
Deciding the Non-Emptiness of Attack Trees

Maxime Audinot?, Sophie Pinchinat, François Schwarzentruber, and Florence
Wacheux

1 Univ. Rennes/IRISA/CNRS
2 ENS Rennes

3 {maxime.audinot, sophie.pinchinat, florence.wacheux}@irisa.fr
4 francois.schwarzentruber@ens-rennes.fr

Abstract. We define and study the decision problem of the non-emptiness of
an attack tree. This decision problem reflects the natural question of knowing
whether some attack scenario described by the tree can be realized in (a given
model of) the system to defend. We establish accurate complexity bounds, rang-
ing from NP-completeness for arbitrary trees down to NLOGSPACE-completeness
for trees with no occurrence of the AND operator. Additionally, if the input sys-
tem to defend has a succinct description, the non-emptiness problem becomes
PSPACE-complete.

1 Introduction

Attack trees are one of the most prominent graphical models for security, originally
proposed by [20]. They are intuitive and provide a readable description of the (possi-
bly many) ways of attacking a critical system, thus enabling efficient communication
between security experts and decision makers.

For about a decade, formal methods have been deployed to tame these models, with
the perspective to develop all kinds of assistant tools for attack trees. The formal ap-
proaches range among attack tree quantitative analysis [12,1], system-based approaches
to assist experts in their design [2,3], and automated generation of attack trees [15,9,17].
All of these approaches rely on solid semantics. To cite a few, there are the multi-set
semantics [14], the series-parallel graph semantics [11], the linear logic semantics [8],
and the path/trace semantics [2,3].

It is important to notice that the path semantics of attack trees provides a natural
way of interpreting the tree as a set of attacking scenarios in the system to defend. Such
semantics therefore relies not only on the description of the tree but also on a formal
definition of the system. This formal definition should reflect the evolution of the system
when attacked, in other words its operational semantics. For example, in the ATSyRA
tool [18] or in the Treemaker tool [10], the experts specify a system in some Domain
Specific Language, then this specification is compiled into a transition system whose
states denote the system configurations and whose transitions describe the ability for an
attacker to act on the system, hence to modify the current configuration.

Although this is not made formal here, we claim that most of the existing semantics
of attack trees in the literature intrinsically “contain” such an operational view of attack
? grant from DGA, Bruz

trees. It is therefore essential for further tools development to investigate computational
aspects in terms of relevant decision problems such tools will need to solve.

One of the basic decision problems we can think of is addressed in the setting of the
path semantics, and is called the non-emptiness of an attack tree, where the issue is to
decide whether the tree describes a non-empty set of attacks on a given system or not.
If the answer is no, then the expert is done because her attack tree describes ways of
attacking that cannot be implemented by an attacker, meaning that the system is safe.
Otherwise, the expert is informed that the system is vulnerable, and should carry on with
her analysis. To our knowledge, there is currently no result regarding this question.

In this paper, we formalize this non-emptiness decision problem, establish tight
computational complexity bounds, and discuss the impact of these results for tools de-
velopment. More precisely, we show that:

1. For arbitrary attack trees, namely with no restrictions on the operators used in their
description5, this problem is NP-complete (Theorem 1.);

2. Additionally to this general result, we consider the subclass of so-called AND-free at-
tack trees, by disallowing the AND operator. For this subclass, we exhibit a polynomial-
time algorithm to solve the non-emptiness problem (Theorem 4), and show that this
restricted decision problem is NLOGSPACE-complete (Theorem 5);

3. Finally, we consider a variant of the non-emptiness decision problem where the
input system has a symbolic presentation, as it is the case in most practical appli-
cations (see for example the tool ATSyRA [18]). We argue that the price to pay for
this succinct way of specifying the system yields a PSPACE-complete complexity
(Theorem 6).

The paper is organized as follows. We start by recalling the definition of transition
systems in Section 2, and the central notions of concatenation and parallel decomposi-
tion of formal finite words needed to define the path semantics of attack trees in Sec-
tion 3. Attack trees are introduced in Section 4, as well as the formal definition of the
non-emptiness decision problem. Section 5 is dedicated to the non-emptiness problem
for arbitrary attack trees, while Section 6 focuses on the subclass of AND-free attack
trees. In Section 7, we discuss the case of symbolic transition systems, and conclude
the contribution by pointing out some future work in Section 8.

2 Transition Systems

Let Prop = {ι, ι1, . . . , γ, γ1 . . .} be a countable set of atomic propositions.

Definition 1. A labeled transition system over Prop is a structure
S = (S ,→, λ), where S is a finite set of states (whose typical elements are s, s′, s0, s1, . . .);
→⊆ S × S is the transition relation, and we write s → s′ instead of (s, s′) ∈→; and
λ : Prop→ 2S is the valuation function that assigns a set of propositions to states.

The size of S is |S| := |S | + |→|.

5 operators one can find in the dedicated literature, see Definition 5

s0start s1

s2

s3

s4

s5 s7

s6

s8

ι1 γ1, ι2, ι3

γ2, ι3

γ3, ι2, ι4

∅

γ3, γ2, ι4

γ3, ι4

γ3, γ2, ι4 γ3, γ4

Fig. 1: A labeled transition system.

An example of labeled transition system with nine states {s0, . . . , s8} is depicted in
Figure 1. In such structures, paths are central objects as they represent the dynamic of
the system.

Definition 2. A path of S is a sequence π = s0 . . . sn of states of S, such that n ≥ 0 and
si → si+1, for every i < n. The set of paths of S is denoted Π(S).

In the following, we write s →∗ s′ whenever there exists a path π = s0 . . . sn with
s = s0 and s′ = sn.

We consider two notions on paths, namely concatenation and parallel decomposi-
tion, that will serve us to define the path semantics of attack trees. Because paths can be
seen as finite words, i.e. finite sequence of states, we define these notions in the abstract
setting of words.

3 Concatenation and Parallel Decomposition

We write w(i) for the (i+1)-th letter of the word w, so that letter positions in words start
at 0. Also, let |w| be the size of w, so that |w| − 1 is its last letter position. We also write
w. f irst and w.last for w(0) and w(|w| − 1) respectively, and for [k, l] ⊆ [0, |w| − 1], we
write w[k, l] := w(k) . . .w(l). A factor of a word w is a word w′, such that w[k, l] = w′

for some [k, l] ⊆ [0, |w| − 1], and we call interval [k, l] an anchoring of w′ in w; note w′

may have several anchorings in w.
We now introduce the concatenation of words (Definition 3) and the parallel de-

compositions of a word (Definition 4). The concatenation w of two words w1 and w2 is
similar to the usual notion of concatenation except that the last letter of w1 and the first
letter w2 which should be the same are merged. Figure 2 shows the concatenation of
words s0s2s7s1 and s1s4s6.

Definition 3 (Concatenation). Let w1,w2 be two words of respective sizes n1 and n2
and such that w1.last = w2. f irst. The concatenation of w1 and w2 , denoted by w1·w2,
is the word of size n1 + n2 − 1, where w[0, n1 − 1] = w1 and w[n1, n1 + n2 − 1] = w2. We
naturally extend the definition of concatenation to sets of words: for two sets of words
W1 and W2, we let W1·W2 := {w1·w2 | w1 ∈ W1 and w2 ∈ W2}.

w1 s0 s2 s7 s1

w2 s1 s4 s6

=

w1·w2 s0 s2 s7 s1s1 s4 s6

Fig. 2: Concatenation of words s0s2s7s1 and s1s4s6.

Intuitively, a parallel decomposition of a word w is the choice of a finite set of
factors that entirely covers w. Figure 3a shows a possible parallel decomposition of the
word s0s2s7s1s4s6s3.

Definition 4 (Parallel decompositions of a word). A set of words
{w1, . . . ,wn} is a parallel decomposition of a word w whenever the following holds.

1. For every i ∈ [1, n], the word wi is a factor of w at some anchoring [ki, li];
2. For every j ∈ [0, |w| − 2], [j, j + 1] ⊆ [ki, li], for some i ∈ [1, n].

The intervals [ki, li] form a covering of [0, |w| − 1].

Notice that our notion of covering is stronger than the classic notion of interval
covering which requires that the union of intervals [ki, li] matches [0, |w| − 1]. Indeed,
Point 2 of Definition 4 requires that each 2-size factor of w is also a factor of some of
the words wi. In particular, the three words w1,w2,w3 as chosen in Figure 3b do not
form a parallel decomposition of word s0s2s7s1s4s6s3, since the 2-size word s2s7 is not
a factor of any of these three words.

w s0 s2 s7 s1 s4 s6 s3

w2 s0 s2

w3 s2 s7 s1 s4

w1 s1 s4 s6 s3

(a) Examples of words that form a parallel de-
composition.

w s0 s2 s7 s1 s4 s6 s3

w2 s0 s2

w3 s7 s1 s4

w1 s1 s4 s6 s3

(b) Example of words that do not form a decom-
position.

Fig. 3: Decomposition of word s0s2s7s1s4s6s3.

We recall that Prop = {ι, ι1, . . . , γ, γ1 . . .} is a countable set of atomic propositions,
and we now define attack trees.

4 Attack Trees

In our formal setting, attack trees are finite labeled trees whose leaves are labeled by a
pair 〈ι, γ〉, where ι, γ ∈ Prop and whose internal nodes (non-leaves) are labeled by either
symbol OR, symbol SAND (sequential and) or symbol AND. In our setting, and in most
existing approaches in the literature, such labels correspond respectively to the union,
the concatenation and the parallel decomposition of sets of paths (see Definition 6).
W.l.o.g., we suppose that OR-nodes and SAND-nodes are binary, i.e. their nodes have
exactly two children, since the corresponding semantics is associative (Definition 6).
Figure 4 shows an attack tree with 4 leaves and 3 internal nodes.

AND

SAND

〈ι1, γ1〉 〈ι2, γ2〉

OR

〈ι3, γ3〉 〈ι4, γ4〉

Fig. 4: Example of an attack tree.

Definition 5 (Attack tree). An attack tree is defined by induction as follows.

1. A leaf labeled by a pair of propositions 〈ι, γ〉 ∈ Prop × Prop is an attack tree;
2. Given two attack trees τ1 and τ2, one can form the attack trees OR(τ1, τ2) and
SAND(τ1, τ2);

3. Given a finite sequence τ1, τ2 . . . , τn of attack trees, one can form the attack tree
AND(τ1, . . . , τn).

An attack tree τ is AND-free if it is built only by means of Rules 1. and 2. of Defini-
tion 5. We will refer to a pair 〈ι, γ〉 of propositions labeling the leaves of attack trees as a
reachability goal, and to propositions ι and γ as the precondition and the postcondition
of this reachability goal 〈ι, γ〉 respectively.

An attack tree τ is interpreted in a transition system S as a set JτKS of paths in S.

Definition 6 (Path semantics). The path semantics of τ in a transition system S is the
set JτKS ⊆ Π(S) defined by induction as follows.

– J〈ι, γ〉KS = {π ∈ Π(S) | π. f irst ∈ λ(ι) and π.last ∈ λ(γ)}
– JOR(τ1, τ2)KS = Jτ1KS ∪ Jτ2KS

– JSAND(τ1, τ2)KS = Jτ1KS·Jτ2KS

– JAND(τ1, τ2, . . . , τn)KS is the set of paths π of S that admit a parallel decomposition
{π1, π2, . . . , πn} with π1 ∈ Jτ1KS, . . . , πn ∈ JτnKS

Remark that the semantics for OR and SAND are associative because the correspond-
ing operators on sets are. On the contrary, the semantics of AND is not associative, as
shown in Example 1, and we therefore cannot restrict to a binary operator.

Example 1. Consider the system of Figure 1. The set JAND(〈ι1, γ1〉, 〈ι4, γ4〉, 〈ι2, γ2〉)KS
contains the four paths s0s1s2s5s7s8, s0s1s3s5s7s8, s0s1s2s5s6s8, and s0s1s3s5s6s8, but
JAND(〈ι1, γ1〉, 〈ι4, γ4〉)KS = ∅ because there is no state that is both on a path in J〈ι1, γ1〉KS
and on a path in J〈ι4, γ4〉KS, so that the set JAND(AND(〈ι1, γ1〉, 〈ι4, γ4〉), 〈ι2, γ2〉)KS is also
empty.

Now that attack trees are defined, we turn to the central problem of this contribution.

5 The Non-emptiness Problem for Attack Trees

The non-emptiness decision problem for attack trees, that we shortly call Non-emptiness,
is the following decision problem.

Non-emptiness: Given a system S and an attack tree τ, do we have JτKS , ∅?

Theorem 1. Non-emptiness is NP-complete.

The rest of this section is dedicated to the proof of Theorem 1: we establish the NP
upper bound in Subsection 5.1 (Theorem 2), and in Subsection 5.2, we resort to the
result by [2] to obtain the NP lower bound (Theorem 3).

5.1 The Problem Non-emptiness is NP-easy

We provide a non-deterministic polynomial-time algorithm (Algorithm 2) that answers
the problem Non-emptiness.

This algorithm, called nonemptiness(τ,S), relies on the abstract semantics (Def-
inition 7) of attack trees, that consists only in sequences of key states that occur along
paths of the path semantics. Notice that such sequences may not realize any path in S,
and will therefore be seen as words w,w′, . . . ∈ S ∗.

Preliminarily to giving the definition of the abstract semantics of attack trees, we
introduce the notion of linearization of a finite set of words: a linearization of words
w1, . . . ,wn is any word in the set Lin(w1, . . . ,wn) defined as follows.

– If n > 2, then Lin(w1, . . . ,wn) := Lin2(Lin(w1, . . . ,wn−1),wn);
– Otherwise Lin(w1,w2) := Lin2(w1,w2).

where Lin2(w1,w2) is defined inductively by: Lin2(ε, ε) := ε, and Lin2(sw, s′w′) :=
s.Lin2(w, s′w′) ∪ s′.Lin2(s.w,w′), to which we add s.Lin2(w,w′) in case s = s′. For
example, Lin2(s2s7, s2s4) contains s2s7s2s4, s2s2s4s7, and s2s7s4.

Definition 7 (Abstract semantics). The abstract semantics JτKSabs ⊆ S ∗ is defined by
induction over τ:

– J〈ι, γ〉KSabs = {s1s2 | s1 |= ι, s2 |= γ};
– JOR(τ1, τ2)KSabs = Jτ1KSabs ∪ Jτ2KSabs;
– JSAND(τ1, τ2)KSabs = Jτ1KSabs·Jτ2KSabs;
– JAND(τ1, . . . , τn)KSabs contains all linearizations w of some words w1 ∈ Jτ1KSabs, . . .wn ∈

JτnKSabs, such that every letter occurrence of w, but w. f irst and w.last, either is
strictly between w j. f irst and w j.last for some j, or equals both w j. f irst and wk.last
for some j , k.

Intuitively, JτKSabs contains key states in the sense that those are states satisfying the
relevant pre/post-conditions appearing in the tree τ.

Example 2. Recall the labeled transition system of Figure 1. The word s2s7 is in the set
J〈ι3, γ3〉KSabs since s2 and s7 are states satisfying the precondition ι3 and the postcondition
γ3 respectively, but s2s7 is not a path in S. Because s2s7 is in J〈ι3, γ3〉KSabs and s7s8 is in
J〈ι4, γ4〉KSabs, the word s2s7s8 belongs to JSAND(〈ι2, γ2〉, 〈ι4, γ4〉)KSabs.

Algorithm 2 nonemptiness(τ,S) consists in two steps:

(a) A call to the sub-routine guessAbstractPath(τ,S) (Algorithm 1) in order to
guess a word w that plays the role of a certificate with key states;

(b) A check that w is “realizable” in S, i.e. that there exists a path between any two
consecutive key states occurring in w.

Step (a) amounts to executing Algorithm 1, which non-deterministically guesses a
word in JτKSabs. In case of leaf tree 〈ι, γ〉, the algorithm non-deterministically guesses two
states s1, s2 and verifies the property that ι holds in s1 and γ holds in s2. If this property
holds, Algorithm 1 returns the two-letter word s1s2, otherwise it rejects the input. For a
tree of the form OR(τ1, τ2), the algorithm non-deterministically guesses one of the two
sub-trees, i.e., some i ∈ {1, 2}, and then recursively executes guessAbstractPath(τi,S).
For a tree of the form SAND(τ1, τ2), the algorithm guesses two words w1 and w2 in Jτ1KSabs
and Jτ2KSabs respectively, and returns the word w1·w2 whenever w1.last = w2. f irst, other-
wise it rejects the input. For the case of a tree of the form AND(τ1, . . . , τn), the algorithm
guesses words wi in JτiKSabs, then it guesses a linearization of those, and finally verifies
that this latter guess is indeed a linearization (see the forall loop in the last case of Al-
gorithm 1).

The following proposition formally states the specification of Algorithm 1:

Proposition 1. – Any non-rejecting execution of Algorithm 1 returns a word in JτKSabs.
– Reciprocally, for every word in JτKSabs, there exists a non-rejecting execution of Al-

gorithm 1 that returns this word.

Proof. The proof can be conducted by induction on τ and is left to the reader.

Input: An attack tree τ and a transition system S
Output: A word w ∈ JτKSabs
switch τ do

case 〈ι, γ〉 do
guess s1, s2 ∈ S ;
check s1 ∈ λ(ι) and s2 ∈ λ(γ);
return s1 s2;

end
case OR(τ1, τ2) do

guess i ∈ {1, 2};
return guessAbstractPath(τi,S);

end
case SAND(τ1, τ2) do

w1 := guessAbstractPath(τ1,S);
w2 := guessAbstractPath(τ2,S);
check w1.last = w2. f irst;
return w1·w2

end
case AND(τ1, . . . , τn) do

wi := guessAbstractPath(τi,S) for each 1 ≤ i ≤ n;
guess w, a linearization of w1, . . . ,wn;
forall letters s of w except w. f irst and w.last do

check there exist j, k ∈ [1, n] such that either s is strictly between w j. f irst
and w j.last in w, or s equals both w j. f irst and wk.last

end
return w;

end
end

Algorithm 1: guessAbstractPath(τ,S).

Regarding Step (b) of Algorithm 2, the procedure consists in verifying that the word
w resulting from Step (a) can be realized by a path in the system S, in the sense that
there exist sub-paths between every successive key states occurring in w (see Defini-
tion 8).

Definition 8. Given a system (S ,→, λ), a word w = s0 . . . sn ∈ S ∗ is realized by a path
π in S if π = π0· . . . ·πn−1 for some πi’s that are paths from si to si+1 in S respectively.
Notice that w. f irst = π. f irst and w.last = π.last. Note also that any factor of w is also
realizable.

Verifying that the word is realizable by a path uses the Boolean function reachS whose
specification is: given two states s1, s2 ∈ S , reachS(s1, s2) is true iff there is a path from
s1 to s2 in S. It is well known that such a function can be implemented in polynomial
time.

Input: An attack tree τ and a transition system S
Output: Accept whenever JτKS , ∅.
//Step (a)
w := guessAbstractPath(τ,S);
//Step (b)
foreach s1, s2 successive in w do

check reachS(s1, s2)
end
accept

Algorithm 2: nonemptiness(τ,S).

The correctness of Algorithm 2 follows from Proposition 2:

Proposition 2. The two following statements are equivalent:

(i) There exists a word w ∈ JτKSabs that can be realized by a path of S;
(ii) JτKS , ∅.

Proof. We show that (i) implies (ii) by establishing an inductive proof over τ that if
w ∈ JτKSabs can be realized by a path π of S, then π ∈ JτKS.

If w ∈ J〈ι, γ〉KSabs then w. f irst |= ι and w.last |= γ, if w can be realized by some path
π, then w. f irst = π. f irst and w.last = π.last. One easily concludes that π ∈ J〈ι, γ〉KS. If
w ∈ JOR(τ1, τ2)KSabs, which by Definition 7, equals Jτ1KSabs∪Jτ2KSabs, pick some i such that
w ∈ JτiKSabs. By induction hypothesis, we then get πi ∈ JτiKS that realizes w and because
JτiKS ⊆ JOR(τ1, τ2)KS, word w is realized by πi ∈ JOR(τ1, τ2)KS, which allows us to
conclude. If w ∈ JSAND(τ1, τ2)KSabs, which by Definition 7, equals Jτ1KSabs·Jτ2KSabs, then
w = w1·w2, with w1 ∈ Jτ1KSabs and w2 ∈ Jτ2KSabs. Since moreover w can be realized, so are
its two factors w1 and w2, say by some paths π1 and π2. By induction hypothesis, π1 ∈

Jτ1KS and π2 ∈ Jτ2KS. Now, π1.last = w1.last = w2. f irst = π2. f irst, word w is clearly
realized by π1·π2 with π ∈ JSAND(τ1, τ2)KS. The last case where w ∈ JAND(τ1, . . . , τn)KSabs
is tedious, and omitted here.

To show that (ii) implies (i), we establish by induction over τ that if π ∈ JτKS, then there
is a word w ∈ JτKSabs that is realized by π.

Suppose π ∈ J〈ι, γ〉KS, then clearly the word (π. f irst)(π.last) is in J〈ι, γ〉KSabs, and is
by construction realizable by π.

Suppose π ∈ JOR(τ1, τ2)KS = Jτ1KS ∪ Jτ2KS. Pick i such that π ∈ JτiKS. By induction
hypothesis, there exists w that is realized by π and in JτiKSabs ⊆ JOR(τ1, τ2)KSabs, which
concludes the argument.

Suppose π ∈ JSAND(τ1, τ2)KS. Pick π1 ∈ Jτ1KS and π2 ∈ Jτ2KS with π = π1·π2.
By induction hypothesis, there is a word w1 ∈ Jτ1KSabs that can be realized by π1, and
similarly, there is a word w2 ∈ Jτ2KSabs that can be realized by π2. Since w1.last =

π1.last = π2. f irst = w2. f irst, the word w = w1·w2 is well defined, clearly belongs to
JSAND(τ1, τ2)KSabs, and is realized by π.

The case where π ∈ AND(τ1, . . . , τn) is tedious and left to the reader.

Proposition 3. Algorithm 2 is non-deterministic and runs in polynomial time.

Proof. Clearly Step (a) makes at most one call to Algorithm 1 (which is non-deterministic
and runs in polynomial time, see just below) per each node of the input tree, so Step (a)
runs in time linear in the size of the input. Step (b) executes a call to the polynomial-
time algorithm Reach at most a number of times bounded by the size of the word output
in Step (a) – hence a polynomial number.

Regarding the complexity of Algorithm 1, the guesses made are either some i ∈
{1, 2}, or a pair of states, or some linearization of a set of words. All those have a
polynomial size because the first is constant sized, the second in logarithmic in the size
of the input system S, and any linearization has a size at most twice the number of
leaves in the input tree.

This concludes the proof of Proposition 3.

By Proposition 2 and Proposition 3, we obtain:

Theorem 2. Non-emptiness ∈ NP.

The next section completes the proof of Theorem 1.

5.2 The Problem Non-emptiness is NP-hard

We inherit from the result [2, Proposition 2] that can be rephrased as follows in our
context.

Theorem 3. Non-emptiness is NP-hard, even if we restrict to trees of the form
AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉).

The proof of Theorem 3 is based on a polynomial reduction from the propositional
satisfiability problem to Non-emptiness for trees of the form AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉).
Because the former is NP-hard [7], so is the latter, Non-emptiness.

We recall some basic vocabulary. Let {p1, . . . , pr} be a set of propositions. A literal
` is either a proposition p or its negation ¬p. A clause C is a disjunction of literals. The
propositional satisfiability problem SAT is as follows.

Input: A set C = {C1, . . . ,Cm} of clauses.
Output: Does there exist a valuation over Prop that satisfies the set of clauses C ?

Consider C = {C1, . . . ,Cm}, an instance of SAT, and let {p1, . . . , pr} be an ordering
of the set of propositions occurring in the clauses of C . It is standard to write |C | for
the cumulative sum of the clauses’ size, where the size of a clause is the number of its
literals. In the following, we denote by `i an occurrence of proposition pi or ¬pi.

We define the labeled transition system SC := (S C ,→C , λC) over the set of propo-
sitions Prop = {start,C1, . . . ,Cm}, where start is a fresh proposition, as follows:

– The set of states is S C =

r⋃
i=1

{pi,¬pi} ∪ {init}, where init is a fresh state;

– The transition relation is→C = {(init, `1)} ∪ {(`i, `i+1) | 1 ≤ i ≤ r − 1};
– The labeling of states λC : {start,C1, . . . ,Cm} → 2S is such that λC (start) = {init}

and λC (Ci) = {` | ` ∈ Ci} for every 1 ≤ i ≤ m.

init

p1

¬p1

p2

¬p2

p3

¬p3

start

C1,C2

C1

C2

Fig. 5: The system S{C1,C2} where C1 = p1 ∨ ¬p2 and C2 = p1 ∨ p3.

For example, the transition system corresponding to the set formed by the set of
clauses C1 = p1 ∨ ¬p2 and C2 = p1 ∨ p3 is depicted in Figure 5.

We now let the attack tree τC := AND(〈start,C1〉, 〈start,C2〉, . . . , 〈start,Cm〉).
The reduction that we have described maps any instance C = {C1, . . . ,Cm} of SAT

to the instance (SC , τC) of Non-emptiness. It is is trivially computable in polynomial
time.

We now prove that JτC KSC , ∅ if, and only if C is satisfiable.
(⇐) Suppose that C is satisfiable. There exists a valuation over Prop that satisfies

a set of clauses C . First, we consider the path that starts from init and that follows the
literals that are made true by this valuation. Second, we take the longest prefix π of that
path that ends in a state labeled by C j. As all Ci are satisfied by the valuation, all Ci

appear on π, which shows π ∈ JτC KSC .
(⇒) Let π ∈ JτC KSC . By definition of SC , π cannot visit both a proposition and

its negation. Therefore, π trivially denotes a partial valuation – that is completed by
assigning false to all other propositions. Since π ∈ JτC KSC , π visits a state labeled
by Ci for every i, which shows that the valuation satisfies all the clauses. Hence, C is
satisfiable.

6 The Non-emptiness Problem for AND-free Attack Trees

We here show that the complexity of deciding the non-emptiness of an attack tree boils
down to NLOGSPACE if the input trees are AND-free. We write Non-emptinessA f for
this restricted version of the problem.

For a start, we establish that Non-emptinessA f is in P (Theorem 4), and later in the
section, we improve this bound by showing that Non-emptinessA f is NLOGSPACE-
complete (Theorem 5).

Theorem 4. Non-emptinessA f is in P.

We prove Theorem 4 by developing the polynomial-time Algorithm 3 that answers Non-
emptinessA f . This algorithm amounts to verifying the non-emptiness of the set returned
by the the divide-and-conquer Algorithm 5, namely the set pairs(τ,S) of pairs of states
in S that are ends (first and last states) of some path in JτKS.

Input: An AND-free attack tree τ and a transition system S = (S ,→, λ)
Output: JτKS , ∅?
return pairs(τ,S) , ∅

Algorithm 3: nonemptinessAf(τ,S).

Before detailing Algorithm 5, we recall the simple Algorithm 4 used for the base
case of leaf trees. This latter algorithm computes in polynomial time the set ends(ι, γ,S)
of pairs of states that end a given path in JτKS. Algorithm 4 calls ReachableFromS(s)
which computes the set of states reachable from s in S, that is the set of states s′ such
that s →∗ s′; clearly, the set ReachableFromS(s) can be computed in polynomial time
in the size of S.

Input: Two propositions ι, γ ∈ Prop and a transition system S = (S ,→, λ) over Prop
Output: The set {(s, s′) ∈ S × S | s ∈ λ(ι), s′ ∈ λ(s′) and s→∗ s′}
P := ∅;
foreach s ∈ λ(ι) do

P := P ∪ {s} × (ReachableFromS(s) ∩ λ(γ))
end
return P

Algorithm 4: ends(ι, γ,S).

Since S is finite and since the size of the sets λ(ι) and λ(γ) are less than or equal to
the size of S, and because ReachableFromS(s) is computable in polynomial time, we
can claim the following.

Lemma 1. Algorithm 4 terminates and its execution time is polynomial.

It is also not hard to establish the correctness of Algorithm 4.

Input: An AND-free attack tree τ and a transition system S = (S ,→, λ)
Output: The set {(π. f irst, π.last) | π ∈ JτKS}
switch τ do

case 〈ι, γ〉 do
return ends(ι, γ,S);

end
case OR(τ1, τ2) do

return pairs(τ1,S) ∪ pairs(τ2,S)
end
case SAND(τ1, τ2) do

return { (s1, s2) | there exists s3 such that (s1, s3) ∈ pairs(τ1,S) and
(s3, s2) ∈ pairs(τ2,S)) }

end
end

Algorithm 5: pairs(τ,S).

Lemma 2. Algorithm 4 returns {(s, s′) ∈ S × S | s ∈ λ(ι), s′ ∈ λ(s′) and s→∗ s′}.

We now describe the central Algorithm 5, which is defined by induction on τ.

Lemma 3. Algorithm 5 terminates and computes in polynomial time the set

{(s, s′) ∈ S × S | there exists π ∈ JτKS s.t. s = π. f irst and s′ = π.last}

Proof. The algorithm terminates since recursive calls are executed on smaller trees and
the base case is a call to Algorithm 4 which terminates by Lemma 1. The correctness of
Algorithm 5 can be established by conducting an inductive reasoning on τ while taking
into account the semantics of the OR and SAND operators according to Definition 6. It
is left to the reader. Regarding the time complexity of Algorithm 5, one can easily see
that each node of the tree is visited once and that for each node the computation is in
polynomial time, so that the overall time complexity remains polynomial.

We now can conclude the proof of Theorem 4 by observing that deciding the non-
emptiness of an AND-free attack tree is equivalent to deciding pairsS(τ) , ∅?, which
can be achieved in polynomial time by Lemma 3 and the fact that verifying the non-
emptiness of some set can be done in O(1).

Actually, the optimal complexity of Non-emptinessA f is the following.

Theorem 5. Non-emptinessA f is NLOGSPACE-complete.

Proof. The NLOGSPACE-hardness of Non-emptinessA f follows from a trivial logspace
reduction from the s−t-connectivity in an explicit graph – which is NLOGSPACE-
complete according to [21] – to the non-emptiness of the path semantics of a leaf attack
tree (of the form 〈ι, γ〉).

For the NLOGSPACE-easiness, we describe Algorithm 6 which is a non-deterministic
logspace algorithm that decides Non-emptinessA f . Algorithm 6 may look technical but
its idea is simple: non-deterministically guess a path in S and simultaneously per-
form an exploration of the tree akin to a depth-first traversal. For SAND-nodes, per-
form the depth-first traversal as usual. For OR-nodes, guess one of the two children

Input: An AND-free attack tree τ and a transition system S
Output: Accept whenever JτKS , ∅.
guess s ∈ S ;
node := root of τ;
lastOp := down;
repeat

if node = 〈ι, γ〉 then
check s |= ι;
loop

guess whether we break the loop or not; if yes, break the loop;
guess s′ ∈ S with s→ s′;
s := s′

endLoop
check s |= γ;

end
if (lastOp = down) or (lastOp = over) then

Try to perform and update node with operation down, over, up in priority order;
Store in lastOp the last performed operation

else
Try to perform and update node with operation over, up in priority order;
Store in lastOp the last performed operation

end
until (node = root of τ) and (lastOp = up);
accept

Algorithm 6: nonemptinessNLAND f ree(τ,S).

to explore while the other child is dismissed. When a leaf node 〈ι, γ〉 is visited, non-
deterministically extend the path with a suffix and check that the first state of this suffix
is labeled by ι and that its last state is labeled by γ (see the first if-block in the repeat-
loop).

The constructed path is not entirely stored: only its current last state s is memorized
which requires a logarithmic number of bits in the size of S. This exploration is imple-
mented in logarithmic space via a technical trick similar to the one proposed in [13] for
tree canonization.

Before explaining the variant of the depth-first traversal we use, we describe the
technical trick for a standard depth-first traversal [13].

The traversal relies on three operations: down, over, up. The
standard operations work as follows: operation down moves to
the first child of the current node and fails if the current node
has no children; operation over moves to the next sibling (left
to right) of the current node and fails if the current node has
no next sibling; operation up moves to the parent of the current
node and fails if the current node is the root.

. . .

do
wn

over

up

In order to visit only one child of an OR node, we modify the behavior of operations
down and over; the behavior of operation up remains unchanged: if the current node is
an OR-node, operation down guesses a child and moves to it; if the parent of the current

node is an OR node, operation over always fails (instead of moving to the next sibling).
The obtained modification of the depth-first traversal is such that exactly one child of
an OR node is non-deterministically chosen and visited.

Algorithm 6 starts its exploration at the root of the attack tree and guesses a starting
state s in S. During the execution of the algorithm, variable s stores the last state in the
current guessed path, variable node stores the current visited node in the tree and lastOp
stores the last operation that was performed. At the beginning, we consistently suppose
(by convention) that operation down has been performed. The repeat-loop performs
the modified traversal of the attack tree. As already mentioned above, the first if-block
treats a leaf 〈ι, γ〉: it non-deterministically moves forward in the path and checks that the
built path complies with the pre/post-conditions ι and γ. The second if-block controls
the depth-first traversal. The repeat-loop ends when the traversal is finished, namely
when the current node is the root of τ and the last operation is up.

7 The Case of Symbolic Transition Systems

So far in this paper, we have assumed that the system S is described in extension.
However, in realistic applications, this explicit description may be huge owing to the
classic state explosion problem. A way to circumvent this explosion is to represent
systems in an implicit manner, known as symbolic transition systems. Typical symbolic
representations are data structures such as BDDs [5] or languages such as STRIPS [6].

We introduce the decision problem Non-emptinesssymb akin to Non-emptiness but
where the input system is given symbolically. The price to pay for dealing with a suc-
cinct presentation of the system S yields the following increase of complexity.

Theorem 6. Non-emptinesssymb is PSPACE-complete.

Regarding the PSPACE-hardness of Non-emptinesssymb, it is known that the sym-
bolic reachability problem, i.e. knowing if in a symbolic transition system there exists
some path from a given set of source states to a set of target states, is PSPACE-complete
[6]. As an immediate consequence, deciding the non-emptiness of attack trees is already
PSPACE-hard for leaf trees, i.e. whether J〈ι, γ〉KS , ∅.

Concerning the PSPACE-easiness of Non-emptinesssymb, we can adapt Algorithms 1
and Algorithm 2 for Non-emptiness as follows. First, guessing a state s ofS is performed
by guessing the polynomial number of bits that encode s in the symbolic representation
of S; this information is logarithmic in the exponential number of states denoted by
the symbolic transition system, hence this information has a size that is polynomial in
the size of the symbolic system. Second, checking reachS(s1, s2) is an instance of the
symbolic reachability problem, known to be computable by an algorithm running in
polynomial space [6].

All in all, those adaptations of Algorithms 1 and 2 yield an algorithm that is non-
deterministic with a logspace complexity. This shows that the problem Non-emptinesssymb

is in NPSPACE. Invoking Savitch’s Theorem [19] that states the equality of the two
complexity classes NPSPACE and PSPACE is enough to conclude.

8 Conclusion and Future Work

We have addressed the very natural decision problem of the non-emptiness of an attack
tree, which involves an input tree and an input transition system, and we have studied its
computational complexity. Mainly, the problem is (1) NP-complete for arbitrary trees,
(2) NLOGSPACE-complete if we restrict to AND-free trees, and (3) PSPACE-complete
for arbitrary trees and symbolic transition systems.

Regarding the most general problem Non-emptiness with no restriction on attack
trees, the established NP upper bound (Theorem 4) means that when the system is rep-
resented explicitly and is of “reasonable” size, it is relevant to consider implementations
based on one (or a combination) of the following intelligent search algorithmic tech-
niques: backtracking, backjumping, integer linear programming, reduction to SAT, use
of SMT solvers. The use of a SAT solver could be used to encode the AND-constraints
(parallel decomposition). Actually, it has already been successfully applied for a related
problem in [3]: deciding the membership of a path in the semantics of an attack tree τ
with respect to a system S, formally “π ∈ JτKS?”.

Regarding our complexity results for the problem Non-emptinessA f , for the case of
AND-free attack trees, we first showed that it is in P (Theorem 4), which means that we
have an efficient algorithm. Even better, we showed that it is in NLOGSPACE (Theo-
rem 5). Because the class NLOGSPACE falls within NC (Nick’s class) [16, Theorem
16.1], the problem Non-emptinessA f can be efficiently solved on parallel architectures
(see [16, p. 376]).

In the future, we plan to resort to solvers to design and implement a reasoning
tool on the non-emptiness of attack trees. Actually, such a reasoning tool also requires
to solve the reachability problem (see the procedure reachS used in Algorithm 2).
For these reasons, we will not only use a mere SAT solver but intend to draw on the
DPLL(T)6 architecture [4] of Satisfiability Modulo Theory (SMT) solvers. In our case,
the theory T would be the system S itself, over which we solve the reachability prob-
lem. While an SMT solver architecture decomposes into a SAT solver and a decision
procedure for T , our case would rather require an architecture decomposed into a SAT
solver and a model checker. On the one hand, the constraints reflected by the abstract
semantics JτKSabs may be solved by the SAT solver that returns a possible valuation re-
flecting a word w ∈ JτKSabs. On the other hand, the model checker would verify that word
w can be realized by a path in the system S. Similarly to what is done in SMT solvers,
the SAT solver and the model checker will exchange information: the SAT solver pro-
vides elements w ∈ JτKSabs to the model checker and the model checker informs the
SAT solver when a w is inconsistent within S. Interestingly, such an approach would
synthesize a “witness” path of any non-empty attack tree.

References

1. Zaruhi Aslanyan and Flemming Nielson. Model checking exact cost for attack scenarios.
In International Conference on Principles of Security and Trust, pages 210–231, Berlin,
Heidelberg, 2017. Springer.

6 where DPLL stands for Davis-Putnam-Logemann-Loveland and T is a first-order theory

2. Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Is my attack tree correct? In Si-
mon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Computer Security – ES-
ORICS 2017, pages 83–102, Cham, 2017. Springer International Publishing.

3. Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Guided design of attack trees: a
system-based approach – to be published. In Computer Security Foundations Symposium,
2018. CSF’18. 31th IEEE. IEEE, 2018.

4. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Handbook of Satisfiability, pages 825–885. IOS press, 2009.

5. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

6. Tom Bylander. The computational complexity of propositional STRIPS planning. Artif.
Intell., 69(1-2):165–204, 1994.

7. Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

8. Ross Horne, Sjouke Mauw, and Alwen Tiu. Semantics for Specialising Attack Trees based
on Linear Logic. Fundam. Inform., 153(1-2):57–86, 2017.

9. Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof Hansen, and Florian
Kammüller. Attack tree generation by policy invalidation. In WISTP, volume 9311 of LNCS,
pages 249–259. Springer, 2015.

10. Marieta Georgieva Ivanova, Christian W Probst, René Rydhof Hansen, and Florian
Kammüller. Transforming graphical system models to graphical attack models. In Inter-
national Workshop on Graphical Models for Security, pages 82–96. Springer, 2015.

11. Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Rolando Trujillo-Rasua.
Attack Trees with Sequential Conjunction. In SEC, volume 455 of IFIP Advances in Infor-
mation and Communication Technology, pages 339–353. Springer, 2015.

12. Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative attack tree analysis via
priced timed automata. In International Conference on Formal Modeling and Analysis of
Timed Systems, pages 156–171. Springer, 2015.

13. Steven Lindell. A logspace algorithm for tree canonization (extended abstract). In Proceed-
ings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria,
British Columbia, Canada, pages 400–404, 1992.

14. Sjouke Mauw and Martijn Oostdijk. Foundations of Attack Trees. In ICISC, volume 3935
of Lecture Notes in Computer Science, pages 186–198. Springer, 2005.

15. Hanne Riis Nielson, Flemming Nielson, and Roberto Vigo. Discovering, quantifying, and
displaying attacks. Logical Methods in Computer Science, 12, 2016.

16. Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.
17. Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. Towards synthesis of attack trees for

supporting computer-aided risk analysis. In SEFM Workshops, volume 8938 of LNCS, pages
363–375. Springer, 2014.

18. Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. ATSyRa: An Integrated Environment
for Synthesizing Attack Trees – (Tool Paper). In GraMSec@CSF, volume 9390 of LNCS,
pages 97–101. Springer, 2015.

19. Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. J. Comput. Syst. Sci., 4(2):177–192, 1970.

20. Bruce Schneier. Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal of Software
Tools, 24(12):21–29, 1999.

21. Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

	Deciding the Non-Emptiness of Attack Trees

