A PSPACE procedure for the satisfiability problem of S4

François Schwarzentruber

WARNING: this document may contain typos and... indices errors!
We consider that all formulas are written in negative normal form (NNF), that is to say in the following language:

$$
\varphi::=\perp|p| \varphi \vee \varphi|\varphi \wedge \varphi| \nabla \varphi \mid \square \varphi \text {. }
$$

[Blackburn p. 357, Def 6.24, adapted]

Definition 1 ()

Let Σ be a subformula closed set of formulas in NNF. A Hintikka set H over Σ is a maximal subset of Σ that satisfies:

- $\perp \notin H$;
- $p \in H$ implies $\neg p \notin H$;
- $\neg p \notin H$ implies $p \in H ;$
- if $\varphi \vee \psi$, either $\varphi \in H$ or $\psi \in H$;
- if $\varphi \wedge \psi$, either $\varphi \in H$ and $\psi \in H$;
- if $\square \varphi \in H$ then $\varphi \in H$.

Here is a non-deterministic recursive procedure to solve the satisfiability problem of a formula φ. Actually, the procedure takes a set Γ of subformulas of φ (in order to test the satisfiability problem of Γ) and a list of set of formulas L. The aim of L is to capture the loop test. In order to solve the satisfiability problem of φ, we call $\operatorname{satS} 4(\{\varphi\},[])$.

```
function satS4(\Gamma,L)
    if }\Gamma\inL\mathrm{ then succeed
    \Gamma}=\mathrm{ saturateHintikka(}(\Gamma
    for }\diamond\psi\in\mp@subsup{\Gamma}{}{\prime
        satS4({\psi}\cup\Gamma 听,L:: \Gamma)
    endFor
    succeed
endFunction
```

saturateHintikka is a function that takes a set Γ of formulas and non-deterministically returns a Hintikka set over $S F(\varphi)$ that includes Γ. This function may fail!
Γ^{\square} is the set $\left\{\square \psi \in \Gamma^{\prime}\right\}$.
Theorem 1 The algorithm satS4(\{ $\{\varphi$, []) terminates and uses a polynomial amount of memory.

Proof.
Each Γ is a subset of subformulas of the formula φ and is of the form $\Gamma^{\square} \cup\{\psi\}$ where $\psi \in \Gamma$.

Here is an invariant: (Γ, L) is such that $\Gamma_{1}^{\square} \subseteq \ldots \Gamma_{k}^{\square} \subseteq \Gamma^{\square}$ where $L=$ $\left[\Gamma_{1}, \ldots, \Gamma_{k}\right]$.

Here is an other invariant: all elements in L are distinct. Indeed, Γ is added to L only if the condition $\Gamma \in L$ was false.

Let us prove that we have $|L| \leq|\varphi|^{2}+|\varphi|+1$. By contradiction, suppose that $|L|>|\varphi|^{2}+|\varphi|+1$.
$L=\left[\Gamma_{1}, \ldots, \Gamma_{k}\right]$ where $k>|\varphi|^{2}+|\varphi|+1$.
In the inclusions $\Gamma_{1}^{\square} \subseteq \cdots \subseteq \Gamma_{k}^{\square}$, there is at most $|\varphi|$ strict inclusions. Indeed, otherwise we would have $\left|\Gamma_{k}^{\square}\right|>|\varphi|$ and this contradicts $\Gamma_{k} \subseteq S F(\varphi)$.

Let $i_{1}<\cdots<i_{l-1}$ be the indexes where there is a strict inclusions. (by convention $i_{0}=1$ and $i_{l}=k$)

We have for all $i, \Gamma_{i}^{\square}=\Gamma_{i+1}^{\square}$ except for $i=i_{1}$ or $\ldots i_{l-1}$ where $\Gamma_{i}^{\square} \subsetneq \Gamma_{i+1}^{\square}$.
There is a j such that $i_{j+1}-i_{j}>|\varphi|+1$. Indeed, otherwise, $\Sigma_{j=0}^{j<l} i_{j+1}-i_{j}=$ $k-1 \leq \Sigma_{j=0}^{j<l}|\varphi| \leq|\varphi|(|\varphi|+1)$. But $k-1>|\varphi|^{2}+|\varphi|$. Contradiction.

For that j, for $j^{\prime} \in\left\{i_{j}+1, i_{j+1}\right\}, \Gamma_{j^{\prime}}^{\square}=\Gamma_{j+1}^{\square}$.
So, the sets $\Gamma_{j^{\prime}}$ of the form $\Gamma^{\square} \cup\{\psi\}$ only differs from the formula ψ. As $\psi \in S F(\varphi)$, there are only $|\varphi|$ formula ψ possible. So there are two sets $\Gamma_{j^{\prime}}$ that are equal. This contradicts the invariant stating that all elements in L are distinct.

The recursive calls depth is bounded by $|\varphi|^{2}+|\varphi|+1$.
We can prove property by induction on the recursive call since $|\varphi|^{2}+|\varphi|+1-|L|$ is a positive integer that decreases.

Theorem 2 If a formula φ is satisfiable, then satS4 $(\{\varphi\},[])$ succeeds.

Proof.
By induction on the recursive call, we prove that if Γ is satisfiable then satS4 (Γ, L) succeeds for any L. Let $\mathcal{M}=(W, R, V)$ an S4-Kripke-model and $w \in W$ such that $\mathcal{M}, w=\Gamma$.

Either satS4($\Gamma, L)$ succeeds because $\Gamma \in L$ (luck!). Or... there is a Hintikka set Γ^{\prime} containing Γ such that $\mathcal{M}, w \models \Gamma^{\prime}$. For all $\Delta \psi \in \Gamma^{\prime}, \mathcal{M}, w \models \diamond \psi$. So there exists a world $u \in W$ such that $w R u$ and $\mathcal{M}, u \models \psi$. Of course $\mathcal{M}, u \models \Gamma^{\prime \square}$. The induction closes the debate.

Theorem 3 If satS4(\{ $\},[])$ succeeds then the formula φ is satisfiable.

Proof.
The proof goes on two parts. The first part we prove the exists of a 'premodel' which corresponds to the trace of the algorithm. The second part corresponds to the transformation of this 'premodel' into a Kripke-model satisfying the formula φ.

1. Building the premodel for φ

We prove by induction on the recursive calls that if $\operatorname{sat} S 4(\Gamma, L)$ succeeds, then there exists a structure $\mathcal{S}=(S, T, F)$ where

- (S, T) is tree structure;
- F labels internal nodes by a Hintikka sets;
- leafs are labelled by Γ that are in L or already included in a ancestor or by a Hintikka sets without $\Delta \psi$ formulas;
- if $\square \psi \in F(s)$, then for all $t \in T(s) \square \psi \in F(t)$;
- if $\Delta \psi \in F(s)$ then there exists $t \in T(s)$ such that $\psi \in F(t)$.

For $\operatorname{sat} S 4(\{\varphi\},[])$, we obtain a $\mathcal{S}=(S, T, F)$ where leafs are either Hintikka sets without $\diamond \psi$ formulas or Γ that are already included in a ancestor. Let I the set of included leafs.

2. Transforming the premodel in a model

The second part consists in transforming the \mathcal{S} into a Kripke-model. Let $\mathcal{M}=(W, R *, V)$ be the Kripke model defined by:

- $W=S \backslash I$;
- $R=T_{\mid W} \cup\{(w, u) \in W \mid(w, l) \in W \times I$ and u such that $F(l) \subseteq F(u)\}$;
- $V(w)=\{p \mid p \in F(w)\}$.

Now we prove by induction on ψ that if $\psi \in F(w)$ then $\mathcal{M}, w \models \psi$.
$\Delta \psi$
if $\diamond \psi \in F(w)$. There exists $t \in T$ such that $w T t$ and $\psi \in F(t)$.
If $t \notin I, t \in W$ and by induction $\mathcal{M}, t \models \psi$ and $w R t$ and $\mathcal{M}, w \models \diamond \psi$.
If $t \in I$, there exists a ancestor u such that $F(t) \subseteq F(u)$ and $w R u$ by definition of R. As $\mathcal{M}, u \models \psi, \mathcal{M}, w \models \diamond \psi$.

Suppose that $\square \psi \in F(w)$. We prove that for all $i \in \mathbb{N}$, for all $t \in R^{i}(w)$, $\square \psi \in F(t)$ by recurrence on i.

For $i=0$, trivial.
Suppose for all $i \in \mathbb{N}$, for all $u \in R^{i}(w), \square \psi \in F(u)$. Let $t \in R^{i+1}$. We have $u R t$ where $u \in R^{i}(w)$.

Either $u T_{W W} t$ and $\square \psi \in t$ by construction.
Or $u R t$ comes from the existence of a included leaf $i \in I$. By construction $\square \psi \in i$ and as $F(i) \subseteq F(t)$ we have $\square \psi \in F(t)$.

So, for all $t \in R^{*}(w), \square \psi \in F(t)$. As $F(t)$ is a Hintikka-set, we have $\psi \in F(t)$. By induction, $\mathcal{M}, t \models \psi$. Hence, $\mathcal{M}, w \models \square \psi$.

