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We consider that all formulas are written in negative normal form (NNF), that
is to say in the following language:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ.

[Blackburn p. 357, Def 6.24, adapted]

De�nition 1 ()
Let Σ be a subformula closed set of formulas in NNF. A Hintikka set H over Σ is
a maximal subset of Σ that satis�es:

• ⊥ 6∈ H;

• p ∈ H implies ¬p 6∈ H;

• ¬p 6∈ H implies p ∈ H;

• if ϕ ∨ ψ, either ϕ ∈ H or ψ ∈ H;

• if ϕ ∧ ψ, either ϕ ∈ H and ψ ∈ H;

• if �ϕ ∈ H then ϕ ∈ H.

Here is a non-deterministic recursive procedure to solve the satis�ability prob-
lem of a formula ϕ. Actually, the procedure takes a set Γ of subformulas of ϕ (in
order to test the satis�ability problem of Γ) and a list of set of formulas L. The
aim of L is to capture the loop test. In order to solve the satis�ability problem of
ϕ, we call satS4({ϕ}, []).

1



function satS4(Γ, L)
if Γ ∈ L then succeed
Γ′ = saturateHintikka(Γ)
for ♦ψ ∈ Γ′

satS4({ψ} ∪ Γ′�, L :: Γ)
endFor
succeed

endFunction

saturateHintikka is a function that takes a set Γ of formulas and non-deterministically
returns a Hintikka set over SF (ϕ) that includes Γ. This function may fail!

Γ′� is the set {�ψ ∈ Γ′}.

Theorem 1 The algorithm satS4({ϕ}, []) terminates and uses a polynomial amount
of memory.

Proof.

Each Γ is a subset of subformulas of the formula ϕ and is of the form Γ�∪{ψ}
where ψ ∈ Γ.

Here is an invariant: (Γ, L) is such that Γ�
1 ⊆ . . .Γ�

k ⊆ Γ� where L =
[Γ1, . . . ,Γk].

Here is an other invariant: all elements in L are distinct. Indeed, Γ is added
to L only if the condition Γ ∈ L was false.

Let us prove that we have |L| ≤ |ϕ|2 + |ϕ|+ 1. By contradiction, suppose that
|L| > |ϕ|2 + |ϕ|+ 1.

L = [Γ1, . . . ,Γk] where k > |ϕ|2 + |ϕ|+ 1.
In the inclusions Γ�

1 ⊆ · · · ⊆ Γ�
k , there is at most |ϕ| strict inclusions. Indeed,

otherwise we would have |Γ�
k | > |ϕ| and this contradicts Γk ⊆ SF (ϕ).

Let i1 < · · · < il−1 be the indexes where there is a strict inclusions. (by
convention i0 = 1 and il = k)

We have for all i, Γ�
i = Γ�

i+1 except for i = i1 or . . . il−1 where Γ�
i ( Γ�

i+1.

There is a j such that ij+1 − ij > |ϕ| + 1. Indeed, otherwise, Σj<l
j=0ij+1 − ij =

k − 1 ≤ Σj<l
j=0|ϕ| ≤ |ϕ|(|ϕ|+ 1). But k − 1 > |ϕ|2 + |ϕ|. Contradiction.

For that j, for j′ ∈ {ij + 1, ij+1}, Γ�
j′ = Γ�

j+1.
So, the sets Γj′ of the form Γ� ∪ {ψ} only di�ers from the formula ψ. As

ψ ∈ SF (ϕ), there are only |ϕ| formula ψ possible. So there are two sets Γj′ that
are equal. This contradicts the invariant stating that all elements in L are distinct.

The recursive calls depth is bounded by |ϕ|2 + |ϕ|+ 1.
�
We can prove property by induction on the recursive call since |ϕ|2+|ϕ|+1−|L|

is a positive integer that decreases.

Theorem 2 If a formula ϕ is satis�able, then satS4({ϕ}, []) succeeds.
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Proof.

By induction on the recursive call, we prove that if Γ is satis�able then
satS4(Γ, L) succeeds for any L. Let M = (W,R, V ) an S4-Kripke-model and
w ∈ W such thatM, w |= Γ.

Either satS4(Γ, L) succeeds because Γ ∈ L (luck!). Or... there is a Hintikka
set Γ′ containing Γ such thatM, w |= Γ′. For all ♦ψ ∈ Γ′,M, w |= ♦ψ. So there
exists a world u ∈ W such that wRu andM, u |= ψ. Of courseM, u |= Γ′�. The
induction closes the debate. �

Theorem 3 If satS4({ϕ}, []) succeeds then the formula ϕ is satis�able.

Proof.

The proof goes on two parts. The �rst part we prove the exists of a `premodel'
which corresponds to the trace of the algorithm. The second part corresponds to
the transformation of this `premodel' into a Kripke-model satisfying the formula
ϕ.

1. Building the premodel for ϕ

We prove by induction on the recursive calls that if satS4(Γ, L) succeeds, then
there exists a structure S = (S, T, F ) where

• (S, T ) is tree structure;

• F labels internal nodes by a Hintikka sets;

• leafs are labelled by Γ that are in L or already included in a ancestor or by
a Hintikka sets without ♦ψ formulas;

• if �ψ ∈ F (s), then for all t ∈ T (s) �ψ ∈ F (t);

• if ♦ψ ∈ F (s) then there exists t ∈ T (s) such that ψ ∈ F (t).
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For satS4({ϕ}, []), we obtain a S = (S, T, F ) where leafs are either Hintikka
sets without ♦ψ formulas or Γ that are already included in a ancestor. Let I the
set of included leafs.

2. Transforming the premodel in a model
The second part consists in transforming the S into a Kripke-model. Let

M = (W,R∗, V ) be the Kripke model de�ned by:

• W = S \ I;

• R = T|W ∪ {(w, u) ∈ W | (w, l) ∈ W × I and u such that F (l) ⊆ F (u)};

• V (w) = {p | p ∈ F (w)}.

Now we prove by induction on ψ that if ψ ∈ F (w) thenM, w |= ψ.

♦ψ
if ♦ψ ∈ F (w). There exists t ∈ T such that wTt and ψ ∈ F (t).
If t 6∈ I, t ∈ W and by inductionM, t |= ψ and wRt andM, w |= ♦ψ.
If t ∈ I, there exists a ancestor u such that F (t) ⊆ F (u) and wRu by de�nition

of R. AsM, u |= ψ,M, w |= ♦ψ.
�ψ
Suppose that �ψ ∈ F (w). We prove that for all i ∈ N, for all t ∈ Ri(w),

�ψ ∈ F (t) by recurrence on i.
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For i = 0, trivial.
Suppose for all i ∈ N, for all u ∈ Ri(w), �ψ ∈ F (u). Let t ∈ Ri+1. We have

uRt where u ∈ Ri(w).
Either uT|W t and �ψ ∈ t by construction.
Or uRt comes from the existence of a included leaf i ∈ I. By construction

�ψ ∈ i and as F (i) ⊆ F (t) we have �ψ ∈ F (t).
So, for all t ∈ R∗(w), �ψ ∈ F (t). As F (t) is a Hintikka-set, we have ψ ∈ F (t).

By induction,M, t |= ψ. Hence,M, w |= �ψ.
�
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