ASR : an introduction to Distributed Systems and Algorithms (Algorithmes et Systèmes Répartis)

4/4

M. Raynal¹, E. Fabre²

¹ Prof., ASAP team
² DR INRIA, DistribCom team

Master 2, research in Computer Science, ’12
Download the lecture slides from my web-page:
http://people.rennes.inria.fr/Eric.Fabre/
Previously on ASR...

Applications of FCPs
- Reachability analysis
- Deadlock detection

Distributed computations with BPs
- Morphism
- Combination of nets
- Combination of occurrence nets
- A central theorem
- Diagnosis
- Projection of a branching process
- Distributed diagnosis

Conclusion
Summary of last time

Modeling a distributed application

- essential feature: the concurrency of events
- a simple formalism to model concurrent systems: (safe) Petri nets
- run of a PN in a true concurrency semantics = configuration
Sets of runs

- Occurrence net \mathcal{O}
 - partially ordered net (well founded)
 - conditions (places) have at most one cause (predecessor)
 - causality, conflict, concurrency

Branching process (\mathcal{O}, ϕ) of a net \mathcal{N}

- $\phi : \mathcal{O} \rightarrow \mathcal{N}$ is a labeling on events and transitions
- parsimony: $\forall e, e', \quad \bullet e = \bullet e', \quad \phi(e) = \phi(e') \implies e = e'$
- configurations of \mathcal{O} represent by ϕ the runs of \mathcal{N}
- maximal BP of $\mathcal{N} =$ the unfolding of \mathcal{N}
Sets of runs

- Occurrence net O
 - partially ordered net (well founded)
 - conditions (places) have at most one cause (predecessor)
 - causality, conflict, concurrency

- Branching process (O, ϕ) of a net N
 - $\phi : O \to N$ is a labeling on events and transitions
 - parsimony: $\forall e, e', \cdot e = \cdot e', \phi(e) = \phi(e') \Rightarrow e = e'$
 - configurations of O represent by ϕ the runs of N
 - maximal BP of N = the unfolding of N
Finite and complete prefixes

- obtained by stopping the unfolding algorithms at cut-off events
- necessity of an adequate order, when comparing events in the unfolding algorithm, to define consistent cut-offs
- represent all reachable markings of the PN
- can be used for reachability analysis and for deadlock detection (today)
Outline

1. Previously on ASR...

2. Applications of FCPs
 - Reachability analysis
 - Deadlock detection

3. Distributed computations with BPs
 - Morphism
 - Combination of nets
 - Combination of occurrence nets
 - A central theorem
 - Diagnosis
 - Projection of a branching process
 - Distributed diagnosis

4. Conclusion
Reachability analysis

Reachability analysis with a finite complete prefix

Is the (sub-)marking M reachable in net \mathcal{N}?
By completeness, it suffices to check this on a FCP of \mathcal{N}.

Sub-marking:
Try to reach (Q_1, Q_0), i.e. a marking where places in Q_1 are marked, and places in Q_0 are empty.
Remark 1: By introducing complementary places p^c to N, $\forall p \in P$, becomes equivalent to assuming $Q_0 = \emptyset$.

- exactly one of $\{p, p^c\}$ is marked at each time
- $t \in \cdot p \iff t \in p^c\cdot$ and $t \in p\cdot \iff t \in \cdot p^c$
- excepted for $t \in \cdot p \cap p^c$

Exercise: express a safe PN with complementary places as a product of elementary components, each one being an automaton (single token)
Remark 2:

- Looking for the submarking \((Q_1, \emptyset)\) amounts to checking that some extra transition \(t^f\) with \(\bullet t^f = Q_1\) is firable in \(\mathcal{N}\).
- This is equivalent to looking for a co-set on which \(t^f\) can be fired in the unfolding algorithm.
- So reachability and co-set construction have identical complexities.

Proposition

The reachability test (co-set construction) is NP-hard.
Remark 2:

- Looking for the submarking \((Q_1, \emptyset)\) amounts to checking that some extra transition \(t^f\) with \(\bullet t^f = Q_1\) is firable in \(\mathcal{N}\).
- This is equivalent to looking for a co-set on which \(t^f\) can be fired in the unfolding algorithm.
- So reachability and co-set construction have identical complexities.

Proposition

The reachability test (co-set construction) is NP-hard.
Proof: it is equivalent to solving a SAT problem.

Example:

encoding of the SAT problem \((x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2)\)

in a safe Petri net

The complexity of moving to the unfolding is polynomial. So finding a co-set where \(t_f\) is firable is NP-hard.
Algorithm: to build a co-set X with $f_N(X) = Q_1 = \{p_1, p_2, \ldots\}$

- **Method**
 - take a condition c_1 with $f_N(c_1) = p_1$
 - extend it with a condition c_2 with $f_N(c_2) = p_2$, and $c_2 \perp c_1$
 - try to add c_3 with $f_N(c_3) = p_3$, and $c_3 \perp \{c_1, c_2\}$
 - etc., backtracking when failing

- **Concurrency test for $c_1 \perp c_2$**
 - build $[c_1]$ and $[c_2]$
 - check $[c_1] \cap [c_2] \cap C = \emptyset$ i.e. no conflict
 - check $c_1 \not\in [c_2]$, i.e. not $c_1 \rightarrow^* c_2$
 - check $c_2 \not\in [c_1]$, i.e. not $c_2 \rightarrow^* c_1$

- The best implementations use SAT solvers for these properties.

- These ideas also used to build unfoldings/prefixes. Modern implementations use and update a list of possible extensions (= event + co-set).
Algorithm: to build a co-set X with $f_{\mathcal{N}}(X) = Q_1 = \{p_1, p_2, \ldots\}$

- **Method**
 - take a condition c_1 with $f_{\mathcal{N}}(c_1) = p_1$
 - extend it with a condition c_2 with $f_{\mathcal{N}}(c_2) = p_2$, and $c_2 \perp c_1$
 - try to add c_3 with $f_{\mathcal{N}}(c_3) = p_3$, and $c_3 \perp \{c_1, c_2\}$
 - etc., backtracking when failing

- **Concurrency test for** $c_1 \perp c_2$
 - build $[c_1]$ and $[c_2]$
 - check $[c_1] \cap [c_2] \cap C = \emptyset$ i.e. no conflict
 - check $c_1 \notin [c_2]$, i.e. not $c_1 \rightarrow^* c_2$
 - check $c_2 \notin [c_1]$, i.e. not $c_2 \rightarrow^* c_1$

- The best implementations use SAT solvers for these properties.

- These ideas also used to build unfoldings/prefixes. Modern implementations use and update a list of possible extensions ($= \text{event} + \text{co-set}$).

Another approach: using the marking equation

- let \(\omega = t^1, ..., t^n \) be a firable sequence in net \(N \)
- the Parikh vector \(\vec{\omega} = [\nu(\omega, t)]_{t \in T} \) counts occurrences of each transition \(t \) of \(T \) in \(\omega \)
- the incidence matrix \(N \in \mathbb{N}^{\|P\| \times \|T\|} \) is defined by
 \[
 N(p, t) = \mathbf{1}_{t \rightarrow p} - \mathbf{1}_{p \rightarrow t}
 \]
- the marking \(M \) reached by \(\omega \) is given by
 \[
 M = P_0 + N \cdot \vec{\omega}
 \]

Proposition

\(M \) is reachable only if there exists a solution to \(M = P_0 + N \cdot X \), \(X \in \mathbb{N}^{\|T\|} \). If the net \(N \) is acyclic, this condition is also sufficient.

Can be used on a finite complete prefix, assuming it is already available. Resolution by integer linear programming.
Another approach: using the marking equation

- let $\omega = t^1, \ldots, t^n$ be a firable sequence in net N
- the Parikh vector $\vec{\omega} = [\nu(\omega, t)]_{t \in T}$ counts occurrences of each transition t of T in ω
- the incidence matrix $N \in \mathbb{N}^{\mid P \mid \times \mid T \mid}$ is defined by
 \[
 N(p, t) = 1_{t \rightarrow p} - 1_{p \rightarrow t}
 \]
- the marking M reached by ω is given by
 \[
 M = P_0 + N \cdot \vec{\omega}
 \]

Proposition

M is reachable only if there exists a solution to $M = P_0 + N \cdot X$, $X \in \mathbb{N}^{\mid T \mid}$. If the net N is acyclic, this condition is also sufficient.

Can be used on a finite complete prefix, assuming it is already available. Resolution by integer linear programming.
Deadlock checking

Deadlock = marking of \mathcal{N} where no more transition can be fired.

Proposition (Mc Millan)

Let O be a FCP of $\mathcal{U}_\mathcal{N}$. There exists no deadlock in \mathcal{N} iff every configuration κ of O can be extended into a configuration $\kappa' \sqsupseteq \kappa$ that contains a cut-off event.

This is simply because there is no deadlock iff every configuration can be made arbitrarily large in $\mathcal{U}_\mathcal{N}$ (recall the notion of e-shift).

Corollary

Equivalently, there is a deadlock in \mathcal{N} iff there exists some κ that can’t be extended to reach a cut-off.
Deadlock checking

Deadlock = marking of \mathcal{N} where no more transition can be fired.

Proposition (Mc Millan)

Let O be a FCP of $\mathcal{U}_\mathcal{N}$. There exists no deadlock in \mathcal{N} iff every configuration κ of O can be extended into a configuration $\kappa' \sqsupseteq \kappa$ that contains a cut-off event.

This is simply because there is no deadlock iff every configuration can be made arbitrarily large in $\mathcal{U}_\mathcal{N}$ (recall the notion of e-shift).

Corollary

Equivalently, there is a deadlock in \mathcal{N} iff there exists some κ that can’t be extended to reach a cut-off.
Corollary

Equivalently, there is a deadlock in N iff there exists some κ that can’t be extended to reach a cut-off.

Proof of \Leftarrow

- extend κ into a maximal config. κ', that contains no cut-off
- no more transition can be fired after κ' (otherwise one of its maximal events would be a cut-off)
- so $Mark(\kappa')$ is a deadlock

Proof of \Rightarrow

- let M be a deadlock and $\kappa \in O$ such that $Mark(\kappa) = M$
- there exists one such κ that contains no cut-off (remove cut-offs one by one, as in the completeness proof of a FCP)
- this κ can’t be extended at all (otherwise M wouldn’t be a deadlock)
Corollary

Equivalently, there is a deadlock in N iff there exists some κ that can’t be extended to reach a cut-off.

Proof of \iff

- extend κ into a maximal config. κ', that contains no cut-off
- no more transition can be fired after κ' (otherwise one of its maximal events would be a cut-off)
- so $Mark(\kappa')$ is a deadlock

Proof of \Rightarrow

- let M be a deadlock and $\kappa \in O$ such that $Mark(\kappa) = M$
- there exists one such κ that contains no cut-off (remove cut-offs one by one, as in the completeness proof of a FCP)
- this κ can’t be extended at all (otherwise M wouldn’t be a deadlock)
Corollary

Let κ be a configuration in conflict with all cut-off events of O. Let $\kappa' \supseteq \kappa$ be a maximal extension of κ in O. Then $\text{Mark}(\kappa')$ is a deadlock.

Homework: does this characterize all deadlocks?

- checking the existence of deadlocks is also NP hard
- there exist “graphical” methods on the FCP O
- there exist as well methods based on the marking equation
Distributed computations with branching processes

1. Previously on ASR...

2. Applications of FCPs
 - Reachability analysis
 - Deadlock detection

3. Distributed computations with BPs
 - Morphism
 - Combination of nets
 - Combination of occurrence nets
 - A central theorem
 - Diagnosis
 - Projection of a branching process
 - Distributed diagnosis

4. Conclusion
Distributed computations with branching processes

1. Previously on ASR...

2. Applications of FCPs
 - Reachability analysis
 - Deadlock detection

3. Distributed computations with BPs
 - Morphism
 - Combination of nets
 - Combination of occurrence nets
 - A central theorem
 - Diagnosis
 - Projection of a branching process
 - Distributed diagnosis

4. Conclusion
Morphism of (labeled) PN:

\[\phi : \mathcal{N}_1 \rightarrow \mathcal{N}_2 \quad \text{with} \quad \mathcal{N}_i = (P_i, T_i, \rightarrow_i, P_{i,0}, \lambda_i, \Lambda_i) \]

- \(\phi : T_1 \rightarrow T_2 \) partial function on transitions,
 - label preserving: \(t_2 = \phi(t_1) \Rightarrow \lambda_2(t_2) = \lambda_1(t_1) \)
 - \(\Lambda_2 \subseteq \Lambda_1 \) and \(\text{Dom}(\phi) = \lambda_1^{-1}(\Lambda_2) \)
- \(\phi \) relation between place sets \(P_1 \) and \(P_2 \)
 - \(\phi(P_{1,0}) = P_{2,0} \)
 - \(\forall p_2 \in P_{2,0}, \exists! p_1 \in P_{1,0}, \quad p_1 \overset{\phi}{\rightarrow} p_2 \)
 - \(\phi \) defined at \(p_1 \) \(\Rightarrow \) \(\phi \) defined at \(\cdot p_1 \) and \(p_1 \).
- flow preservation: \(t_2 = \phi(t_1) \) implies
 - \(\phi^{\text{op}} : \cdot t_2 \rightarrow \cdot t_1 \) is a total function
 - \(\phi^{\text{op}} : t_2 \cdot \rightarrow t_1 \cdot \) is a total function
Example 1:

Example 2: the foldings \(f_N : U_N \rightarrow N \)
(recall: a folding is a total function)

Lemma
Net morphisms preserve runs, i.e. a firable sequence of \(N_1 \) is mapped by \(\phi \) into a firable sequence of \(N_2 \).
Example 1:

Example 2: the foldings $f_N : \mathcal{U}_N \rightarrow N$
(recall: a folding is a total function)

Lemma

Net morphisms preserve runs, i.e. a firable sequence of N_1 is mapped by ϕ into a firable sequence of N_2.
Previously on ASR...

Applications of FCPs
- Reachability analysis
- Deadlock detection

Distributed computations with BPs
- Morphism
- Combination of nets
- Combination of occurrence nets
- A central theorem
- Diagnosis
- Projection of a branching process
- Distributed diagnosis

Conclusion
Combination of nets

Product of PN (recall): \(N = N_1 \times N_2 = (P, T, \rightarrow, P_0, \lambda, \Lambda) \)

- **Places:** \(P = P_1 \cup P_2 \) *disjoint union*
- **Transitions:**

\[
T = \{(t_1, t_2) : \lambda_1(t_1) = \lambda_2(t_2)\} \quad \text{synchro. by shared labels}
\]
\[
\cup \{(t_1, \star) : \lambda_1(t_1) \in \Lambda_1 \setminus \Lambda_2\} \quad \text{private to } N_1
\]
\[
\cup \{(*, t_2) : \lambda_2(t_2) \in \Lambda_2 \setminus \Lambda_1\} \quad \text{private to } N_2
\]

- **Flow:** \(\rightarrow \) defined by

\[
(t_1, t_2)^* = t_1^* \cup t_2^*
\]
\[
(t_1, t_2)^* = t_1^* \cup t_2^*
\]
Where morphisms appear...

- The canonical mappings $\psi_i : N_1 \times N_2 \rightarrow N_i$ are morphisms.
- Products of nets satisfy a universal property (in the category theory sense).

\[\begin{array}{c}
\text{a} \\
\text{t}_2 \beta \\
\text{b} \\
\end{array} \\
\xrightarrow{\psi_1} \\
\begin{array}{c}
\text{a} \\
\text{t}_1 \alpha \\
\end{array}
\]

\[\begin{array}{c}
\text{a} \\
\text{t}_2 \beta \\
\text{b} \\
\end{array} \\
\xrightarrow{\psi_2} \\
\begin{array}{c}
\text{a} \\
\text{t}_2 \beta \\
\text{b} \\
\end{array} \\
\xrightarrow{(t_1, t_3)} \\
\begin{array}{c}
\text{c} \\
\text{t}_4 \gamma \\
\end{array} \\
\xrightarrow{\psi_2} \\
\begin{array}{c}
\text{c} \\
\text{t}_3 \alpha \\
\text{d} \\
\end{array} \\
\xrightarrow{t_4 \gamma} \\
\begin{array}{c}
\text{c} \\
\text{t}_4 \gamma \\
\end{array}
\]

Composition by “pullback” (also called fibered product)

- Corresponds to the case where \(\mathcal{N}_1, \mathcal{N}_2 \) have a common sub-net \(\mathcal{N}_0 \), by morphisms \(\phi_i : \mathcal{N}_i \rightarrow \mathcal{N}_0 \)
- Specific case of interest:
 \(\mathcal{N}_0 \) is an interface between \(\mathcal{N}_1 \) and \(\mathcal{N}_2 \) iff \(\Lambda_1 \cap \Lambda_2 \subseteq \Lambda_0 \)
- This means that all interactions between \(\mathcal{N}_1, \mathcal{N}_2 \) are captured by \(\mathcal{N}_0 \).

![Diagram of nets and transitions]

\(t_3 \rightarrow t_2 \rightarrow t_1 \rightarrow t_4 \) in \(\mathcal{N}_1 \)

\(\phi_1 \) and \(\phi_2 \) map \(\mathcal{N}_1 \) and \(\mathcal{N}_2 \) to \(\mathcal{N}_0 \) respectively.
Construction: \(\mathcal{N} = \mathcal{N}_1 \wedge \mathcal{N}_2 \) or simply \(\mathcal{N} = \mathcal{N}_1 \wedge \mathcal{N}_2 \) [assumes the morphisms \(\phi_i \) are functions on places]

- **Places:**
 \[
P = \{(p_1, p_2) : \phi_1(p_1) = \phi_2(p_2)\} \quad \text{shared places}
 \cup \{(p_1, \star) : p_1 \notin \text{Dom}(\phi_1)\} \quad \text{places private to} \ \mathcal{N}_1
 \cup \{(*, p_2) : p_2 \notin \text{Dom}(\phi_2)\} \quad \text{places private to} \ \mathcal{N}_2
 \]

- **Transitions:**
 \[
 T = \{(t_1, t_2) : \phi_1(t_1) = \phi_2(t_2)\} \quad \text{shared transitions}
 \cup \{(t_1, t_2) : \lambda_1(t_1) = \lambda_2(t_2), \ t_i \notin \text{Dom}(\phi_i)\} \quad \text{sync. outs.} \ \mathcal{N}_0
 \cup \{(t_1, \star) : \lambda_1(t_1) \in \Lambda_1 \setminus \Lambda_2\} \quad \text{private to} \ \mathcal{N}_1
 \cup \{(*, t_2) : \lambda_2(t_2) \in \Lambda_2 \setminus \Lambda_1\} \quad \text{private to} \ \mathcal{N}_2
 \]

- **Flow, etc.:** same as before
Example:

- corresponds to a product when N_0 is empty
- the canonical $\psi_i : N_1 \land N_2 \to N_i$ are morphisms
- the diagram is commutative: $\phi_1 \circ \psi_1 = \phi_2 \circ \psi_2$
- a universal property is attached to this construction as well
Previously on ASR...

Applications of FCPs
- Reachability analysis
- Deadlock detection

Distributed computations with BPs
- Morphism
- Combination of nets
- Combination of occurrence nets
- A central theorem
- Diagnosis
- Projection of a branching process
- Distributed diagnosis

Conclusion
Combination of occurrence nets

Product of occurrence nets:

- same as the product of nets...
 ...but must yield an occurrence net!
- $O_1 \times O_2$ is generally not an occurrence net
 (Exercise: build a counter-example)
- Definition:

 \[
 O_1 \times^O O_2 \triangleq \mathcal{U}(O_1 \times O_2)
 \]

- This formula allows to recycle the unfolding algorithm to compute products on ONs.
Algorithmic construction of $O = O_1 \times^O O_2$

- **Init**
 - $C = C_{1,0} \uplus C_{2,0}$, and $\psi_i : C \rightarrow C_i$ canonical projections
 - $E = \emptyset$, $\rightarrow = \emptyset$, ...

- **Repeat until stability**
 - connect a **shared event**
 - select co-set $X \subseteq C$ and events e_1, e_2 in E_1, E_2
 - s.t. $\lambda_1(e_1) = \lambda_2(e_2)$ and $\cdot e_i = \psi_i(e_i)$
 - add $e = (e_1, e_2)$ to E, with $\cdot e = X$
 - create conditions $X' = e^*$ in C, such that $\psi_i(X') = e_i^*$
 - connect a **private event** of O_1
 - select co-set $X \subseteq C$ and events $e_1 \in E_1$
 - s.t. $\lambda_1(e_1) \in \Lambda_1 \setminus \Lambda_2$ and $\cdot e_1 = \psi_1(e_1)$
 - add $e = (e_1, \star)$ to E, with $\cdot e = X$
 - create conditions $X' = e^*$ in C, such that $\psi_1(X') = e_1^*$
 - connect a **private event** of O_2 : symmetrical
Algorithmic construction of $O = O_1 \times^O O_2$

- **Init**
 - $C = C_{1,0} \uplus C_{2,0}$, and $\psi_i : C \rightarrow C_i$ canonical projections
 - $E = \emptyset$, $\rightarrow = \emptyset$, ...

- **Repeat until stability**
 - connect a shared event
 - select co-set $X \subseteq C$ and events e_1, e_2 in E_1, E_2
 s.t. $\lambda_1(e_1) = \lambda_2(e_2)$ and $\cdot e_i = \psi_i(e_i)$
 - add $e = (e_1, e_2)$ to E, with $\cdot e = X$
 - create conditions $X' = e^\ast$ in C, such that $\psi_i(X') = e_i^\ast$

 - connect a private event of O_1
 - select co-set $X \subseteq C$ and events $e_1 \in E_1$
 s.t. $\lambda_1(e_1) \in \Lambda_1 \setminus \Lambda_2$ and $\cdot e_1 = \psi_1(e_1)$
 - add $e = (e_1, \star)$ to E, with $\cdot e = X$
 - create conditions $X' = e^\ast$ in C, such that $\psi_1(X') = e_1^\ast$

 - connect a private event of O_2: symmetrical
Algorithmic construction of $O = O_1 \times^O O_2$

- **Init**
 - $C = C_{1,0} \uplus C_{2,0}$, and $\psi_i : C \to C_i$ canonical projections
 - $E = \emptyset$, $\rightarrow = \emptyset$, ...

- **Repeat until stability**
 - connect a **shared event**
 - select co-set $X \subseteq C$ and events e_1, e_2 in E_1, E_2
 - s.t. $\lambda_1(e_1) = \lambda_2(e_2)$ and $e_i = \psi_i(e_i)$
 - add $e = (e_1, e_2)$ to E, with $e = X$
 - create conditions $X' = e^*$ in C, such that $\psi_i(X') = e_i^*$

 - connect a **private event** of O_1
 - select co-set $X \subseteq C$ and events $e_1 \in E_1$
 - s.t. $\lambda_1(e_1) \in \Lambda_1 \setminus \Lambda_2$ and $e_1 = \psi_1(e_1)$
 - add $e = (e_1, \star)$ to E, with $e = X$
 - create conditions $X' = e^*$ in C, such that $\psi_1(X') = e_1^*$

 - connect a **private event** of O_2 : symmetrical
Example:
Example:
Example:
Combination of occurrence nets

Example:
Example:

Combination of occurrence nets
Combination of occurrence nets

Example:
Example:
Example:
Example:
Example:

Combination of occurrence nets
Example:
Combination of occurrence nets

Example:
Example:
Combination of occurrence nets

Pullback of BP:

- $O_1 \land^O O_2$ defined as $\mathcal{U}(O_1 \land O_2)$
- computable by a similar algorithm

Example:
1	Previously on ASR...
2	Applications of FCPs
	Reachability analysis
	Deadlock detection
3	Distributed computations with BPs
	Morphism
	Combination of nets
	Combination of occurrence nets
	A central theorem
	Diagnosis
	Projection of a branching process
	Distributed diagnosis
4	Conclusion
Theorem (product is preserved by unfolding)

Let $\mathcal{N} = \times_{i \in I} \mathcal{N}_i$, then $\mathcal{U}_\mathcal{N} = \times_{i \in I}^{\mathcal{O}} \mathcal{U}_{\mathcal{N}_i}$.

- as for languages, where $L(\times_i \mathcal{A}_i) = \times_i^L L(\mathcal{A}_i)$...
- in the same way, combinations by pullback are preserved by unfolding
Example:
Distributed computations with branching processes

1. Previously on ASR...

2. Applications of FCPs
 - Reachability analysis
 - Deadlock detection

3. Distributed computations with BPs
 - Morphism
 - Combination of nets
 - Combination of occurrence nets
 - A central theorem
 - Diagnosis
 - Projection of a branching process
 - Distributed diagnosis

4. Conclusion
Centralized diagnosis

- **observation**: let $\Lambda_o \subseteq \Lambda$ be the set of observable labels
- a hidden run κ_h of \mathcal{N} is produced
- one observes only $\lambda(\kappa_h) \cap \Lambda_o$
- these labels are collected either as a sequence or as a partial order Obs (i.e. an occurrence net)
Definition

\textbf{Diagnosis} = \textit{the set of runs of } \mathcal{N} \textit{ that explain the observations.}

\textit{Obtained from } \mathcal{D} = \mathcal{U}_{\mathcal{N}} \times^{O} \text{Obs} = \mathcal{U}(\mathcal{N} \times \text{Obs}).

- the product synchronizes possible runs of \mathcal{N} with observations \text{Obs}
- the hidden run \kappa_h is present in \mathcal{D}
- Caution: not all configurations of \mathcal{D} explain entirely observations \text{Obs}
- they may only explain a prefix of it
Distributed computations with branching processes

1. Previously on ASR...

2. Applications of FCPs
 - Reachability analysis
 - Deadlock detection

3. Distributed computations with BPs
 - Morphism
 - Combination of nets
 - Combination of occurrence nets
 - A central theorem
 - Diagnosis
 - Projection of a branching process
 - Distributed diagnosis

4. Conclusion
Projection of a branching process

Projection of BP:

- let $O \subseteq \mathcal{U}_N$ and $N = \times_{i \in I} N_i$
- from $\psi_i : \mathcal{U}_N \rightarrow \mathcal{U}_{N_i}$ we can define the projection of O on N_i

$$\Pi_i O \triangleq \psi_i(O) \subseteq \mathcal{U}_{N_i}$$

Example:
Projection of a branching process

Projection of BP:

- let $O \subseteq \mathcal{U}_N$ and $N = \times_{i \in I} N_i$
- from $\psi_i : \mathcal{U}_N \rightarrow \mathcal{U}_{N_i}$ we can define the projection of O on N_i
 \[
 \Pi_i O \triangleq \psi_i(O) \subseteq \mathcal{U}_{N_i}
 \]

Example:
Projection of BP:

Let $O \subseteq U_N$ and $N = \times_{i \in I} N_i$

From $\psi_i : U_N \rightarrow U_{N_i}$ we can define the projection of O on N_i

$$\Pi_i O \triangleq \psi_i(O) \subseteq U_{N_i}$$

Example:
Projection of a branching process

- projection = restriction (to desired nodes) + trimming
- projections may lose some conflict or causality relations and make them look as fake concurrency
Projection of a branching process

Minimal product covering

Proposition

Assume $N = \times_{i \in I} N_i$, then

$$U_N = \times_{i \in I} O_{U_{N_i}} = \times_{i \in I} \Pi_i(U_N)$$

where $\Pi_i(U_N) \subseteq U_{N_i}$ is the minimal factor of U_N in component N_i.

- configurations κ_i of $\Pi_i(U_N)$ represent runs of N_i that remain possible in N.
- minimality: taking a strict prefix $O_i \subseteq \Pi_i(U_N)$ prevents reconstructing the whole U_N.
- the same result holds with pullbacks instead of products.

Can we compute the $\Pi_i(U_N)$ without computing first U_N?
Projection of a branching process

Minimal product covering

Proposition

Assume $\mathcal{N} = \times_{i \in I} \mathcal{N}_i$, then

$$\mathcal{U}_\mathcal{N} = \times_{i \in I} \mathcal{U}_{\mathcal{N}_i} = \times_{i \in I} \Pi_i(\mathcal{U}_\mathcal{N})$$

where $\Pi_i(\mathcal{U}_\mathcal{N}) \subseteq \mathcal{U}_{\mathcal{N}_i}$ is the **minimal factor** of $\mathcal{U}_\mathcal{N}$ in component \mathcal{N}_i.

- configurations κ_i of $\Pi_i(\mathcal{U}_\mathcal{N})$ represent runs of \mathcal{N}_i that remain possible in \mathcal{N}
- minimality: taking a strict prefix $O_i \supseteq \Pi_i(\mathcal{U}_\mathcal{N})$ prevents reconstructing the whole $\mathcal{U}_\mathcal{N}$
- the same result holds with pullbacks instead of products

Can we compute the $\Pi_i(\mathcal{U}_\mathcal{N})$ without computing first $\mathcal{U}_\mathcal{N}$?
Previously on ASR...

Applications of FCPs
- Reachability analysis
- Deadlock detection

Distributed computations with BPs
- Morphism
- Combination of nets
- Combination of occurrence nets
- A central theorem
- Diagnosis
- Projection of a branching process
- Distributed diagnosis

Conclusion
Key to message passing algorithms

Theorem

Let $N = N_1 \land N_2$, with N_0 an interface automaton between N_1 and N_2. Let $O = O_1 \land^O O_2$ be a BP of N. Then

$$\Pi_1(O) = O_1 \land^O \Pi_0(O_2)$$
Meaning of these equations

\[\Pi_1(O) = O_1 \land^O \Pi_0(O_2) \]

- \(\Pi_0(O_2) \) is a message sent from \(N_2 \) to \(N_1 \) about its behaviors on the interface net \(N_0 \) (and symmetrically)
- the computations involve small and local BP, \(O \) never appears
- this message-passing principle extends to networks of components
Distributed diagnosis

Assumptions

- \(\mathcal{N} = \mathcal{N}_1 \land \mathcal{N}_2 \), interface net \(\mathcal{N}_0 \)
- visible labels \(\Lambda_{o,i} \subseteq \Lambda_i \) in each \(\mathcal{N}_i \)
- a hidden run \(\kappa_h \) is performed by \(\mathcal{N} \)
- \(Obs_i = \lambda_i(\kappa_h) \cap \Lambda_{o,i} \)

represents the observations collected on component \(\mathcal{N}_i \)
Problem

- compute the projection on each N_i of the global explanations
 \[D = U_N \times^O Obs \] where \[Obs = Obs_1 \times^O Obs_2 \]
- recover runs of each component that contribute to explaining all observations (local views of the global diagnosis)

Formally

\[
D = (U_{N_1} \times^O Obs_1) \land^O (U_{N_2} \times^O Obs_2) \\
D_1 = \Pi_1(D) \\
D_1 = (U_{N_1} \times^O Obs_1) \land^O \Pi_0(U_{N_2} \times^O Obs_2) \\
D = D_1 \land^O D_2
\]
Problem

- compute the projection on each N_i of the global explanations
 \[D = \mathcal{U}_N \times^O \text{Obs} \quad \text{where} \quad \text{Obs} = \text{Obs}_1 \times^O \text{Obs}_2 \]
- recover runs of each component that contribute to explaining all observations (local views of the global diagnosis)

Formally

\[
\begin{align*}
D &= (\mathcal{U}_{N_1} \times^O \text{Obs}_1) \wedge^O (\mathcal{U}_{N_2} \times^O \text{Obs}_2) \\
D_1 &= \Pi_1(D) \\
&= (\mathcal{U}_{N_1} \times^O \text{Obs}_1) \wedge^O \Pi_0(\mathcal{U}_{N_2} \times^O \text{Obs}_2) \\
D &= D_1 \wedge^O D_2
\end{align*}
\]
Example:
Example:
Example:
Example:
Example:
Example:
Example:
Outline

1. Previously on ASR...
2. Applications of FCPs
 - Reachability analysis
 - Deadlock detection
3. Distributed computations with BPs
 - Morphism
 - Combination of nets
 - Combination of occurrence nets
 - A central theorem
 - Diagnosis
 - Projection of a branching process
 - Distributed diagnosis
4. Conclusion
Conclusion & Perspectives

The essential:
- concurrency = essential feature of distributed systems
- runs as partial orders \Rightarrow less runs!
- best representation of runs for weakly coupled components
- distributed computations for verification purposes \Rightarrow less work!

Some open issues:
1. What about quantitative aspects (time, cost, probabilities) ?
2. Approximate distributed algorithms to deal with (very) large systems.
3. Distributed systems with dynamic structures...
Conclusion & Perspectives

The essential:
- concurrency = essential feature of distributed systems
- runs as partial orders ⇒ less runs!
- best representation of runs for weakly coupled components
- distributed computations for verification purposes ⇒ less work!

Some open issues:
1. What about quantitative aspects (time, cost, probabilities)?
2. Approximate distributed algorithms to deal with (very) large systems.
3. Distributed systems with dynamic structures...