We say that v_1, \ldots, v_n is an hamiltonian path iff $V = \{v_1, \ldots, v_n\}$.

In order to solve the Hamiltonian path we define a Kripke model \mathcal{M}_G where the worlds are the vertices of G plus an extra state b as depicted in

The purpose of b is to ensure that \mathcal{M}_G is serial.

In order to know whether G has a Hamiltonian path, we define $\varphi = \bigvee_{\sigma \text{ permutation of } \{1,...n\}} \varphi_{\sigma}$ where $\varphi_{\sigma} = v_{\sigma_1} \land \exists \bigcirc (v_{\sigma_2} \land \exists \bigcirc (v_{\sigma_3} \land \ldots))$. The length φ is exponential in the size of G.

The problem Hamiltonian path problem is defined as:

- input: a graph G;
- output: yes iff the graph G contains a Hamiltonian path.

is NP-complete.

Theorem 9 If for all graph G we find a polynomial sized CTL-formula φ_G such that G is Hamiltonian iff there exists a world w of \mathcal{M}_G such that $\mathcal{M}, w \models \varphi_G \dots$ then P = NP.

Algorithm using the model-checking of LTL as a subroutine input: $\mathcal{M} = (W, R, V), \varphi$ CTL*-formula without \forall output: the set of worlds s where $\mathcal{M}, s \models_{\exists} \varphi$. **function** $\underline{\mathrm{mc}_{\exists}} \mathrm{CTL}^{*}(\mathcal{M}, \varphi)$ **if** φ does not contain any \exists | **return** $\underline{\mathrm{mc}_{\exists}} \mathrm{LTL}(\mathcal{M}, \varphi)$ **else** $\psi := \exists \psi' \text{ a subformula of } \varphi \text{ such that } \psi' \text{ is } \exists \text{-free.}$ $\mathcal{M}' := (W, R, V') \text{ where:}$ • V' := V extended with $V'(p_{\psi}) = \underline{\mathrm{mc}_{\exists}} \mathrm{LTL}(\mathcal{M}, \psi')$ where p_{ψ} is a fresh atomic proposition $\psi' := \psi$ where we replaced subformulas ψ by p_{ψ} **return** $\underline{\mathrm{mc}_{\exists}} \mathrm{CTL}^{*}(\mathcal{M}', \varphi')$ **endIf endIf**

3.3 Expressivity

3.3.1 Comparison of LTL, CTL and CTL*

[p. 237] [p. 334, Def 6.17 remanié pour CTL*]

Definition 5 ()

Two CTL^* formulae Φ_1 and Φ_2 are equivalent iff for all \mathcal{M}, s we have $\mathcal{M}, s \models_{\forall} \Phi_1$ iff $\mathcal{M}, s \models_{\forall} \Phi_2$.

Theorem 10 Let Φ be a CTL^* formula.

- Either Φ is equivalent to ∀φ, where φ is the LTL formula obtained by eliminating all path quantifiers in Φ;
- Or there is no LTL formula that is equivalent to Φ .

Proof.

[Clarke and Draghicescu 1985, Th. 1, P. 5 of the article] Suppose that Φ is equivalent to a formula $\forall \chi$ where χ is an LTL-formula. Let us prove that Φ is equivalent to $\forall \varphi$.

Let \mathcal{M}, s be a pointed-model such that $\mathcal{M}, s \models_{\forall} \Phi$.

for all path π (that begins with s) we have $\mathcal{M}, \pi \models \chi$

for all path π of the form xy^w we have $\mathcal{M}, \pi \models \chi$

for all path π of the form xy^w we have $\mathcal{M}^{\pi}, s' \models_{\forall} \chi$ where \mathcal{M}^{π}, s' is the model that contains only the path π

for all path π of the form xy^w we have $\mathcal{M}^{\pi}, s' \models_{\forall} \Phi$

for all path π of the form xy^w we have $\mathcal{M}^{\pi}, s' \models_{\forall} \varphi$ (because \mathcal{M}^{π} is deterministic)

for all path π of the form xy^w we have $\mathcal{M}, \pi \models \varphi$ for all path π we have $\mathcal{M}, \pi \models \varphi$ $\mathcal{M}, s \models_{\forall} \forall \varphi$

Question 1 What is the complexity of knowing if Φ has an LTL equivalent formula?

Example 6 $\forall G \forall Fp$ is equivalent to GFp.[p. 335, and p. 326, remark 6.8]

We prove that $\mathcal{M}, s \models \forall G \forall Fp$ implies that in all paths π , p is true infinitely often. So $\mathcal{M}, s \models GFp$.

Conversely (yes, we have to prove it) $\mathcal{M}, s \models GFp$ implies that ...

[p. 424]

Theorem 11 There exist CTL formulae for which no equivalent LTL formula exists. For instance, $\forall G \exists Fp$ has no equivalent in LTL.

Proof.

 $\forall G \exists Fp$ is not equivalent to GFp, see the model above:

- *GFp*: false in the path where we stay in the state of the left;
- $\forall G \exists Fp$: true.

By the previous theorem, the CTL formula $\forall F \forall Gp$ has no LTL equivalent.

Theorem 12 Other example: $\forall F \forall Gp$ has no equivalent in LTL.

Proof.

 $\forall F \forall Gp$ is not equivalent to FGp, see the model above [p. 335]:

- *FGp*: true in all paths;
- $\forall F \forall Gp$: false because in the path $(s_0)^{\omega}$ we do not have $F \forall Gp$. Indeed, at each point we can decide to change the path for $s_1 s_2^{\omega}$ and $s_1 \models \neg p$.

By the previous theorem, the CTL formula $\forall F \forall Gp$ has no LTL equivalent.

TD : $\forall F(p \land \forall \bigcirc p)$ is not equivalent to $F(p \land \bigcirc p)$. [p. 336-337] $\forall G \exists Fp$ is not equivalent to GFp

[p. 424]

Theorem 13 (p. 337. th. 6.21) There exist LTL formulae for which no equivalent CTL formula exists. For instance, the LTL formula FGp has no equivalent in CTL.

Proof.

Let \mathcal{M}_n , s be the following model:

Let \mathcal{M}'_n , s be the following model:

For all $n \in \mathbb{N}$, we have $\mathcal{M}'_n, s \models_{\forall} FGp$. For all $n \in \mathbb{N}$, we have $\mathcal{M}_n, s \not\models_{\forall} FGp$.

Lemma 3 For all $n \in \mathbb{N}$, for all CTL formula φ such that $|\varphi| \leq n$, we have $\mathcal{M}_n \models \varphi$ iff $\mathcal{M}'_n \models \varphi$.

Theorem 14 There exists a CTL^* formula that is not expressible in CTL and also not expressible in LTL. For instance $\forall FGp \lor \forall G \exists Fp$.

Proof.

3.3.2 Comparison of CTL with K and S4

Proposition 1 Let $\mathcal{M} = (W, R, V)$ be a Kripke model. Let tr be the following from K to CTL translation: $tr() = A \odot tr(\varphi)$. Then we have $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}, w \models_{\exists} tr(\varphi)$.

Proposition 2 Let $\mathcal{M} = (W, R, V)$ be a Kripke model. Let $\mathcal{M} * = (W, R*, V)$ where R* is the reflexive and transitive closure of R. Let tr be the following from S4 to CTL translation: $tr() = AGtr(\varphi)$. Then we have $\mathcal{M} *, w \models \varphi$ iff $\mathcal{M}, w \models_{\exists} tr(\varphi)$.

3.3.3 Bissimilation

Definition 6 ()

We say that \mathcal{M}, π and \mathcal{M}', π' are bissimilar (noted $\mathcal{M}, \pi \stackrel{\leftrightarrow}{\longrightarrow} \mathcal{M}', \pi'$) iff for all $n \in \mathbb{N}, \mathcal{M}, \pi_n$ and \mathcal{M}', π'_n are bissimilar.

Proposition 3 If $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ and let π be a path in \mathcal{M} such that $\pi_0 = w$. Then there exists a path π' in \mathcal{M}' such that $\pi'_0 = w'$ such that $\mathcal{M}, \pi \leftrightarrow \mathcal{M}', \pi'$.

Proof.

[p. 473]

Proposition 4 If $\mathcal{M}, \pi \stackrel{\longrightarrow}{\longrightarrow} \mathcal{M}', \pi'$ then for all CTL^* -formula φ we have $\mathcal{M}, \pi \models \varphi$ iff $\mathcal{M}', \pi' \models \varphi$.

PROOF. By induction on φ .

Theorem 15 Let \mathcal{M}, w and \mathcal{M}', w' two image-finite models. We have equivalence between:

- 1. $\mathcal{M}, w \leftrightarrow \mathcal{M}', w';$
- 2. for all CTL^* -formula, $\mathcal{M}, w \models_\exists \varphi \text{ iff } \mathcal{M}', w' \models_\exists \varphi;$

3. for all CTL-formula, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.

PROOF. $1 \Rightarrow 2$ Done. $2 \Rightarrow 3$ Trivial.

 $3 \Rightarrow 1$ Because CTL embeds logic K. Hence \mathcal{M}, w and \mathcal{M}, w' satisfies the same formulas of K. As they are image-finite models, they are bissimilar.