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WARNING: this document may contain typos and... indices errors!
We consider that all formulas are written in negative normal form (NNF), that
is to say in the following language:

pu=LlpleVeleAp|Op|Op.
|Blackburn p. 357, Def 6.24, adapted]

Definition 1 ()
Let X be a subformula closed set of formulas in NNF. A Hintikka set H over X is
a maximal subset of X that satisfies:

o | H,

p € H implies —p ¢ H;

-p & H implies p € H;

if oV 1), either p € H or ¢ € H;

if o A1), either p € H and ¢ € H;

it Up € H then p € H.

Here is a non-deterministic recursive procedure to solve the satisfiability prob-
lem of a formula . Actually, the procedure takes a set T' of subformulas of ¢ (in
order to test the satisfiability problem of I') and a list of set of formulas L. The
aim of L is to capture the loop test. In order to solve the satisfiability problem of
o, we call satS4({¢}, []).



function satS4(I", L)
if I' € L then succeed

[ = saturateHintikka(I")
for Oy € I

| satS4({w}UT™, L :: 1)
endFor

succeed
endFunction

saturateHintikka is a function that takes a set I' of formulas and non-deterministically
returns a Hintikka set over SF'(¢) that includes I'. This function may fail!
Y is the set {{Jy € "},

Theorem 1 The algorithm satS4({¢}, [|) terminates and uses a polynomial amount
of memory.

PROOF.

Each T is a subset of subformulas of the formula ¢ and is of the form TZ U {4}
where ¢ € T

Here is an invariant: (I',L) is such that I'? C ...TY C T where L =
Ty, ..., Tk

Here is an other invariant: all elements in L are distinct. Indeed, I' is added
to L only if the condition I' € L was false.

Let us prove that we have |L| < |p|> + |¢| + 1. By contradiction, suppose that
L] > || + o] + L.

L=[Ty,...,T%] where k > |p|> + || + 1.

In the inclusions I'Y C --- C T, there is at most || strict inclusions. Indeed,
otherwise we would have |T')| > || and this contradicts T'y C SF(¢p).

Let i < --- < ;1 be the indexes where there is a strict inclusions. (by
convention iy = 1 and i, = k)

We have for all i, ') = T'7 | except for i =4y or ...4_q where 'Y C '

il

There is a j such that i;., —i; > |p| + 1. Indeed, otherwise, E?joijﬂ — i =
k—1< 50l < lel(jg| +1). But k — 1> |2 + |¢|. Contradiction.

For that j, for j" € {i; + 1,411}, [';) =I5, .

So, the sets [';; of the form T'™ U {4} only differs from the formula ¢. As
Y € SF(p), there are only |p| formula ¢ possible. So there are two sets I';; that
are equal. This contradicts the invariant stating that all elements in L are distinct.

The recursive calls depth is bounded by |p]? + |¢| + 1.

[ |

We can prove property by induction on the recursive call since |¢|?+|p|+1—|L|
is a positive integer that decreases.

Theorem 2 If a formula ¢ is satisfiable, then satS4({¢},[]) succeeds.
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PROOF.

By induction on the recursive call, we prove that if ' is satisfiable then
satS4(T, L) succeeds for any L. Let M = (W, R, V) an S4-Kripke-model and
w € W such that M,w =T

Either satS4(T", L) succeeds because I' € L (luck!). Or... there is a Hintikka
set [ containing I" such that M, w = I". For all 0vp € IV, M, w = Q1. So there
exists a world u € W such that wRu and M, u |= . Of course M, u = I"". The
induction closes the debate. B

Theorem 3 If satS4({¢},[]) succeeds then the formula ¢ is satisfiable.

PROOF.

The proof goes on two parts. The first part we prove the exists of a ‘premodel’
which corresponds to the trace of the algorithm. The second part corresponds to
the transformation of this ‘premodel’ into a Kripke-model satisfying the formula

@Y.

1. Building the premodel for ¢

We prove by induction on the recursive calls that if satS4(I", L) succeeds, then
there exists a structure S = (5,7, F') where

o (S, T) is tree structure;

F' labels internal nodes by a Hintikka sets;

leafs are labelled by I' that are in L or already included in a ancestor or by
a Hintikka sets without (1 formulas;

if Oy € F(s), then for all t € T'(s) Oy € F(t);

if 01 € F(s) then there exists ¢t € T'(s) such that ¢ € F(t).
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For satS4({¢},[]), we obtain a & = (5,7, F) where leafs are either Hintikka
sets without Q1 formulas or I' that are already included in a ancestor. Let I the
set of included leafs.

2. Transforming the premodel in a model
The second part consists in transforming the S into a Kripke-model. Let
M = (W, Rx, V) be the Kripke model defined by:

o W =S5\1I;
o R=TwU{(w,u) e W | (w,l) € W x I and u such that F(I) C F(u)};

o V(w)={p|pe F(w)}

Now we prove by induction on ¢ that if ¢ € F(w) then M, w = 1.

if 01p € F(w). There exists t € T such that wT't and ¢ € F(t).

Ift ¢ I,te W and by induction M, t = ¢ and wRt and M, w | Q.

If t € I, there exists a ancestor u such that F(t) C F(u) and wRu by definition
of R. As M,u =4, M,w = Q.

Suppose that (¢ € F(w). We prove that for all i € N, for all t € R'(w),
Oy € F(t) by recurrence on i.



For i = 0, trivial.

Suppose for all : € N, for all w € R'(w), Oy € F(u). Let t € R, We have
uRt where u € R'(w).

Either uT|yt and [y € ¢ by construction.

Or uRt comes from the existence of a included leaf ¢ € I. By construction
Oy € i and as F(i) C F(t) we have Oy € F(t).

So, for all t € R*(w), Oy € F(t). As F(t) is a Hintikka-set, we have ¢ € F(t).
By induction, M, t = ¢. Hence, M, w = .
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