
Temporal logics LTL, CTL and CTL∗

François Schwarzentruber



2



Chapter 1

The framework `Computation Tree

Logic*'

1.1 Syntax

Let ATM be a set of atomic propositions.
[véri�cation de logiciels, p. 33]

De�nition 1 ()

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | #ϕ | Fϕ | Gϕ | ϕUϕ | ∃ϕ | ∀ϕ
where p ∈ ATM .

Remark 1 Some people [principles of model checking, p. 422] di�erantiate CTL∗

state formulae (also called CTL
∗ formulae) from Path formulae. They do as fol-

lows. CTL∗ state formulae (also called CTL∗ formulae) are formed according to the
following grammar:

Φ ::= ⊥ | p | ¬Φ | Φ ∨ Φ | ∃ϕ | ∀ϕ
where p ∈ ATM and ϕ is a path formula. Path formulae are given by the

following grammar:

ϕ ::= Φ | ¬ϕ | ϕ ∨ ϕ | #ϕ | ϕUϕ
.

I �nd it useless and prefer the point of view of [véri�cation de logiciels, Tech-
niques et outils du model-checking, p. 33].

Remark 2 Fϕ := >Uϕ
Gϕ := ¬F¬ϕ = ¬>U¬ϕ

3



4 CHAPTER 1. THE FRAMEWORK `COMPUTATION TREE LOGIC*'

ϕWψ := ϕUψ ∨Gϕ
ϕRψ := ¬(¬ϕU¬ψ) (release) [p. 256]
∀ϕ = ¬∃¬ϕ
# and U are called linear temporal operators.
∃ and ∀ are called path quanti�ers.

1.2 Semantics

We evaluate a formula in a model and a path (run) in model. A model is a
transition system, that is a Kripke structureM = (W,R, V ) that is serial (for all
w ∈ W , R(w) 6= ∅). A path π is a sequence π0, π1, . . . such that πi ∈ W and
πiRπi+1 for all i ≥ 0.

De�nition 2 ()

• M, π |= p i� π0 ∈ V (p);

• M, π |= #ϕ i�M, π[1..∞] |= ϕ

• M, π |= Fϕ i� there exists i such thatM, π[i, . . . ] |= ϕ

• M, π |= Gϕ i� for all i such thatM, π[i, . . . ] |= ϕ

• M, π |= ϕUψ i� there exists a integer j such thatM, π[j..∞] |= ψ and for
all i < j, we haveM, π[i..∞] |= ϕ

• M, π |= ∃ϕ i� there exists a path π′ inM starting with π0 such thatM, π′ |=
ϕ.

• M, π |= ∀ϕ i� for all paths π′ inM starting with π0 such thatM, π′ |= ϕ.

[je di�ère de principles of model-checking, mais je trouve ça plus clair avec les
indices ∀ et ∃.. eux ils font universels]

• M, s |=∀ Φ i� for all path π starting from s we haveM, π |= Φ;

• M, s |=∃ Φ i� there exists a path π starting from s such thatM, π |= Φ.

A formula ϕ is satis�able i� there exists a structureM, s such thatM, s |=∃ ϕ.
A formula is valid i� for all structureM, s we haveM, s |=∀ ϕ.



1.2. SEMANTICS 5

1.2.1 Fragments

[principles of model-checking p. 422]

• LTL = only linear temporal operators (no ∃, no ∀)

• CTL = each linear temporal operator must be immediately preceded by a
path quantifer.

Example 1

1.2.2 Decision problems

The |=∃ -model-checking problem of CTL∗ (LTL, CTL) is de�ned as follows:

• input: a pointed modelM, s and a formula ϕ of CTL∗, LTL or CTL

• output: yes i�M, s |= ϕ.

The satis�ability problem is de�ned as follows:

• input: a formula ϕ of CTL∗, LTL or CTL

• output: yes i� ϕ is satis�able.



6 CHAPTER 1. THE FRAMEWORK `COMPUTATION TREE LOGIC*'



Chapter 2

Linear Temporal Logic

2.1 Examples of properties

2.1.1 Properties LTL can express

Example 2 `in�nitely often ϕ': GFϕ
`eventually forever ϕ: FGϕ

Example 3 We consider the following Kripke structure:

Safety (sûreté) (something bad never happens): yes. M, s |=∀ G(¬(c1 ∧ c2))
Liveness (vivacité) (something good eventually happens): no. M, s 6|=∀ Fc1

7



8 CHAPTER 2. LINEAR TEMPORAL LOGIC

Liveness: yes. M, s |=∀ G(t1 → Fc1)
Fairness (équité): M, s 6|=∀ GFc1
Strong fairness (équité forte): M, s |=∀ GFt1 → GFc1

Example 4 Alternation: G(p↔ #¬p)
M, π |= G(p↔ #¬p) i� {i ∈ N | πi ∈ V (p)} = even numbers or odd numbers

2.1.2 Properties that LTL can not express

["temporal logic can be more expressive" from Pierre Wolper]

Theorem 1 `p is true on each even moments' is not expressible in LTL.

Proof.

It seems that the formula p ∧G(p→ # # p) expresses the property. But it is
false in: p, p, p,¬p, p, p, p, p... TODO: �

2.2 Axiomatization

[Gabbay, Pnueli, Shelah, and Stavi, 1980]
Axioms for LTL: all instances of:
[proof of completeness can be found in "Temporal logic of Programs, P; 26-

...] [from Reynols paper, the axiomatization of CTL*, a bit strange with Gp →
p ∧ #p ∧ #Gp... but Wolper 83, Temporal logic can be more expressive use also
this... warning, in Wolper 83, U is the weak version]

• Propositional tautologies;

• Fp↔ ¬G¬p;

• #(p→ q)→ (#p→ #q);

• G(p→ q)→ (Gp→ Gq);

• ¬# p↔ #¬p

• Gp→ p ∧#p ∧#Gp;

• G(p→ #p)→ (p→ Gp) (induction);

• pUq ↔ q ∨ (p ∧#(pUq);

• pUq → Fq.



2.3. MODEL-CHECKING AND SATISFIABILITY PROBLEM OF LTL 9

Rules:

• modus ponens;

• Necessitation for G;

2.3 Model-checking and satis�ability problem of

LTL

2.3.1 Satis�ability problem of LTL

[Sistla and Clarke, the complexity of PLTL]
The satis�ability problem is de�ned as follows:

• a formula ϕ;

• is there a modelM = (W,R) and a run π such that π |= ϕ.

Remark 3 Contrary to S4, K etc. we can have an exponential branch in the
model. We can force it with the following formula:

G
∨n
i=1 ¬pi ∧

∧n
j=i+1 pj → X(

∧n
j=i+1 ¬pj) ∧ pi ∧ (

∧i−1
j=1(pj → Xpj) ∧ (¬pj →

X¬pj)

Let ϕ the formula we want to know whether it is satis�able of not. We are going
to prove that if ϕ is satis�able then it is satis�able in a regular run, called 'ulti-
mately periodic run'. In this section, a run π is considered as an in�nite sequence
of subsets of 2ATM (ϕ) where ATM (ϕ) are the atomic propositions appearing in ϕ.

We note [i]π the set of all formulas ψ ∈ SF (ϕ) such that π[i..] |= ψ.

Lemma 1 If i < j and [i]π = [j]π then if we de�ne π′ = (π0, . . . , πi−1, πj, πj+1, . . . ,
then for all k ∈ N \ {i, . . . , j − 1}, [k]π = [k]π′.

Proof.

By induction on ψ.
�
Let ∞π be the set of S ⊆ SF (ϕ) such that there exists an in�nity of k such

that [k]π = S.

De�nition 3 ()
A run π is said to be ultimately periodic with starting index i and period p if for
all k ≥ i, πk = πk+p.



10 CHAPTER 2. LINEAR TEMPORAL LOGIC

Lemma 2 Let i, p ∈ N such that [i]π = [i+p]π and ∀S ∈ ∞π, ∃k ∈ {i, . . . , i+ p− 1}
such that [k]π = S.

Let π′ the ultimately periodic run with starting index i and period p de�ned by
for all k < i+ p, π′k = πk.

Then:

• for all k < i+ p, [k]π′ = [k]π;

• for all k > i, [k]π′ = [k + p]π.

Proof.

By induction, we prove that for all ψ ∈ SF (ϕ) we have:

• for all k < i+ p, π′[k..] |= ψ i� π[k..] |= ψ;

• for all k > i, π′[k..] |= ψ i� π′[k + p..] |= ψ.

�

Theorem 2 A formula ϕ is satis�able i� it is satis�able in an ultimately periodic
path with starting index i and period p where:

• i ≤ 2|ϕ|;

• p ≤ 4|ϕ|.

Proof.

The formula ϕ is satis�able in a run π. Let j, q such that [j]π = [j + q]π and
for all S ∈ ∞π, there exists k ∈ {j, . . . , j + q − 1} such that [k]π = S.

We now shorten the run so that j ≤ 21+|ϕ| with Lemma 1: we shorten the
π[0..j − 1] by removing repetitions.

We then shorten the run so that q ≤ 41+|ϕ| with Lemma 1: we shorten the
π[j, j + q + 1] by removing repetitions between two occurrences of [k]π ∈ ∞π.

We conclude with Lemma 2.
�

Theorem 3 LTL-SAT is PSPACE.

Proof.

The proof starts with a de�nition of Hintikka set.

De�nition 4 ()
A Hintikka set over Σ is a set H saturated in the following way:

• If ¬Xψ ∈ H then X¬ψ ∈ H;



2.3. MODEL-CHECKING AND SATISFIABILITY PROBLEM OF LTL 11

• If ϕUψ ∈ H then ψ ∈ H or (ϕ ∈ H and X(ϕUψ);

• If ¬(ϕUψ) ∈ H, ¬ψ ∈ H and ¬ϕ ∨X(¬(ϕUψ)).

We design a PSPACE algorithm for satis�ability problem of LTL taking in
account the fact that if a formula ϕ is satis�able then it su�ces to �nd a ultimately
periodic path with starting index i and period p where:

• i ≤ 2|ϕ|;

• p ≤ 4|ϕ|.

�

2.3.2 PSPACE-hardness of model-checking of LTL

Theorem 4 Model-checking of LTL is PSPACE-hard.

Proof.

We reduce the corridor tiling problem to the LTL model-checking. The model
M encodes the horizontal conditions. The formula ϕ enforces a path that repre-
sents a corridor tiling.

The worlds of the model M are a world "begin" and pairs (t, i) where t is a
tile type and i ∈ {0, . . . , n− 1}. Are connected:

• begin to (t, 0 for all t;

• (t, i)→ (t′, i+ 1) i� right(t) = left(t′) and i < n− 1;

• (t, n− 1) to begin.

Propositions are pt. pt is true in only pairs (t, i). The formula ϕ is the conjunction
of:

•
∧
i∈{0,...,n−1}#

i+1bi;

• F (begin ∧
∧
i∈{0,...,n−1}#

i+1ei);

• G
∧
t∈T pt → #n+1

∨
t′∈T |up(t′)=down(t′) pt′

� As the model-checking of LTL consists in encoding the problem into the
satis�ability problem of LTL! That is why we study the satis�ability problem!



12 CHAPTER 2. LINEAR TEMPORAL LOGIC

2.3.3 Encoding the model-checking of LTL into the LTL-

satis�ability problem

Theorem 5 The model-checking of LTL is reductible (est réductible en temps poly-
nomial) to the LTL-satis�ability problem.

Proof.

LetM = (W,R, V ) and ϕ.
We extend the set of atomic propositions with propositions ins for all s ∈ W

meaning that the current point is the world s ∈ W .
For all w ∈ W , we de�ne:

• herew = pw ∧
∧
v∈W\{w} ¬pv;

• valw =
∧
p|w∈V (p) p ∧

∧
p|w 6∈V (p) ¬p;

• succw = #
∨
u∈R(w) inw;

• ϕw = herew ∧ valw ∧ succw.

We haveM, w |= ϕ i� the formula ϕ ∧ inw ∧G
∨
u∈W inu is LTL-satis�able. �

Theorem 6 Model-checking of LTL is PSPACE.

Theorem 7 Satis�ability problem of LTL is PSPACE-hard.



Satis�ability and model-checking

of LTL

in PSPACE

Non-deterministic algorithm for satis�ability of a LTL-formula ϕ

function satLTL(ϕ)
choose i ∈ {1, . . . , 2|ϕ|}
choose p ∈ {1, . . . , 4|ϕ|}
state := hintikkaSaturate({ϕ})
for j := 1 to i− 1

state := hintikkaSaturate({ψ | #ψ ∈ state})
endFor
statei = state
formulaToFulF ill = {ψ | ψ′Uψ ∈ statei and ψ 6∈ statei}
for j := i+ 1 to i+ p− 1

state := hintikkaSaturate({ψ | #ψ ∈ state})
formulaToFulF ill = state ∩ formulaToFulF ill

endFor
if state 6⊆ statei reject
if formulaToFullF ill 6= ∅ reject
accept

function

where hintikkaSaturate(Σ) non-deterministically returns a Hintikka set over
Σ. If there is no such Hintikka set, hintikkaSaturate(Σ) fails.

Algorithm for model-checking of a LTL-formula ϕ based on a reduction from
the LTL-|=∃-model-checking problem to the LTL-satis�ability problem

input: M = (W,R, V ), w ∈ W and ϕ.
output: the set of worlds w such thatM, w |=∃ ϕ
function mc∃LTL(M, ϕ)

oneworld says `at each step, we are in at most one world of model M' with

extra-propositions inu saying that `the current world is u'.

oneworld := G
(∨

u∈W inu →
∧
v∈W\{u} ¬inv

)
;

valuations says `at each step, if we are in world u we copy the corresponding

valuation fromM'

valuations := G
(∨

u∈W inu →
(∧

p|u∈V (p) p ∧
∧
p|u6∈V (p) ¬p

))
path says `we are following a path inM

path := G
(∨

u∈W inu → #
∨
v∈R(u) inv

)
;

return {w ∈ W | satLTL( ϕ ∧ inw ∧ oneworld ∧ path ∧ valuations)}
endFunction





Chapter 3

Branching-time logic : CTL*, CTL

3.1 Motivation

[p. 315]
∀G∃Fstart: it is always possible to return in the initial state.
∀G# #start: it is always possible to return in the initial state in two steps.
∀G∃Fstart is a CTL formula but ∀G# #start is not.
∀XG¬p ∧ ∃FG(p ∨ ∀(qUp))
[p. 422, section about CTL*]

3.2 Model-checking

3.2.1 Model-checking of CTL* in PSPACE

The model-checking of CTL* is dynamic programming: it consists in applying
model-checking of LTL on subformulas without path quanti�cation.

3.2.2 Model-checking of CTL in P

The bene�t of the fragment of CTL is that for all formulas ϕ of CTL we have
M, π |= ϕ i�M, π0 |=∃ ϕ i�M, π0 |=∀ ϕ. That is: we do not care about the path.

Easy! As for K! [p. 341] [véri�cation de logiciels. Schnoebelen et al., p. 40]
[Véri�cation des Systèmes Réactifs Temps-Réel, cours école polytechnique, p.

66(pdf)]

Theorem 8 O(|ϕ| ∗ (|W |+ |R|)) in time.

Example 5 (p. 356) Let G = (V,E) be a connected and directed graph. We say
that v1, . . . , vn is an hamiltonian path i� V = {v1, . . . , vn}.

15



In order to solve the Hamiltonian path we de�ne a Kripke model MG where
the worlds are the vertices of G plus an extra state b as depicted in

The purpose of b is to ensure thatMG is serial.
In order to know whether G has a Hamiltonian path, we de�ne ϕ =

∨
σ permutation of {1,...n} ϕσ

where ϕσ = vσ1 ∧ ∃# (vσ2 ∧ ∃# (vσ3 ∧ . . . )).
The length ϕ is exponential in the size of G.

The problem Hamiltonian path problem is de�ned as:

• input: a graph G;

• output: yes i� the graph G contains a Hamiltonian path.

is NP-complete.

Theorem 9 If for all graph G we �nd a polynomial sized CTL-formula ϕG such
that G is Hamiltonian i� there exists a world w of MG such that M, w |= ϕG...
then P = NP.



Model-checking of CTL∗

PSPACE

Algorithm using the model-checking of LTL as a subroutine

input: M = (W,R, V ), ϕ CTL
∗-formula without ∀

output: the set of worlds s whereM, s |=∃ ϕ.
function mc∃CTL

∗(M, ϕ)
if ϕ does not contain any ∃

return mc∃LTL(M, ϕ)

else
ψ := ∃ψ′ a subformula of ϕ such that ψ′ is ∃-free.
M′ := (W,R, V ′) where:

• V ′ := V extended with V ′(pψ) = mc∃LTL(M, ψ′) where pψ is
a fresh atomic proposition

ψ′ := ψ where we replaced subformulas ψ by pψ
return mc∃CTL

∗(M′, ϕ′)
endIf

endFunction



Model-checking of CTL

O((|W |+ |A|)|ϕ|)

input: M = (W,R, V ), ϕ CTL-formula
output: the set of worlds s whereM, s |=∃ ϕ.
function mcCTL(M, ϕ)

match ϕ
p: return V (p)
¬ψ: return W \mcCTL(M, ψ)
ψ1 ∨ ψ2: return mcCTL(M, ψ1) ∪mcCTL(M, ψ2)
∃# ψ: return {w ∈ W | ∃u ∈ R(w) | u ∈ mcCTL(M, ψ)}
∀# ψ: return {w ∈ W | ∀u ∈ R(w) | u ∈ mcCTL(M, ψ)}
∃ψ1Uψ2:

Sψ1 := mcCTL(M, ψ1)
Ltotreat := mcCTL(M, ψ2)
result := Ltreated := []
while Ltotreat 6= ∅

q := Ltotreat.defiler
result := result ∪ {q}
for u→ q

if u 6∈ Ltreated then
Ltreated := Ltreated ∪ {u}
if u ∈ Sψ1 then

Ltotreat := Ltotreat ∪ {u}
endIf

endFor
endWhile
return result

∀ψ1Uψ2:
Sψ1 := mcCTL(M, ψ1)
for w ∈ W , deg[w] := number of successors of w
Ltotreat := mcCTL(M, ψ2)
result := []
while Ltotreat 6= ∅

q := Ltotreat.defiler
result := result ∪ {q}
for u→ q

deg[u] := deg[u]− 1
if deg[u] = 0 and u 6∈ result and u ∈ Sψ1 then

Ltotreat := Ltotreat ∪ {u}
endIf

endFor
endWhile
return result

endMatch
endFunction



3.3 Expressivity

3.3.1 Comparison of LTL, CTL and CTL*

[p. 237] [p. 334, Def 6.17 remanié pour CTL*]

De�nition 5 ()
Two CTL∗ formulae Φ1 and Φ2 are equivalent i� for allM, s we haveM, s |=∀ Φ1

i�M, s |=∀ Φ2.

Theorem 10 Let Φ be a CTL* formula.

• Either Φ is equivalent to ∀ϕ, where ϕ is the LTL formula obtained by elimi-
nating all path quanti�ers in Φ;

• Or there is no LTL formula that is equivalent to Φ.

Proof.

[Clarke and Draghicescu 1985, Th. 1, P. 5 of the article] Suppose that Φ is
equivalent to a formula ∀χ where χ is an LTL-formula. Let us prove that Φ is
equivalent to ∀ϕ.

LetM, s be a pointed-model such thatM, s |=∀ Φ.
for all path π (that begins with s) we haveM, π |= χ
for all path π of the form xyw we haveM, π |= χ
for all path π of the form xyw we haveMπ, s′ |=∀ χ whereMπ, s′ is the model

that contains only the path π
for all path π of the form xyw we haveMπ, s′ |=∀ Φ
for all path π of the form xyw we haveMπ, s′ |=∀ ϕ (becauseMπ is determin-

istic)
for all path π of the form xyw we haveM, π |= ϕ
for all path π we haveM, π |= ϕ
M, s |=∀ ∀ϕ
�

Question 1 What is the complexity of knowing if Φ has an LTL equivalent for-
mula?

Example 6 ∀G∀Fp is equivalent to GFp.[p. 335, and p. 326, remark 6.8]
We prove that M, s |= ∀G∀Fp implies that in all paths π, p is true in�nitely

often. SoM, s |= GFp.
Conversely (yes, we have to prove it)M, s |= GFp implies that ...

[p. 424]



Theorem 11 There exist CTL formulae for which no equivalent LTL formula
exists. For instance, ∀G∃Fp has no equivalent in LTL.

Proof.

∀G∃Fp is not equivalent to GFp, see the model above:

• GFp: false in the path where we stay in the state of the left;

• ∀G∃Fp: true.

By the previous theorem, the CTL formula ∀F∀Gp has no LTL equivalent.
�

Theorem 12 Other example: ∀F∀Gp has no equivalent in LTL.

Proof.

∀F∀Gp is not equivalent to FGp, see the model above [p. 335]:

• FGp: true in all paths;

• ∀F∀Gp: false because in the path (s0)
ω we do not have F∀Gp. Indeed, at

each point we can decide to change the path for s1s
ω
2 and s1 |= ¬p.

By the previous theorem, the CTL formula ∀F∀Gp has no LTL equivalent.
�
TD : ∀F (p ∧ ∀# p) is not equivalent to F (p ∧#p). [p. 336-337] ∀G∃Fp is not

equivalent to GFp
[p. 424]



Theorem 13 (p. 337. th. 6.21) There exist LTL formulae for which no equiv-
alent CTL formula exists. For instance, the LTL formula FGp has no equivalent
in CTL.

Proof.

LetMn, s be the following model:

LetM′
n, s be the following model:

For all n ∈ N, we haveM′
n, s |=∀ FGp.

For all n ∈ N, we haveMn, s 6|=∀ FGp.

Lemma 3 For all n ∈ N, for all CTL formula ϕ such that |ϕ| ≤ n, we have
Mn |= ϕ i�M′

n |= ϕ.

Proof.

TODO: �
�
TD: or F (p ∧#p)
[p. 424, th. 6.84]

Theorem 14 There exists a CTL* formula that is not expressible in CTL and
also not expressible in LTL. For instance ∀FGp ∨ ∀G∃Fp.

Proof.

�

3.3.2 Comparison of CTL with K and S4

Proposition 1 Let M = (W,R, V ) be a Kripke model. Let tr be the following
from K to CTL translation: tr() = A # tr(ϕ). Then we have M, w |= ϕ i�
M, w |=∃ tr(ϕ).



Proposition 2 Let M = (W,R, V ) be a Kripke model. Let M∗ = (W,R∗, V )
where R∗ is the re�exive and transitive closure of R. Let tr be the following
from S4 to CTL translation: tr() = AGtr(ϕ). Then we have M∗, w |= ϕ i�
M, w |=∃ tr(ϕ).

3.3.3 Bissimilation

De�nition 6 ()
We say that M, π and M′, π′ are bissimilar (noted M, π ↔

�

M′, π′) i� for all

n ∈ N,M, πn andM′, π′n are bissimilar.

Proposition 3 If M, w ↔
�
M′, w′ and let π be a path in M such that π0 = w.

Then there exists a path π′ inM′ such that π′0 = w′ such thatM, π ↔
�
M′, π′.

Proof.

�
[p. 473]

Proposition 4 IfM, π ↔
�
M′, π′ then for all CTL∗-formula ϕ we haveM, π |= ϕ

i�M′, π′ |= ϕ.

Proof.

By induction on ϕ. �

Theorem 15 LetM, w andM′, w′ two image-�nite models. We have equivalence
between:

1. M, w ↔
�
M′, w′;

2. for all CTL∗-formula,M, w |=∃ ϕ i�M′, w′ |=∃ ϕ;

3. for all CTL-formula,M, w |= ϕ i�M′, w′ |= ϕ.

Proof.

1⇒ 2 Done.

2⇒ 3 Trivial.

3⇒ 1 Because CTL embeds logic K. HenceM, w andM, w′ satis�es the same
formulas of K. As they are image-�nite models, they are bissimilar.

�


	The framework `Computation Tree Logic*'
	Syntax
	Semantics
	Fragments
	Decision problems


	Linear Temporal Logic
	Examples of properties
	Properties LTL can express
	Properties that LTL can not express

	Axiomatization
	Model-checking and satisfiability problem of LTL
	Satisfiability problem of LTL
	PSPACE-hardness of model-checking of LTL
	Encoding the model-checking of LTL into the LTL-satisfiability problem


	Branching-time logic : CTL*, CTL
	Motivation
	Model-checking
	Model-checking of CTL* in PSPACE
	Model-checking of CTL in P

	Expressivity
	Comparison of LTL, CTL and CTL*
	Comparison of CTL with K and S4
	Bissimilation



