Temporal logics LTL, CTL and CTL"

Francois SCHWARZENTRUBER






Chapter 1

The framework ‘Computation Tree
Logic*’

1.1 Syntax
Let ATM be a set of atomic propositions.
[vérification de logiciels, p. 33]

Definition 1 ()

pu=Llpl-eleVelOp|Fo|GeleUp|Ip| Ve
where p € ATM.
Remark 1 Some people [principles of model checking, p. 422] differantiate CTL*
state formulae (also called CTL* formulae) from Path formulae. They do as fol-

lows. CTL" state formulae (also called CTL* formulae) are formed according to the
following grammar:

Q=1 |p|=P|dVP|Tp|Vep
where p € ATM and ¢ s a path formula. Path formulae are given by the
following grammar:
pu=@ |0 |pVe|Op|eUp
I find it useless and prefer the point of view of [vérification de logiciels, Tech-
niques et outils du model-checking, p. 33/.

Remark 2 Fy:=TUp
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eWip = pUyp V Gy

YRy := = (mpU—1) (release) [p. 256]

Vi ==d-ep

O and U are called linear temporal operators.
J and V are called path quantifiers.

1.2 Semantics

We evaluate a formula in a model and a path (run) in model. A model is a
transition system, that is a Kripke structure M = (W, R, V) that is serial (for all
w € W, R(w) # (). A path 7 is a sequence 7,7, ... such that m; € W and
7TiR7Ti+1 for all ¢ 2 0.

Definition 2 ()

e M,m E=piff 1o € V(p);

e M, Op iff M,x[l..00] = ¢

o M, |= Fo iff there exists ¢ such that M, w[i,...| |F ¢
o M, 7 = Gy iff for all ¢ such that M, x[i,...] = ¢

o M, |= U iff there exists a integer j such that M, 7[j..c0] = ¢ and for
all i < j, we have M, 7[i..o0] = ¢

e M, 7 |= Jypiff there exists a path 7’ in M starting with mg such that M, 7’ |=
©.

o M, 7 =V iff for all paths 7’ in M starting with m such that M, 7’ |= .

[je différe de principles of model-checking, mais je trouve ¢a plus clair avec les
indices V et J.. eux ils font universels|

e M, s =y @ iff for all path 7 starting from s we have M, 1 = ®;

e M, s =3 @ iff there exists a path 7 starting from s such that M, = ®.

A formula ¢ is satisfiable iff there exists a structure M, s such that M, s =3 ¢.
A formula is valid iff for all structure M, s we have M, s =y .
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1.2.1 Fragments
|principles of model-checking p. 422]
e LTL = only linear temporal operators (no 3, no V)

e CTL = each linear temporal operator must be immediately preceded by a
path quantifer.

Example 1

1.2.2 Decision problems
The }=3 -model-checking problem of CT'Lx (LTL, CTL) is defined as follows:

e input: a pointed model M, s and a formula ¢ of CT'Lx, LT L or CTL
e output: yes iff M, s = .

The satisfiability problem is defined as follows:

e input: a formula ¢ of CTLx, LT L or C'T'L

e output: yes iff ¢ is satisfiable.
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Chapter 2

Linear Temporal Logic

2.1 Examples of properties

2.1.1 Properties LTL can express

Example 2 ‘infinitely often p’: GFyp
‘eventually forever p: FGyp

Example 3 We consider the following Kripke structure:

N = noncritical, T =trying, C = critical r N1, Nzl' | User1 User2
. turn=0
S TN /N1, T2
turn=1 . Y turn=2
¥ b .? b
" e N2 " T,T2 _ CT,T2 " Nt c2
. turn=1 . turn=1 | . tum=2 Lo turn=2
4 ¥ L] ) P
loe,T2 " Tm,c2

. turn=1 . turn=2

Safety (streté) (something bad never happens): yes. M, s |y G(—(c1 A ¢3))
Liveness (vivacité) (something good eventually happens): no. M, s ey Fe;

7
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Liveness: yes. M, s =y G(t1 — Feq)
Fairness (équité): M, s [y GFey
Strong fairness (équité forte): M, s =y GFty — GF ey

Example 4 Alternation: G(p < O—p)
M,m=G(p«— Op) iff {ie N|m e V(p)} = even numbers or odd numbers

2.1.2 Properties that LTL can not express

["temporal logic can be more expressive" from Pierre Wolper]|
Theorem 1 ‘p is true on each even moments’ is not expressible tn LTL.

PROOF.
It seems that the formula p A G(p — O O p) expresses the property. But it is
false in: p,p,p,—p,p,p,p,p... TODO: A

2.2 Axiomatization

[Gabbay, Pnueli, Shelah, and Stavi, 1980]

Axioms for LTL: all instances of:

[proof of completeness can be found in "Temporal logic of Programs, P; 26-
...] [from Reynols paper, the axiomatization of CTL*, a bit strange with Gp —
p A Op A OGp... but Wolper 83, Temporal logic can be more expressive use also
this... warning, in Wolper 83, U is the weak version]|

e Propositional tautologies;

o Fp o =Gp;

* O(p—q) = (Op — Og);

e G(p—q) — (Gp— Gg);

¢ “Op<«= Op

e Gp—pAOpAOGp;

e G(p — Op) — (p — Gp) (induction);
o pUq = qV (pAOPUq);

e pUq — Fyq.
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Rules:
e modus ponens;

e Necessitation for G,

2.3 Model-checking and satisfiability problem of
LTL

2.3.1 Satisfiability problem of LTL

[Sistla and Clarke, the complexity of PLTL]
The satisfiability problem is defined as follows:

e a formula ¢;

e is there a model M = (W, R) and a run 7 such that 7 = ¢.

Remark 3 Contrary to S4, K etc. we can have an exponential branch in the
model. We can force it with the following formula:
n n n i—1
G Vo —pi A /\j:i+1 bj — X(/\j:i—H —pj) A pi A (/\j:l(pj — Xpj) A (p; —
X=p;)

Let ¢ the formula we want to know whether it is satisfiable of not. We are going
to prove that if ¢ is satisfiable then it is satisfiable in a regular run, called "ulti-
mately periodic run’. In this section, a run 7 is considered as an infinite sequence
of subsets of 247M () where ATM (i) are the atomic propositions appearing in ¢.

We note [i], the set of all formulas ¢ € SF(p) such that «[i..] = .

Lemma 1 Ifi < j and [i|, = [j]» then if we define 7" = (7o, ..., W1, T, Wi, - - -,
then for all k € N\ {i,...,j — 1}, [k], = [k]~.

PROOF.

By induction on 1.

[

Let oo, be the set of S C SF(p) such that there exists an infinity of & such
that [k], = S.

Definition 3 ()
A run 7 is said to be ultimately periodic with starting index ¢ and period p if for
all & Z ’i, Tk = Tk+p-
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Lemma 2 Leti,p € N such that [i], = [i+p], andVS € oo, Ik € {i,....i+p—1}
such that (k] = S.

Let @' the ultimately periodic run with starting index i and period p defined by
for all k <i+p, m = 7.

Then:

o for allk <i+p, [klo = [kl
o forallk >1i, [kl = [k+ plx.

PROOF.
By induction, we prove that for all ¢ € SF(p) we have:

o forall k <i+p, 7'[k.] v iff n[k.] = ¢
o forall k >, n'[k.| = iff 7'k +p..] E .
|

Theorem 2 A formula ¢ s satisfiable iff it is satisfiable in an ultimately periodic
path with starting index i and period p where:

o | <2l
e D S 4‘99‘

PROOF.

The formula ¢ is satisfiable in a run 7. Let j, ¢ such that [j], = [ + ¢], and
for all S € oo, there exists k € {j,...,7 +¢q — 1} such that [k], = S.

We now shorten the run so that j < 21+lel with Lemma we shorten the
7[0..5 — 1] by removing repetitions.

We then shorten the run so that ¢ < A9l with Lemma : we shorten the
7[j,7 + q + 1] by removing repetitions between two occurrences of [k], € co,.

We conclude with Lemma 2

[ |

Theorem 3 LTL-SAT is PSPACE.

PRrRoOOF.
The proof starts with a definition of Hintikka set.

Definition 4 ()
A Hintikka set over Y is a set H saturated in the following way:

o If =Xy € H then X— € H,;
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o If pUt) € H then 1) € H or (¢ € H and X (pU);
o If ~(oUv) € H, ~ € H and —p V X (=(oU)).

We design a PSPACE algorithm for satisfiability problem of LTL taking in
account the fact that if a formula ¢ is satisfiable then it suffices to find a ultimately
periodic path with starting index ¢ and period p where:

o | <2l

o p < 4l¥l

2.3.2 PSPACE-hardness of model-checking of LTL
Theorem 4 Model-checking of LTL 1s PSPACE-hard.

PROOF.

We reduce the corridor tiling problem to the LTL model-checking. The model
M encodes the horizontal conditions. The formula ¢ enforces a path that repre-
sents a corridor tiling.

The worlds of the model M are a world "begin" and pairs (¢,7) where ¢ is a
tile type and ¢ € {0,...,n — 1}. Are connected:

e begin to (t,0 for all ¢;
o (t,i) — (t'yi+ 1) iff right(t) = left(t') and i <n — 1;
e (t,n— 1) to begin.

Propositions are p;. p; is true in only pairs (¢,7). The formula ¢ is the conjunction
of:

,,,,,

77777

o G /\tET bt — On+1 Vt’ET\up(t’):down(t’) Dy

B As the model-checking of LTL consists in encoding the problem into the
satisfiability problem of LTL! That is why we study the satisfiability problem!
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2.3.3 Encoding the model-checking of LTL into the LTL-
satisfiability problem

Theorem 5 The model-checking of LTL is reductible (est réductible en temps poly-
nomial) to the LTL-satisfiability problem.

PROOF.

Let M = (W, R,V) and ¢.

We extend the set of atomic propositions with propositions in, for all s € W
meaning that the current point is the world s € W.

For all w € W, we define:

o herey = py A /\er\{w} TP

o valy = Apuevip) P A Npwgvp) 5

o succy = OV e pu) Mw;

o , = here, Aval, N\ succ,.

We have M, w = ¢ iff the formula ¢ A in, A G\, oy in, is LT L-satisfiable. W

Theorem 6 Model-checking of LTL is PSPACE.

Theorem 7 Satisfiability problem of LTL is PSPACE-hard.



cTL Satisfiability and model-checking

O
. y of LTL
G in PSPACE

Non-deterministic algorithm for satisfiability of a LTL-formula ¢
function satLTL(¢p)
choose i € {1,..., 2/}
choose p € {1,...,4I}
state := hintikkaSaturate({¢})
for j:=1toi—1
| state := hintikkaSaturate({y | Oy € state})
endFor
state; = state
formulaToFulFill = {4 | YUy € state; and ¢ & state;}
for j:=14+1toi+p—1
state := hintikkaSaturate({y | Oy € state})

formulaToFul Fill = state N formulaT oFul Fill
endFor

if state ¢ state; reject
if formulaToFullFill # () reject

accept
function

n

where hintikkaSaturate(X) non-deterministically returns a Hintikka set over
Y. If there is no such Hintikka set, hintikkaSaturate(X) fails.

Algorithm for model-checking of a LTL-formula ¢ based on a reduction from
the LTL-35-model-checking problem to the LTL-satisfiability problem
input: M = (W, R, V), w e W and ¢.
output: the set of worlds w such that M, w |=3 ¢
function mcsLTL(M, ¢)

oneworld says ‘at each step, we are in at most one world of model M’ with
extra-propositions in, saying that ‘the current world is u’.
oneworld == G <\/u€W My = Npew\fu) ﬂinv>;

valuations says ‘at each step, if we are in world uw we copy the corresponding
valuation from M’

valuations := G <\/uEW My — (Ap\ueV(p) pA /\plu€V(p) ﬁp))
path says ‘we are following a path in M

path := G <\/u€W iy — OV yepw) 'mv>;

return {w € W | satLTL( ¢ A in,, A oneworld A path A valuations)}
endFunction







Chapter 3
Branching-time logic : CTL*, CTL

3.1 Motivation

[p. 315]
VGAF start: it is always possible to return in the initial state.
VG O Ostart: it is always possible to return in the initial state in two steps.
VGdF start is a CTL formula but VG O Ostart is not.
VXG-pA3IFG(pVV(qUp))
[p. 422, section about CTL*]

3.2 Model-checking

3.2.1 Model-checking of CTL* in PSPACE

The model-checking of CTL* is dynamic programming: it consists in applying
model-checking of LTL on subformulas without path quantification.

3.2.2 Model-checking of CTL in P

The benefit of the fragment of CTL is that for all formulas ¢ of CTL we have
M, = pift M, |3 ¢ iff M, 19 v ¢. That is: we do not care about the path.
Easy! As for K! [p. 341]| [vérification de logiciels. Schnoebelen et al., p. 40]

[Vérification des Systémes Réactifs Temps-Réel, cours école polytechnique, p.
66(pdf)]

Theorem 8 O(|| * (|W|+ |R|)) in time.

Example 5 (p. 356) Let G = (V, E) be a connected and directed graph. We say
that vy, ..., v, is an hamiltonian path iff V = {vq,... v, }.

15



In order to solve the Hamiltonian path we define a Kripke model Mg where
the worlds are the vertices of G plus an extra state b as depicted in

. g H'\‘{/'f'a}

ol (2) Vo) on) {v1) ,f;.li\.l/ o )e —olo3) )

__/% A A /\_',/' 1 N N T _I_'_J
T T '.,‘ T _— .-"

--""-\.-,___\__ d__‘_-i' '.“ ""\-\.\_\_H_ \\ / /
—— I \ Y [
L
\ ’
\ }_ / /
|
A

(a) (b)

The purpose of b is to ensure that Mg is serial.
In order to know whether G has a Hamiltonian path, we define © =\, omusation of {1,y Po

where Y5 = Vg, AT O (Vgy AT O (Vgy A ... ).
The length ¢ is exponential in the size of G.

The problem Hamiltonian path problem is defined as:
e input: a graph G;
e output: yes iff the graph G contains a Hamiltonian path.

is NP-complete.

Theorem 9 If for all graph G we find a polynomial sized CTL-formula pg such
that G is Hamiltonian iff there exists a world w of Mg such that M,w = ¢g...
then P = NP.



CTL* O .
J Model-checking of CTL"

E U
v . PSPACE

Algorithm using the model-checking of LTL as a subroutine

input: M = (W, R,V), ¢ CTL*-formula without V
output: the set of worlds s where M, s =35 .
function mcsCTL* (M, )
if ¢ does not contain any 3

| return mcsLTL(M, ¢)

else
1 := )’ a subformula of ¢ such that ¢’ is I-free.

M := (W, R, V') where:

o V' :=V extended with V'(py) = mcgLTL(M, ') where p,, is
a fresh atomic proposition

Y’ := 1) where we replaced subformulas ¢ by py
return mcsCTL* (M, ¢')

end]f
endFunction




CTL*
= Model-checking of CTL

e
. VO o v o]

+1AD[el)

input: M = (W, R, V), ¢ CTL-formula
output: the set of worlds s where M, s =35 ¢.

function mcCTL(M, p)

match ¢

p: return V(p)

—): return W\ mcCTL(M, )

Yy Vg return mcCTL(M, 1) U meCTL(M, 1)s)
0O ¢Y: return {w e W | Ju € R(w) | u € mcCTL(M,
VO : return {w e W | Vu € R(w) | u € meCTL(M
Fp1Uhs:

Sy, = mcCTL(M, )

Ltotreat = mCCTL<M> 2/}2)

result := Liyeateqd =[]

while Ltotreat 7é @

q = Liotrear-defiler

result := result U {q}

for u — ¢
if u € Ltreated then

Ltreated = Ltreated U {’U,}
if u € Sy, then

‘ Ltotreat = Ltotreat U {u}

9

P
P

endIf
endFor
endWhile

return result

VipUthy:
Sy, = mcCTL(M, )

for w € W, deg[w] := number of successors of w
Liotrear := —mCCTL<M7 ¢2)

result =[]

while Ltotreat 7é @

q = Liotrear-defiler

result := result U {q}

for u — ¢
deglu] := deglu] — 1

‘ Ltotreat = Ltotreat U {u}

endIf
endFor
endWhile

return result

endMatch
endFunction

)}
)}

if deglu] = 0 and u & result and u € Sy, then




3.3 Expressivity

3.3.1 Comparison of LTL, CTL and CTL*
[p. 237] [p. 334, Def 6.17 remanié pour CTL*|

Definition 5 ()
Two CTL" formulae ®; and @, are equivalent iff for all M, s we have M, s =y
iff M, S }:v (I)g.

Theorem 10 Let ® be a CTL* formula.

o Fither ® s equivalent to Y, where ¢ is the LTL formula obtained by elimi-
nating all path quantifiers in ®;

e Or there is no LTL formula that is equivalent to P.

PROOF.
|Clarke and Draghicescu 1985, Th. 1, P. 5 of the article] Suppose that ® is

equivalent to a formula Vy where x is an LTL-formula. Let us prove that & is
equivalent to V.

Let M, s be a pointed-model such that M, s =y ®.

for all path 7 (that begins with s) we have M, 1 = x

for all path 7 of the form xy® we have M, 7 | x

for all path 7 of the form zy" we have M™ s' =y x where M™, s is the model
that contains only the path m

for all path 7 of the form xy* we have M7™, s =y @

for all path 7 of the form xy® we have M™, " =y ¢ (because MT™ is determin-
istic)

for all path 7 of the form xy® we have M, 1 = ¢

for all path m we have M, 1 = ¢

M, s =y Vo

|

Question 1 What is the complexity of knowing if ® has an LTL equivalent for-
mula?

Example 6 VGV Ep is equivalent to GFp.[p. 335, and p. 526, remark 6.8]

We prove that M, s = YGYFp implies that in all paths 7, p is true infinitely
often. So M,s = GFp.

Conversely (yes, we have to prove it) M,s = GFp implies that ...

[p. 424]



Theorem 11 There exist CTL formulae for which no equivalent LTL formula
exists. For instance, VG3Fp has no equivalent in LTL.

PROOF.

P
—3(}— }Cy

VGAFp is not equivalent to GF'p, see the model above:

e GGFp: false in the path where we stay in the state of the left;
e YGIFp: true.

By the previous theorem, the CTL formula VFVGp has no LTL equivalent.
[ |

Theorem 12 Other ezample: YVFVGp has no equivalent in LTL.

PROOF.

N N
- |
Y ) Y
\J0) Y \>2/

{g} @ {r}
VFYGp is not equivalent to F'Gp, see the model above [p. 335]:
e ['Gp: true in all paths;

e VFVGp: false because in the path (s9)” we do not have FVGp. Indeed, at
each point we can decide to change the path for s;s§ and s; &= —p.

By the previous theorem, the CTL formula VFVGp has no LTL equivalent.

|

TD : VF(p AV O p) is not equivalent to F'(p A Op). |p. 336-337| VGIFp is not
equivalent to GF'p

[p. 424|



Theorem 13 (p. 337. th. 6.21) There exist LTL formulae for which no equiv-
alent CTL formula exists. For instance, the LTL formula FGp has no equivalent
in CTL.

PROOF.
Let M., s be the following model:

e N P F .
ﬁ‘lbﬁo""-——— ] l___‘_—>ﬂ—'_‘%-.9. | 4
5 (5 <) O

Let M/, s be the following model:

r P
e ——— e —— 9 DT e e —> 0

@) € <) @)

For all n € N, we have M/, s =y FGp.
For all n € N, we have M,,, s =y FGp.

v
b

Lemma 3 For all n € N, for all CTL formula ¢ such that |p| < n, we have
M, | o iff M = e

PROOF.
TODO: 1
|
TD: or F(p A Op)
[p. 424, th. 6.84]

Theorem 14 There exists a CTL* formula that is not expressible in CTL and
also not expressible in LTL. For instance VFGp VvV VG3Fp.

PROOF.

3.3.2 Comparison of CTL with K and S4

Proposition 1 Let M = (W, R, V) be a Kripke model. Let tr be the following
from K to CTL translation: tr() = A O tr(p). Then we have M,w = ¢ iff
M, w =3 tr(p).



Proposition 2 Let M = (W, R,V) be a Kripke model. Let Mx = (W, Rx,V)
where R+ is the reflexive and transitive closure of R. Let tr be the following
from S4 to CTL translation: tr() = AGtr(v). Then we have Mx,w = ¢ iff
M, w =5 tr(yp).

3.3.3 Bissimilation

Definition 6 ()
We say that M, 7 and M’ 7" are bissimilar (noted M, o M ") iff for all

n € N, M, m, and M’ 7/ are bissimilar.

Proposition 3 If M, w < M’ ,w' and let © be a path in M such that m9 = w.
Then there exists a path @ in M’ such that ), = w" such that M, 7 — M’ 7.

PROOF.

|

[p. 473]
Proposition 4 If M, 7 < M', 7’ then for all CTL*-formula ¢ we have M, 7 |= ¢
M 7.

PROOF.

By induction on ¢. B

Theorem 15 Let M, w and M’ ,w' two image-finite models. We have equivalence
between:

1. M,w < M w';
2. for all CTL*-formula, M,w =3 ¢ iff M',w' =3 ¢;
3. for all CTL-formula, M,w = ¢ iff M',w'" = .

PROOF.

Done.

Trivial.

[3 = 1]Because CTL embeds logic K. Hence M, w and M, w’ satisfies the same
formulas of K. As they are image-finite models, they are bissimilar.

|
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