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“When you’re fundraising, it’s AI. When you’re hiring, it’s ML. When
you’re implementing, it’s logistic regression.”
—everyone on Twitter ever



What is deep learning?
= process of learning the parameters of 
composed (complex) functions

– NN can be deep (many layers)
– CNN can be deep (see soon)
– Other models are also deep (hierachical 

models, etc.)

« any » composition of differentiable functions 
can be optimized with gradient descent (è
« deep » makes sens for NN)
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Turing Award 2018
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ACM named Yoshua Bengio, Geoffrey Hinton, and Yann LeCun recipients of the 
2018 ACM A.M. Turing Award for conceptual and engineering breakthroughs that
have made deep neural networks a critical component of computing.

https://awards.acm.org/award_winners/bengio_3406375
https://awards.acm.org/award_winners/hinton_4791679
https://awards.acm.org/award_winners/lecun_6017366


Why Deep Learning?
• Biological Plausibility – e.g. Visual 

Cortex
• Hastad proof - Problems which 

can be represented with a 
polynomial number of nodes with 
k layers, may require an 
exponential number of nodes with 
k-1 layers (e.g. parity)

• Highly varying functions can be 
efficiently represented with deep 
architectures
– Less weights/parameters to 

update than a less efficient 
shallow representation

• Sub-features created in deep 
architecture can potentially be 
shared between multiple tasks
– Type of Transfer/Multi-task 

learning
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Difficulties of supervised training of 
deep networks

• Early layers of MLP do not get trained well
– Diffusion of Gradient – error attenuates as it propagates to earlier 

layers
– Leads to slow training
– Exacerbated since top couple layers can usually learn any task 

"pretty well" and thus the error to earlier layers drops quickly as 
the top layers "mostly" solve the task– lower layers never get the 
opportunity to use their capacity to improve results

– Need a way for early layers to do effective work
• Often not enough labeled data available while there may be 

lots of unlabeled data
– Can we use unsupervised/semi-supervised approaches to take 

advantage of the unlabeled data
• Deep networks tend to have more local minima problems than 

shallow networks during supervised training
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In practice: which deep neural 
network?

1. Deep but with very constrained architectures è
convolutional neural networks
è recurrent neural networks

2. Deep but with unsupervised weight initialization 
è layer-wise training with e.g. auto-encoders

3. Deep with really good computers è GPU/TPU
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CONVOLUTIONAL NEURAL 
NETWORKS (CNN)
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A particular architechture: CNN
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• A special kind of multi-layer neural networks.
• Implicitly extract relevant features.
• A feed-forward network that can extract topological 

properties from an image.
• Like almost every other neural networks CNNs are 

trained with a version of the back-propagation 
algorithm.

• Particularly suitable for signal processing applications
(for example computer vision, speech recognition) 
– ex: digit recognition, image classification…



Yann LeCun

In 1995, Yann LeCun and Yoshua Bengio
introduced the concept of convolutional neural 
networks.

Yoshua Bengio

History
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• Neural network with 
specialized connectivity structure

• Feed-forward:
- Convolve input = pattern detectors
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised

• Train convolutional filters by
back-propagating the learning error

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN: overview
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Convolution
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( f *g)(x) = f (t)× g(x − t)dt
−∞

+∞

∫



Discrete Convolution
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Ex: Image convolution

16http://www.songho.ca/dsp/convolution/convolution2d_example.html



Effect of the convolution Mask
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Effect of different average filter
sizes
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Effect of different gaussian filter
sizes
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3X3 5X5 7X7 Sigma = 2 Gaussian Filter

3X3 5X5 7X7 Sigma = 2 Gaussian Filter
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!

!

Try it yourself: http://beej.us/blog/data/convolution-image-processing/

http://beej.us/blog/data/convolution-image-processing/


About Learning Convolution

• The size of the convolution kernel is fixed depending on the application.

• The parameters of the kernel (the weights = the type of filter) 
correspond to the connexions from one layer to another (this is what is 
learned !). The resulted convolved image is called a feature map. 

• The same convolution kernel is slid over the entire image so the 
weights to construct each convoluted pixels are shared (colors “red, 
green, blue”)  in the above image) 

• The smaller the convolution kernel, the less parameters to learn 
• Depending of the size of the filter, the image size can be reduced 

((dim image – dim kernel) / (stepsize for sliding)) + 1
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Convolution example 

Convolution kernel/mask



Exercise 4
1. What is the result of applying the given

convolution kernel (on the right) to this image ?

2. What does the kernel do ?

Try it yourself: http://beej.us/blog/data/convolution-
image-processing/
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http://beej.us/blog/data/convolution-image-processing/
http://beej.us/blog/data/convolution-image-processing/


Convolutional Neural Network
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Why Pooling? (subsampling)
1. In general terms, the objective of pooling is to 

transform the joint feature representation into 
a new, more usable one that preserves 
important information while discarding 
irrelevant detail, the crux of the matter being 
to determine what falls in which category.

2. Achieving invariance to changes in position 
or lighting conditions, robustness to clutter, 
and compactness of representation, are all 
common goals of pooling.

3. Speed up the process (smaller feature maps 
= less parameters in the last layers)
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Ex of Pooling

-1 17 -18 13

-15 19 11 5

-10 -3 2 18

-4 4 -12 13

19 13

4 18

Maximum 
Pooling

• Average pooling
• Sum pooling
• Stochastic pooling
• Etc …

Effect:
• Reduces the 

feature map’s
size

• Increases the 
field of view



Field of view

Convolution 
with mask

size = 3

Pooling with
mask size = 2



•  C1,C3,C5 : Convolutional layers  (5 × 5 × nbniputchannels) 
convolution kernels (2D size given)

• S2 , S4 : Subsampling layer. (by factor 2)
•  F6 : Fully connected layer.
• Nb of feature maps (6, 16, 120 and then 84) is given

Example: LeNet5

28Try it out: http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html



LeNet5 layers

• Convolution #1. Input = 32x32x1. Output = 28x28x6 conv2d
• SubSampling #1. Input = 28x28x6. Output = 14x14x6. SubSampling is simply Average Pooling so

we use avg_pool
• Convolution #2. Input = 14x14x6. Output = 10x10x16 conv2d
• SubSampling #2. Input = 10x10x16. Output = 5x5x16 avg_pool
• Flatten + FC (5*5*16 = 400 è 120) or Convolution #3. Input = 5x5x16. Output = 120x1x1 conv2d
• Fully Connected #1. Input = 120. Output = 84
• Fully Connected #2. Input = 84. Output = 10
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Exercise 5: Count the parameters

How many parameters would this network need to 
learn?

– a 2D convolution kernel applied to multiple feature maps 
becomes 3D

– Each feature map is produced with a different kernel 
– there is one bias per (3D) convolution kernel (and then one bias 

per neurone in the FC layers as usual)



Exercise 6: 
Adapt a CNN architecture

• Suppose that your input image is not of 
size 32*32 anymore but 64*64.

• What would you change in the previous 
architecture to be able to predict your 10 
different labels?
– If you let only let convolution kernel C5 to change
– (discuss the other possibilities: should every neuron at the 

entrance of the MLP have a field of view corresponding to 
the entire image?)
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So, how to choose?

33



RECURRENT NEURAL 
NETWORKS (RNN)

34



A particular « brick » in a network 
architecture: the recurrent neurone 
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A recurrent neural network and the unfolding in time of the computation involved in its forward computation (St = « memory 
of the network »). SOURCE: Nature 2015 



Recurrent?
« Recurrent Neural Networks are called recurrent because they perform 
the same task for every element of a sequence, with the output being 
depended on the previous computations… they have a “memory” which 
captures information about what has been calculated so far. In theory 
RNNs can make use of information in arbitrarily long sequences, but in 
practice they are limited to looking back only a few steps »

Pb: vanishing gradient in RNN
Solution: 2 very popular RNN: 

1. LSTM (Long Short Term Memory)
2. GRU (Gated Recurrent Unit)
(https://jhui.github.io/2017/03/15/RNN-LSTM-GRU/)

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



What can RNNs do?



Ex: predict the caption of an image 
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LSTM (Hochreiter & Schmidhuber (1997))

39
Long & Short Term Memory



LSTM: 3 gates

40

https://jhui.github.io/2017/03/15/RNN-LSTM-GRU/



LSTM equations

• Wix: the weight matrix associated between the input Xt and the Input gate I
• C̃ : is the new proposal for the state
• σ :in the original LSTM, the sigmoid activation function

41



LSTM: forget gate
It looks at ht−1 and xt, and outputs a number between 0 and 1 for 
each number in the cell state Ct−1. A 1 represents “completely
keep this” while a 0 represents “completely get rid of this. »

Ex: when we see a new subject, we want to forget the gender of 
the old subject.
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LSTM: input gate
Decide what new information we’re going to store in the cell
state. 1) a sigmoid layer called the “input gate layer” 
decides which values we’ll update. 2) a tanh layer creates a 
vector of new candidate values, C ̃t, that could be added to 
the state

Ex: we’d want to add the gender of the new subject to the cell state, to 
replace the old one we’re forgetting 43



LSTM: out gate
Decide what we’re going to output. 1) run a sigmoid layer which 
decides what parts of the cell state we’re going to output. 2) put 
the cell state through tanh (to push the values to be between −1 
and 1) and multiply it by the output of the sigmoid gate, so that 
we only output the parts we decided to.

Ex: output verb well conjugated
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GRU Unit

45



GRU vs LSTM?
• GRU has two gates (reset and update gates) 
• LSTM has three gates (input, output and forget gates).

• The GRU unit controls the flow of information like the 
LSTM unit, but without having to use a memory unit. It 
just exposes the full hidden content without any control.

• LSTMs should in theory remember longer sequences
than GRUs and outperform them in tasks requiring 
modeling long-distance relations. 

• Otherwise, GRU performance is on par with LSTM, but 
computationally more efficient (less complex structure). 
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Exercise 8: count parameters in RNN
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The input (e.g. a word) is of size m
There are n LSTM units (neurons) in the hidden layer
The output (e.g. a word) is of size k
What's the # parameters for this RNN model?



AE, VAE, GAN, DM
Towards Generative Models
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Generative vs discriminative models 
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A generative model is a statistical model of the joint 
probability distribution P (X,Y) on given observable variable 
X and target variable Y. E.g Naive Bayes, HMM, VAE, 
GAN, auto-regressive models (e.g. LLMs).

A discriminative model is a model of the conditional
probability P (Y∣X = x) of the target Y, given an observation 
x E.g logistic regression,…

Classifiers computed without using a probability model are 
also referred to loosely as "discriminative". E.g. Decision
trees, SVM, MLP,… 

https://en.wikipedia.org/wiki/Generative_model



Classification in both cases

• Generative classifiers assume a functional form for P(Y) and P(X|Y), 
then generate estimated parameters from the data and use the 
Bayes’ theorem to calculate P(Y|X) (posterior probability). 

• Discriminative (conditional) classifiers assume a functional form of 
P(Y|X) and estimate the parameters directly from the provided data.

50
https://www.turing.com/kb/generative-models-vs-discriminative-models-for-deep-learning



Goal of (deep) generative models
Usually 
trained « unsupervised » 
(not for classification)
Estimate the unknown 
distribution p(X) of the 
data, so that by sampling 
from this estimated 
distribution, we can 
generate new samples that 
look very much like the 
samples from the original 
distribution.

51
https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-
autoencoders-22bd41e56d18



Autoencoders (AE)
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x4

x5

x6

+1

Layer 1

Layer 2

x1

x2

x3

x4

x5

x6

x1

x2

x3

+1

Layer 3

Network is trained to 
output the input (learn 
identify function). 

Trivial solution unless:
- Constrain number of 
units in Layer 2 (learn 
compressed 
representation), or
- Constrain Layer 2 to 
be sparse. 

a1

a2

a3



Train Autoencoders
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Training a sparse autoencoder.

Given unlabeled training set x1, x2, …

 

Reconstruction 
error term

L1 sparsity term

a1
a2

a3



Auto-Encoders as feature 
generators

Can use just new features in the new training set or concatenate 
both
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Autoencoders (AE)
• Autoencoder can do dimensionality reduction
• Autoencoders are not directly made for generative 

modelling è reconstruction does not explicitly help 
to model the data distribution.

• Autoencoder mostly learns a sparse latent space 
=> « distinct clusters in the latent space. The 
decoder has never learned to reconstruct vectors in 
between the clusters, so it will produce very 
abstract things - mostly garbage. »

• Here are a number of tasks where they can be 
used:

– classification,
– clustering,
– anomaly detection,
– recommendation systems,
– dimensionality reduction,
– cleaning noisy images…
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Variational Autoencoders (VAE)
VAE is an autoencoder whose
encodings distribution is regularised
during the training in order to ensure
that its latent space has good properties
allowing us to generate some new data.

Moreover, the term “variational” comes
from the close relation there is between
the regularisation and the variational
inference method in statistics.
https://en.wikipedia.org/wiki/Variational_
Bayesian_methods

58
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-
f70510919f73



VAE in practice

• i: index of the data point xi
• z = bottleneck = latent space
• Neg log likelihood = reconstruction error
• KL : comparison between two distributions 

(Wassertein or Bhattacharyya distances are other 
examples) 
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Negative log 
likelihood

Kullback-Leibler 
divergence

Normal 
distribution with
mean zero and 
variance one



Generative Adversarial Networks 
( [Goodfellow NIPS 2014])
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Generator

Discriminator

Input: 
noise

Output: 
generated

images

Real images

{Real, 
Generated}

• The discriminator is trained to discriminate real from generated images
• The generator is trained to fool the discriminator
• During the learning phase, neither the Generator nor the Discriminator become stronger 

than the other



GAN in practice
• GAN Loss : min max(D, G)

• Discriminator Loss: maximize the average of the log probability for real 
object and the log of the inverted probabilities of fake objects (from the 
generator)

• Generator Loss: minimize

G gets rewarded if it successfully fools the discriminator, and gets penalized
otherwise. Too avoid saturation (generator stops too early) : – log(D(G(z))) instead.
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https://machinelearningmastery.com/generative-adversarial-network-loss-functions/
https://arxiv.org/pdf/1711.10337.pdf (overview of all the different GAN)
https://neptune.ai/blog/gan-loss-functions

https://machinelearningmastery.com/generative-adversarial-network-loss-functions/
https://arxiv.org/pdf/1711.10337.pdf


Denoising Diffusion Probabilistic 
Models (DDPM)

• DDPM = generative models
• Objective: generate data according to a given distribution from 

random noise iteratively.
• DDPMs rely on two inverse processes: Forward and Backward.
• The DDPM is trained so the backward process matches the forward.

62
Ho, J., Jain, A., Abbeel, P., 2020. Denoising Diffusion Probabilistic Models, in: NeurIPS.



Forward: perturb data with a SDE

where is a vector-valued function called the drift coefficient, 
is a real-valued function called the diffusion coefficient, w denotes

a standard Brownian motion, and dw can be viewed as infinitesimal white 
noise.

63
https://yang-song.net/blog/2021/score/

Handpicked SDE



Backward: reversing the SDE for 
sample generation

Reversing the perturbation process with
annealed Langevin dynamics
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Closed form 
for the 
reverse SDE



SEQ 2 SEQ : THE SPECIAL CASE 
OF TEXT GENERATION (WITHOUT 
ATTENTION)
(THANKS TO GUILLAUME GRAVIER)
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RNN-based Seq2Seq

Sequence to sequence encoder/decoder systems combine 
– a RNN to encode a message from a prompt/text, i.e., h0 = RNNe(x1,...,xn) 

è h0 is the context given to the decoder
– a RNN to generate a message condi<oned on h0, i.e., w1,...,wn = RNNd(h0) 

66
from Tian Shi et al., 2018. Neural Abstractive Text Summarization with Sequence-to-Sequence 
Models 

The basic 
seq2seq 
model. SOS 
and EOS 
represent the 
start and end 
of a sequence, 
respectively.



On practical aspects and use of 
encoder/decoder 

• Often convenient to also consider input sequence backward 
– process from xn to x1 
– use a bidirectional encoder 

• Can layer RNNs, both in the encoder and decoder 
• Better use ground truth in decoder at training time (or alternate) – 

aka teacher forcing 
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But…

• the input message needs be fully summarized in a single 
embedding h0 (hence only rather simple inputs work in prac9ce) 

• (almost) independent choice of words might lead to poor language
– might not respect syntax
– short or truncated outputs
– repeats

https://cs.stanford.edu/~zxie/textgen.pdf

==> need for attention mechanisms !



Try it out

• TensorFlow (Google): 
https://www.tensorflow.org/
– Python, deploy computation to one or more CPUs

or GPUs in a desktop, server, or mobile device
with a single API

• PyTorch (Facebook/ Twitter, Deepmind): 
http://torch.ch/
– Python
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https://www.tensorflow.org/
http://torch.ch/

