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Abstract. As an alternative to vector representations, a recent trend
in image classification suggests to integrate additional structural infor-
mation in the description of images in order to enhance classification
accuracy. Rather than being represented in a p-dimensional space, im-
ages can typically be encoded in the form of strings, trees or graphs and
are usually compared either by computing suited metrics such as the
(string or tree)-edit distance, or by testing subgraph isomorphism. In
this paper, we propose a new way for representing images in the form of
strings whose symbols are weighted according to a TF-IDF-based weight-
ing scheme, inspired from information retrieval. To be able to handle
such real-valued weights, we first introduce a new weighted string edit
distance that keeps the properties of a distance. In particular, we prove
that the triangle inequality is preserved which allows the computation of
the edit distance in quadratic time by dynamic programming. We show
on an image classification task that our new weighted edit distance not
only significantly outperforms the standard edit distance but also seems
very competitive in comparison with standard histogram distances-based
approaches.

1 Introduction

Classification of images is of considerable interest in many image processing
and computer vision applications. A common approach to represent the image
content is to use histograms of color, texture and edge direction features (1; 2).
Although they are computationally efficient, such histograms only use global
information and so provide a crude representation of the image content. The
current trend in image classification is towards the use of the bag-of-visual-words

model that comes from the bag-of-words representation of text documents (3).
This model requires four basic stages: (i) keypoints detection (ii) description,
(iii) codebook creation and (iv) image representation. Keypoints refer to small
regions of interest in the image. They can be sampled densely (4), randomly (5) or
extracted with various detectors (6). Once extracted, keypoints are characterized

⋆⋆ This work is part of the ongoing ANR SATTIC 07-1 184534 research project and
the Pascal2 Network of Excellence.
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using a local descriptor, the most widely used being SIFT (7). A visual codebook
is then learned over the collection of descriptors of a training set typically by
using the k-means algorithm (8). Each cluster gives a visual word and each image
can then be mapped into this new space of visual words leading to a bag-of-

visual-words. Each word can be weighted either according to its frequency in the
image, or using more sophisticated techniques such as mutual-information-based
binarization (9) or TF-IDF-based weighting (Term Frequency-Inverse Document
Frequency) (10; 11). Whatever the weighting scheme, two images are usually
compared in a classification task by computing either a dot product or a given
distance (e.g. L1, L2, L∞) between their corresponding weighted feature vectors
in the considered vector space.

Although working in a vector space brings many advantages, it does not allow
the integration of additional structural information or topological relationships
between the objects of the images. To overcome this drawback, an alternative
to the vector representation-based approaches consists in representing images in
the form of structured data such as strings, trees, or graphs. For instance, in
order to code the topological relationship of so-called iconic objects in an image,
the 2D string representation (12; 13; 14) uses the relative location of the visual
words in the original 2D-space to build a graph of similarities. The comparison
between two images coded in the form of strings is then achieved by searching
for the largest common subsequence that satisfies a clique in that graph. In order
to represent binary objects, Freeman (15) codes the boundaries of such objects
in the form of sequences of symbols. Extending this principle in (16), Daliri
proposes to map each contour of the objects into a string whose components
are pairs of symbols, the first one representing the angle computed between the
contour point and its neighbors and the other describing the normalized distance
from the center of mass.

In the previous two approaches, the comparison between two images is achieved
by computing the edit distance (17) between the corresponding string represen-
tations. Let us recall that the standard edit distance between two structured
data x and y is defined as the less costly set of edits needed to transform x into
y, with the allowable edit operations being insertion, deletion, or substitution of
symbols. If a usual way to use the edit distance is to assign a unit cost to each
of the edit operations, many efforts have been made during the past few years
to automatically learn more performing edit costs. In this context, a recent line
of research has investigated the ways to model those costs in the form of the
parameters of probabilistic state machines, such as pair-Hidden Markov models,
stochastic transducers, or probabilistic automata (18; 19; 20; 21). The resulting
stochastic edit distance (usually learned using an EM-based approach) can either
be used in more performing neighborhood-based classifiers, or wrapped into edit

kernels for improving Support Vector Machines (22).

While all the previously cited works mainly dealt with the improvement of
weighted edit distances where the weights concern the edit operations between
two symbols, we can note that no effort has been really made to develop new
weighted edit distances where the weights are assigned to the symbols them-
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selves. And yet, such distances would allow us to take advantage of both vector
and structured approaches. The objective of this paper is to fill this gap by
presenting a new weighted symbols-based edit distance (Section 2). By allowing
each symbol to be real-valued, this opens the door to new image representations.
In this context, we propose a new way to encode images in the form of strings
whose symbols are real-valued according to a TF-IDF weighting scheme (Section
3). A series of experiments is carried out in Section 4 that shows that our new
weighted edit distance not only significantly outperforms the standard edit dis-
tance but also seems very competitive in comparison with standard histogram
distances-based approaches. Before concluding, we propose an original way to
automatically learn the costs of the edit operations, by taking into account the
number of edges separating the visual words in a minimum spanning tree built
on the visual codebook. Plugged in our weighted edit distance, we show that
these edit costs allow us to improve the classification accuracy.

2 Weighted Edit Distance

In its basic form, the Levenshtein distance (or edit distance (17)) between two
strings x(T ) and y(V ) of length T and V is defined as the minimum number
of edits needed to transform x(T ) into y(V ), with the allowable edit operations
being insertion, deletion, or substitution of a single character. Using the dynamic
programming Algorithm 1, the edit distance D(T, V ) is computable in O(T ×V )
and boils down to filling in a (T + 1) × (V + 1) matrix.

Rather than simply counting the number of required edit operations to
change x(T ) into y(V ), the additive term 1 in the expressions d1, d2 and d3

in Algorithm 1 can be replaced by the value of an edit cost function c(xr, yk)
that takes into account the nature of the symbols xr, yk ∈ Σ ∪ {λ} involved in
the edit operation, where Σ is the alphabet and λ the empty symbol. In this
case, the edit distance between x(T ) and y(V ) becomes the minimum cost of all
sequences of edit operations which transform x(T ) into y(V ). As mentioned in
(17), D(T, V ) remains a metric if the edit cost function c(xr, yk) satisfies the two
properties of positive definiteness and symmetry. It is computable in O(T × V )
if the triangle inequality is also fulfilled.

Rather than allowing the use of weights on each edit operation (as usually
done in the literature), we propose in this section to authorize the management
of weighted symbols during the calculation of the edit distance. By this way, an
edit operation becomes a transformation of a weighed symbol into another one.
This enables us to take into account the TF-IDF of each symbol of a string-
structured image as a weight, and to compute the edit distance between two
images represented with such strings of weighted symbols. We propose in the
following an edit cost function that is able to manage at once two symbols and
their corresponding weights. Henceforth, a string x(T ) will be composed of T

weighted symbols x1 . . .xT where ∀i = 1..T,xi = (xi, wxi
) is made of a symbol

xi ∈ Σ and a weight wxi
∈ R

∗
+.
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Input: Two strings x(T ) and y(V )
Output: Edit Distance D(T, V ) between x(T ) and y(V )
D(0, 0)← 0;1

for r=1 to T do2

D(r, 0)← D(r − 1, 0) + 1;3

end4

for k=1 to V do5

D(0, k)← D(0, k − 1) + 1;6

end7

for r=1 to T do8

for k=1 to V do9

if (xr = yk) then10

D(r, k) = D(r − 1, k − 1);11

end12

else13

d1 ← D(r − 1, k − 1) + 1;14

d2 ← D(r − 1, k) + 1;15

d3 ← D(r, k − 1) + 1;16

D(r, k)← min(d1, d2, d3);17

end18

end19

end20

Return D(T, V );21

Algorithm 1: Edit distance algorithm that returns the number of edit oper-
ations required to change a string x(T ) into another y(V ).

Definition 1. The edit cost function c : ((Σ×R
∗
+)∪ ({λ}×{0}))× ((Σ×R

∗
+)∪

({λ} × {0})) → R+ is defined as follows1:

Let the symbols a, b and the positive reals n,m be the components of two weighted

symbols a = (a, n) and b = (b,m)

c(a,b) =

{

max(n,m) if a 6= b

|n − m| otherwise

Plugging this function in an edit distance algorithm, we obtain the Algorithm
2. The underlying idea of the function c is graphically described in Figure 1.
The edit cost between two weighted symbols (a, n) and (b,m) is close to the one
computed between two strings where a and b are “virtually” repeated n and m

times respectively. An alternative to our cost function would have consisted in
actually repeating each symbol according to its corresponding weight. Despite
the fact that this would quadratically increase (in the average of the weights)
the algorithmic complexity of the edit distance calculation, this would lead to a
loss of information by discarding the decimal part of the weight. We will show
this behavior in the experimental part of this paper.

1 Note that the weight of the empty string λ is always equal to 0 such that λ = (λ, 0).
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Input: Two strings x(T ) and y(V )
Output: Edit Distance D(T, V ) between x(T ) and y(V )
D(0, 0)← 0;1

for r=1 to T do2

D(r, 0)← D(r − 1, 0) + c(xr, λ);3

end4

for k=1 to V do5

D(0, k)← D(0, k − 1) + c(λ,yk);6

end7

for r=1 to T do8

for k=1 to V do9

d1 ← D(r − 1, k − 1) + c(xr,yk);10

d2 ← D(r − 1, k) + c(xr, λ);11

d3 ← D(r, k − 1) + c(λ,yk);12

D(r, k)← min(d1, d2, d3);13

end14

end15

Return D(T, V );16

Algorithm 2: Weighted edit distance algorithm that returns the minimum
cost required to change a weighted string x(T ) into another y(V ).

Proposition 1. Given the edit cost function c of Definition 1, Algorithm 2 is a

generalization of Algorithm 1.

Proof. Algorithm 2 generalizes Algorithm 1 if, for two unweighted strings, they
both return the same edit distance. Two symbols a = (a, n) and b = (b,m) are
unweighted if n = m = 1. In this case, c(a,b) returns

– either |n − m| = 0 if a = b (and so lines 10 and 11 of Algorithm 1 and line
10 of Algorithm 2 are the same),

– or max(n,m) = 1 if a 6= b (and so lines 14, 15 and 16 of Algorithm 1 are the
same as lines 10, 11 and 12 of Algorithm 2).

Therefore, the two algorithms return the same edit distance for two unweighted
strings.

Proposition 2. Given the edit cost function c, Algorithm 2 returns a true dis-

tance function between x(T ) and y(V ) computable in O(|T | × |V |).

Proof. The edit distance computed from an edit cost function c is a metric if c

fulfills the following two conditions, ∀x,y, z ∈ (Σ × R
∗
+) ∪ ({λ} × {0}):

1. c(x,y) = 0 if and only if x = y (associated with the fact that wx ∈ R
∗
+,

this defines the positive definiteness). This is true because c(x,y) = 0 only
if |wx − wy| = 0, i.e. when x = y and wx = wy, so when x = y. On the
other hand, this can not occur when x 6= y because, except for λ, the weight
of a symbol belongs to R

∗
+, so max(wx, wy) cannot be equal to 0 in this case.
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Fig. 1. Intuitive idea of the calculation of the edit distance between two weighted
symbols.

2. c(x,y) = c(y,x) (symmetry). This is always true because the two functions
max(wx, wy) and |wx − wy| fulfill the symmetry condition.

Moreover, the edit distance is computable in O(T × V ) by the Algorithm 2 if c

also satisfies the triangle inequality c(x,y) ≤ c(x, z) + c(z,y) (see (17)). Since
the output of c depends on the nature of the input symbols, let us study the
different possible configurations:

1. If the symbols x, y, z are the same, the function c always returns |n − m|,
that is the Manhattan function. Therefore, the property holds because the
Manhattan function is a metric (d1).

2. If the symbols x, y, z are different, the function c always returns max(n,m),
that is a specific case of the Tchebychev function. Therefore, the property
holds because the Tchebychev function is a metric (d∞).

3. If x = y and x 6= z, one must satisfy max(wx, wz)+max(wz, wy) ≥ |wx−wy|.
This holds because max(wx, wz) + max(wz, wy) ≥ max(wx, wy) (cf case 2)
and max(wx, wy) ≥ |wx − wy|, ∀wx, wy ∈ R

∗
+.

4. If y = z and x 6= y, one must satisfy max(wx, wz)+|wz−wy| ≥ max(wx, wy).
6 subcases must be studied:
– If wz ∈ [wx, wy] we must prove that wz + wy − wz ≥ wy ⇒ wy ≥ wy,

that is always true.
– If wz ≤ wx ≤ wy we must prove that wx +(wy−wz) ≥ wy, that is always

true because wx − wz ≥ 0.
– If wx ≤ wy ≤ wz we must prove that wz + wz − wy ≥ wy. Since wz +

wz − wy = 2wz − wy ≥ 2wz − wz = wz ≥ wy, the property holds.
– If wz ∈ [wy, wx] we must prove that wx +(wz −wy) ≥ wx, that is always

true because wz − wy ≥ 0.
– If wz ≤ wy ≤ wx we must prove that wx +(wy−wz) ≥ wx, that is always

true because wy − wz ≥ 0.
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– If wy ≤ wx ≤ wz we must prove that wz + wz − wy ≥ wx. Since
wz + wz − wy = 2wz − wy ≥ 2wz − wz = wz ≥ wx, the property
holds.

5. If x = z and x 6= y, one must satisfy |wx−wz|+max(wz, wy) ≥ max(wx, wy).
By symmetry, this case is proved as for case 4.

3 Image Representation as a String of Weighted Symbols

As seen in the introduction, the representation of an image as a bag-of-visual-

words has become the reference method in the field of image classification, in-
spired by the bag-of-words representation in text. Given a vocabulary defined
by V = {v1, . . . , vj , . . . , v|V|}, an image ai is represented as a vector of weights
ui = (ui,1, . . . , ui,j , . . . , ui,|V|). Each component ui,j of ui gives the weight of the
visual word vj in the image ai.

Unlike a text document, an image does not have a natural visual vocabulary.
In the bag-of-visual-words approach, visual words represent small patches with
a characteristic shape, texture or color that often appear in a reference image
collection. Consequently, a visual vocabulary depends on the reference image
collection and on the three following elements: the patch detector, the local de-
scriptor and the patch classification method. The way of calculating ui,j weights
also plays an important role in the image representation. The natural weighting
is the number of occurrences of a visual word vj in the image. This representa-
tion as an occurrence histogram is not the most efficient one and other strategies
have been proposed (9). We choose to use a TF-IDF weighting scheme which has
been shown to be relevant for image classification (10; 11). The method consists
in multiplying a term tfi,j giving the representativeness of word vj in image ai

to a term idfj giving the discriminative power of this word in the reference col-
lection. Thus, the weight ui,j = tfi,jidfj is high if the word appears frequently
in the image and rarely in the reference collection.

Based on this vector bag-of-visual-words representation, we propose a new
representation of an image as a string of weighted symbols. We first expose this
new representation. Then we present a way to implement it.

3.1 The Proposed Representation

The principle of our representation is to consider the visual words as symbols
whose weight is equal to the TF-IDF weight used in the vector representation.
The question is how to structure the symbols as an ordered string.

Let us first note that visual words with zero TF-IDF weight are not taken into
account in the string construction. Indeed, this happens when the term is not
present in the image or when it appears in most of the documents which means
it is not discriminative. This is consistent with the weighted distance previously
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defined which admits only one zero weighted symbol (the empty symbol λ).
Then, the string associated with an image will have a length T equal to the
number of visual words appearing at least once in this image.

Let us come to the question of symbol order which provides structural infor-
mation and so can enhance the image representation. For that purpose, we must
choose an order that takes into account visual words characteristics and possibly
their distribution in the image. This is a difficult choice because of the high vari-
ability of the visual content of an image: two images of similar visual content can
have different visual words spatial distributions. To circumvent this difficulty, we
propose to use only the global characteristics of the visual vocabulary. For exam-
ple, we can use the principle that if some visual words (i.e. symbols) are similar,
it may be interesting to allow substitutions between them in the string. Such
substitutions may occur if the corresponding symbols are close in the strings.
Thus, the chosen order must group similar visual words. We finally propose to
sort the symbols in descending order of their IDF discriminative power. The
most discriminative symbols (those that are rare in the collection) will be at the
beginning of the string while the less discriminative ones (those that are most
common in the collection) will be at the end. This choice is based on the (quite
likely) assumption that two similar symbols have a similar IDF discriminative
power. Note that such an order is global to all strings since the discriminative
power is defined from the entire collection.

Thus, the string x1 . . .xr . . .xT associated with a given image ai is composed
of T symbols xr = (xr, wxr

) with:







j = ordidf (r)
xr = vj

wxr
= ui,j

(1)

where ordidf (r) represents the position j of symbol xr in the original vector ui.
A summary of the proposed representation is given in Figure 2.

3.2 A Practical Implementation

In practice, to obtain the string associated with an image, we must choose the
three different elements required to build the visual vocabulary (the patch detec-
tor, the local descriptor and the patch classification method) plus the TF-IDF
weighting. Of course these choices depend on the nature of the images and the
task to achieve. The four chosen elements are presented below.

The patch detector. We extract patches sampled in a 10× 10 cells regular
grid so as to extract 100 patches per image. This dense sampling was found to be
more efficient than salient point detection for image classification, since salient
points do not cover all the image spatial domain and lead to an incomplete
description (4; 9). Moreover, dense sampling may produce a very large number
of features.

The local descriptor. We choose to describe patches using a color descrip-
tor. We transform the RGB components of the patch into three normalized
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Fig. 2. Image representation as a string of weighted symbols.

components defined as R
R+G+B

, G
R+G+B

and R+G+B
3×255

. This color space presents
two main advantages. First, it makes the first two variables independent of the
third one representing the luminance. Second, it is very easy to compute. From
the normalized components of a patch, we compute 6 features equal to the mean
and the standard deviation of the three values.

The patch classification method. We learn a visual vocabulary V apply-
ing a k-means algorithm over all the computed patches on training images. We
get k clusters of features whose centers represent k visual words, k being the
size of the visual vocabulary. Local patches of images are mapped to their clos-
est visual words using the euclidean distance. In our experiments, we extracted
roughly 100000 patches and worked with different vocabulary sizes.

The TF-IDF weighting. Several formulations exist to calculate tfi,j and
idfj , but the okapi one proposed by Robertson et al.(23) is often reported su-
perior to others in classification problems. We apply a modified version imple-
mented in the lemur software2 proposed by (24):

tfi,j =
k1ni,j

ni,j + k2(1 − b + b
|ai|
aavg

)

where ni,j is the occurrence of the word vj in the image ai, |ai| the number
of visual words used to represent image ai, aavg the average number of visual
words per image in the collection A. k1, k2 and b are three constants.

idfj = log
|A| − |{ai|vj ∈ ai}| + 0.5

|{ai|vj ∈ ai}| + 0.5
.

A main disadvantage of this formula is that it can be possibly negative, which
has been discussed in (25). This happens when a term appears in more than half
of the documents. Thus, we choose to floor the IDF values to 0.

2 http://www.lemurproject.com
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4 Experiments

4.1 Experimental Protocol

To assess the relevance of the new edit distance computed with our TF-IDF-
based weighting scheme, we carried out a series of experiments in image classifica-
tion. The reference image database is the SIMPLIcity collection3 (26), containing
1000 images extracted from the COREL database. Each image (384×256 pixels)
belongs to one of 10 meaningful categories: African people, beaches, buildings,

buses, dinosaurs, elephants, flowers, food, horses and mountains (see Figure 3).
Note that the different categories are equally distributed, each of them composed
of 100 images.

Fig. 3. Examples extracted from the SIMPLIcity collection.

Classification was performed using the 1-Nearest Neighbor (1-NN) rule. We
conducted a 10-fold cross-validation to estimate the classifier accuracy. In order
to evaluate our weighted edit distance (WED), we divided the experiments into
two parts. The first series of experiments aims to analyze how the WED behaves
compared to the standard edit distance (ED) and how weighting the symbols
contributes to improve the image classification results. The second set of exper-
iments compares the WED with the common metrics usually applied on feature
vectors, i.e. the normalized dot product and different Minkowski distances such
as the L1, L2, and L∞. In this case, images are no more represented in the form
of strings but rather by (unordered) vectors whose components are the TF-IDF
weights of the visual vocabulary. To assess the impact of the visual vocabulary
size, we carried out the experiments with an increasing number of visual words,
from 20 to 80.

4.2 Weighted Edit Distance versus Standard Edit Distance

To compare the WED with the standard ED, we performed two series of exper-
iments. First, the ED was applied on the same strings of symbols as for WED
without considering their corresponding weights. Figure 4 clearly shows that our

3 http://wang.ist.psu.edu/∼jwang/test1.zip
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WED outperforms the classic ED. Whatever the alphabet size, the difference is
statistically significant using a Student paired-t test (note that the highest p-
value is equal to 0.02 for an alphabet size of 60 symbols). These results are not so
surprising since by discarding the weights, we removed a part of the information
about the symbols. Even if the standard ED is not able to deal with such real-
valued weights, a fairer comparison would consist in converting each weighted
symbol into a substring where the considered symbol would be repeated a num-
ber of times corresponding to its weight. But since weights are real valued, we
set the number of repetitions to the integer value of the corresponding weight.
As we can see on Figure 4, once again, WED performs better than the ED with
repetitions.

Moreover, it is important to note that repeating the symbols generates larger
string sizes that leads to a dramatic increase of the algorithmic complexity of the
edit distance calculation. Indeed, the complexity becomes O(⌊wx⌋×⌊wy⌋×T×V ),
where T and V still denote the lengths of the original strings x(T ) and y(V ),
⌊wx⌋ and ⌊wy⌋ being the average of the integer values of the weights.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 20  30  40  50  60  70  80

A
cc

ur
ac

y

Alphabet Size

WED
ED with repetitions

ED

Fig. 4. Comparison between WED and the standard edit distance, computed either
omitting the real weights (ED) or by repeating the symbols according to their corre-
sponding weights (ED with repetitions).

4.3 Weighted Edit Distance versus Vector Space Metrics

Figure 5 compares the performance of the WED with that of classical vector
space metrics, i.e. Minkowski distances (L1, L2, L∞) and the normalized dot



12 Barat, Ducottet, Fromont, Legrand and Sebban

product. Several remarks can be made. First, WED is very efficient compared
to the other metrics, particularly for small vocabularies. Indeed, it provides the
best global behavior by returning the highest classification accuracy for vocabu-
laries smaller than 60, and remaining competitive after. We can also note that for
small vocabulary sizes WED significantly outperforms the normalized dot prod-
uct, which is most often used to measure similarities between bags-of-words.
Second, we can observe that the L1 returns the closest results to WED ones.
This behavior can be easily explained by the fact that when symbols are ordered
(that is the case in our string-based representation), the L1 is equivalent to the
edit distance if the substitutions between two different symbols are not allowed.
Therefore, the difference between the two curves WED and L1 directly comes
from the possibility to substitute symbols in the structured strings.

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 20  30  40  50  60  70  80
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cc

ur
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ED
L∞

L1

L2

Fig. 5. Comparison between WED, the normalized dot product and some Minkowski
metrics.

4.4 Plugging Learned Edit Costs in the WED

So far, we mainly concentrated our efforts to take into account real-valued sym-
bols in a new weighted edit distance. In this context, we paid little attention
to the cost of the edit operations (insertion, deletion and substitution) that
were set to 1 for all the previous experiments. However, as we explained in the
introduction of this paper, there exists a huge literature about how to learn
those edit costs often in the form of the parameters of stochastic state machines
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(18; 19; 20; 21; 27). The main drawback of these probabilistic approaches is
that the returned parameters “only” satisfy constraints of statistical distribu-
tion, and so often do not fulfill the properties of a distance (the symmetry and
the triangle inequality are often not ensured). Therefore, the resulting models
provide a learned stochastic edit similarity rather than a true edit distance. To
keep a distance function and also to allow the algorithm to compute the WED
in quadratic time, we propose in the following a simple solution to determine
efficient edit costs.

As explained in Section 3, the visual symbols used for the string compari-
son correspond to the centers of the clusters computed by a k-means algorithm.
These centers are described by some coordinates in a 6-dimensional color space.
Intuitively, it means that two centers are close in this space if their corresponding
colors are close. When comparing (with an edit distance) two strings, it seems
more relevant to favor substitutions of such symbols. This means that the sub-
stitution cost should vary according to the distance between one symbol and
another.

To represent these distances, we decided to compute a Minimum Spanning
Tree (MST) between the symbols (i.e. the center of the clusters) in the 6D space.
We considered the complete simple undirected graph G = (V, E, γ) where V is
the set of visual words (vertices), E is the set of all edges in G and γ : e ∈ E → R

is a function which assigns a weight to each edge of the graph. We considered here
that γ(v1, v2) = L2(v1, v2) where L2(v1, v2) is the Euclidean distance between
the visual words v1 and v2. Let us recall that a spanning tree of G is a subgraph
of G (a tree) which connects all the vertices together. A minimum spanning tree
is a spanning tree with weight (the sum of the weights of all the edges in the
tree) less than or equal to the weight of every other spanning tree.

To set the cost of the substitution between two given symbols xr and yk,
noted σ(xr, yk), we used the number of edges between xr and yk in the MST.
The cost of the insertion and deletion operations is left to 1. To be integrated into
the edit distance calculation, σ(xr, yk) is just multiplied to the edit cost function
c(xr,yk) in line 10 of Algorithm 2. To ensure that this extended version of WED
remains a true distance computable in quadratic time, we must prove that the
substitution cost function σ provided by the MST is also a distance.

Proposition 3. The substitution cost function σ is a metric.

Proof. Let us prove the three properties of a distance:

– Since the MST is an undirected graph, σ(x, y) = σ(y, x), and so the symme-

try property holds.
– If x 6= y, by construction the number of edge in the MST between x and y is

at least equal to 1. On the other hand, if x = y then σ(x, y) = 0. Therefore,
the positive definiteness holds.

– Since σ(x, y) is associated to a path of the MST, this path is minimal. There-
fore, σ(x, y) ≤ σ(x, z) + σ(z, y) and so the triangle inequality holds.
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The results of the classification task using the cost function σ in our WED are
given in Figure 6. The figure shows that using these substitution costs instead
of the naive ones used in the previous section allows us to always improve the
classification accuracy and to increase the difference with the L1 distance, in
favor of WED.
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Fig. 6. Effect of the MST-based substitution costs on the performance of WED.

5 Conclusion

In this paper, we have presented a new string edit distance in which symbols
are allowed to be weighted. This metric opens the door to a better use of bag-

of-visual-words-based image representations which are often constrained to be
compared by vector space metrics. By organizing the visual words in the form
of a string, it allows us to take into account additional structural information in
the description of images. In this paper, we showed that our new edit distance
is very competitive with the state of the art vector space metrics on an image
classification task when the symbols are weighted by a TF-IDF measure inspired
from information retrieval. We also proposed an extension of our approach by
automatically determining the substitution costs from a minimum spannig tree
built on the alphabet of visual-words. Even if we used our weighted distance
with a nearest neighbor classifier, note that it can be easily integrated in edit

kernels for which there exists a huge literature (see (22) for instance). Moreover,
we claim that this distance could be applied to other fields (for example in
molecular biology) where one might want to ease or make more difficult some
operations on some specific parts of the string or of more complex structured
data (e.g. trees or graphs). To be able to manage these more general cases, our
approach should be extended to the tree or graph edit distances.
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