
Deep Learning Bases
(P1_3)

Elisa Fromont
M2 SIF DLV

1

“When you’re fundraising, it’s AI. When you’re hiring, it’s ML. When
you’re implementing, it’s logistic regression.”
—everyone on Twitter ever

What is deep learning?
= process of learning the parameters of
composed (complex) functions

– NN can be deep (many layers)
– CNN can be deep (see soon)
– Other models are also deep (hierachical

models, etc.)

« any » composition of differentiable functions
can be optimized with gradient descent (è
« deep » makes sens for NN)

2

3

4

5

Turing Award 2018

6

ACM named Yoshua Bengio, Geoffrey Hinton, and Yann LeCun recipients of the
2018 ACM A.M. Turing Award for conceptual and engineering breakthroughs that
have made deep neural networks a critical component of computing.

https://awards.acm.org/award_winners/bengio_3406375
https://awards.acm.org/award_winners/hinton_4791679
https://awards.acm.org/award_winners/lecun_6017366

Why Deep Learning?
• Biological Plausibility – e.g. Visual

Cortex
• Hastad proof - Problems which

can be represented with a
polynomial number of nodes with
k layers, may require an
exponential number of nodes with
k-1 layers (e.g. parity)

• Highly varying functions can be
efficiently represented with deep
architectures
– Less weights/parameters to

update than a less efficient
shallow representation

• Sub-features created in deep
architecture can potentially be
shared between multiple tasks
– Type of Transfer/Multi-task

learning

7

pixels

edges

object parts
(combination
of edges)

object models

Difficulties of supervised training of
deep networks

• Early layers of MLP do not get trained well
– Diffusion of Gradient – error attenuates as it propagates to earlier

layers
– Leads to slow training
– Exacerbated since top couple layers can usually learn any task

"pretty well" and thus the error to earlier layers drops quickly as
the top layers "mostly" solve the task– lower layers never get the
opportunity to use their capacity to improve results

– Need a way for early layers to do effective work
• Often not enough labeled data available while there may be

lots of unlabeled data
– Can we use unsupervised/semi-supervised approaches to take

advantage of the unlabeled data
• Deep networks tend to have more local minima problems than

shallow networks during supervised training

8

In practice: which deep neural
network?

1. Deep but with very constrained architectures è
convolutional neural networks
è recurrent neural networks

2. Deep but with unsupervised weight initialization
è layer-wise training with e.g. auto-encoders

3. Deep with really good computers è GPU/TPU

9

CONVOLUTIONAL NEURAL
NETWORKS (CNN)

10

A particular architechture: CNN

11

• A special kind of multi-layer neural networks.
• Implicitly extract relevant features.
• A feed-forward network that can extract topological

properties from an image.
• Like almost every other neural networks CNNs are

trained with a version of the back-propagation
algorithm.

• Particularly suitable for signal processing applications
(for example computer vision, speech recognition)
– ex: digit recognition, image classification…

Yann LeCun

In 1995, Yann LeCun and Yoshua Bengio
introduced the concept of convolutional neural
networks.

Yoshua Bengio

History

12

• Neural network with
specialized connectivity structure

• Feed-forward:
- Convolve input = pattern detectors
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised

• Train convolutional filters by
back-propagating the learning error

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN: overview

13

Convolution

14

(f *g)(x) = f (t)× g(x − t)dt
−∞

+∞

∫

Discrete Convolution

15

Ex: Image convolution

16http://www.songho.ca/dsp/convolution/convolution2d_example.html

Effect of the convolution Mask

17

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Blur Embosse Laplacian gaussian Gaussian Blur

2 0 0

0 -1 0

0 0 -1

0 0 -1 0 0

0 -1 -2 -1 0

-1 -2 16 -2 -1

0 -1 -2 -1 0

0 0 -1 0 0

0 0 0 5 0 0 0
0 5 18 32 18 5 0
0 18 64 100 64 18 0
5 32 100100100 32 5
0 18 64 100 64 18 0
0 5 18 32 18 5 0
0 0 0 5 0 0 0

Effect of different average filter
sizes

18

!

!

3X3 5X5 7X7 Average Filter

3X3 5X5 7X7 Average Filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Effect of different gaussian filter
sizes

19

3X3 5X5 7X7 Sigma = 2 Gaussian Filter

3X3 5X5 7X7 Sigma = 2 Gaussian Filter

0.7 0.8 0.7

0.8 1 0.8

0.7 0.8 0.7

!

!

Try it yourself: http://beej.us/blog/data/convolution-image-processing/

http://beej.us/blog/data/convolution-image-processing/

About Learning Convolution

• The size of the convolution kernel is fixed depending on the application.

• The parameters of the kernel (the weights = the type of filter)
correspond to the connexions from one layer to another (this is what is
learned !). The resulted convolved image is called a feature map.

• The same convolution kernel is slid over the entire image so the
weights to construct each convoluted pixels are shared (colors “red,
green, blue”) in the above image)

• The smaller the convolution kernel, the less parameters to learn
• Depending of the size of the filter, the image size can be reduced

((dim image – dim kernel) / (stepsize for sliding)) + 1

20

21

Convolution example

Convolution kernel/mask

Exercise 4
1. What is the result of applying the given

convolution kernel (on the right) to this image ?

2. What does the kernel do ?

Try it yourself: http://beej.us/blog/data/convolution-
image-processing/

22

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 -1 1

http://beej.us/blog/data/convolution-image-processing/
http://beej.us/blog/data/convolution-image-processing/

Convolutional Neural Network

24

Convolution Mask

Convolution

I1

I2

I 3

Input
Layer

Hidden
Layer

Output
Layer

o

MLP : Multi-layer perceptron

w1
1

w1
2

w1
3

w2
1

w2
2

w2
3

w3
1

w3
2

w3
3

W’11 W’12 W’13

W’21 W’22 W’23

W’31 W’32 W’33

W’’11 W’’12 W’’13

W’’21 W’’22 W’’23

W’’31 W’’32 W’’33

W’11 W’12 W’13

W’21 W’22 W’23

W’31 W’32 W’33

W11 W12 W13

W21 W’22 W23

W31 W32 W33

10S

10S

10S

10S

10S

10S

10S

10S

10S

10S

Why Pooling? (subsampling)
1. In general terms, the objective of pooling is to

transform the joint feature representation into
a new, more usable one that preserves
important information while discarding
irrelevant detail, the crux of the matter being
to determine what falls in which category.

2. Achieving invariance to changes in position
or lighting conditions, robustness to clutter,
and compactness of representation, are all
common goals of pooling.

3. Speed up the process (smaller feature maps
= less parameters in the last layers)

25

Ex of Pooling

-1 17 -18 13

-15 19 11 5

-10 -3 2 18

-4 4 -12 13

19 13

4 18

Maximum
Pooling

• Average pooling
• Sum pooling
• Stochastic pooling
• Etc …

Effect:
• Reduces the

feature map’s
size

• Increases the
field of view

Field of view

Convolution
with mask

size = 3

Pooling with
mask size = 2

• C1,C3,C5 : Convolutional layers (5 × 5 × nbniputchannels)
convolution kernels (2D size given)

• S2 , S4 : Subsampling layer. (by factor 2)
• F6 : Fully connected layer.
• Nb of feature maps (6, 16, 120 and then 84) is given

Example: LeNet5

28Try it out: http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

LeNet5 layers

• Convolution #1. Input = 32x32x1. Output = 28x28x6 conv2d
• SubSampling #1. Input = 28x28x6. Output = 14x14x6. SubSampling is simply Average Pooling so

we use avg_pool
• Convolution #2. Input = 14x14x6. Output = 10x10x16 conv2d
• SubSampling #2. Input = 10x10x16. Output = 5x5x16 avg_pool
• Flatten + FC (5*5*16 = 400 è 120) or Convolution #3. Input = 5x5x16. Output = 120x1x1 conv2d
• Fully Connected #1. Input = 120. Output = 84
• Fully Connected #2. Input = 84. Output = 10

29

30

Exercise 5: Count the parameters

How many parameters would this network need to
learn?

– a 2D convolution kernel applied to multiple feature maps
becomes 3D

– Each feature map is produced with a different kernel
– there is one bias per (3D) convolution kernel (and then one bias

per neurone in the FC layers as usual)

Exercise 6:
Adapt a CNN architecture

• Suppose that your input image is not of
size 32*32 anymore but 64*64.

• What would you change in the previous
architecture to be able to predict your 10
different labels?
– If you let only let convolution kernel C5 to change
– (discuss the other possibilities: should every neuron at the

entrance of the MLP have a field of view corresponding to
the entire image?)

32

So, how to choose?

33

RECURRENT NEURAL
NETWORKS (RNN)

34

A particular « brick » in a network
architecture: the recurrent neurone

35

A recurrent neural network and the unfolding in time of the computation involved in its forward computation (St = « memory
of the network »). SOURCE: Nature 2015

Recurrent?
« Recurrent Neural Networks are called recurrent because they perform
the same task for every element of a sequence, with the output being
depended on the previous computations… they have a “memory” which
captures information about what has been calculated so far. In theory
RNNs can make use of information in arbitrarily long sequences, but in
practice they are limited to looking back only a few steps »

Pb: vanishing gradient in RNN
Solution: 2 very popular RNN:

1. LSTM (Long Short Term Memory)
2. GRU (Gated Recurrent Unit)
(https://jhui.github.io/2017/03/15/RNN-LSTM-GRU/)

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

What can RNNs do?

Ex: predict the caption of an image

38

LSTM (Hochreiter & Schmidhuber (1997))

39
Long & Short Term Memory

LSTM: 3 gates

40

https://jhui.github.io/2017/03/15/RNN-LSTM-GRU/

LSTM equations

• Wix: the weight matrix associated between the input Xt and the Input gate I
• C̃ : is the new proposal for the state
• σ :in the original LSTM, the sigmoid activation function

41

LSTM: forget gate
It looks at ht−1 and xt, and outputs a number between 0 and 1 for
each number in the cell state Ct−1. A 1 represents “completely
keep this” while a 0 represents “completely get rid of this. »

Ex: when we see a new subject, we want to forget the gender of
the old subject.

42

LSTM: input gate
Decide what new information we’re going to store in the cell
state. 1) a sigmoid layer called the “input gate layer”
decides which values we’ll update. 2) a tanh layer creates a
vector of new candidate values, C ̃t, that could be added to
the state

Ex: we’d want to add the gender of the new subject to the cell state, to
replace the old one we’re forgetting 43

LSTM: out gate
Decide what we’re going to output. 1) run a sigmoid layer which
decides what parts of the cell state we’re going to output. 2) put
the cell state through tanh (to push the values to be between −1
and 1) and multiply it by the output of the sigmoid gate, so that
we only output the parts we decided to.

Ex: output verb well conjugated

44

GRU Unit

45

GRU vs LSTM?
• GRU has two gates (reset and update gates)
• LSTM has three gates (input, output and forget gates).

• The GRU unit controls the flow of information like the
LSTM unit, but without having to use a memory unit. It
just exposes the full hidden content without any control.

• LSTMs should in theory remember longer sequences
than GRUs and outperform them in tasks requiring
modeling long-distance relations.

• Otherwise, GRU performance is on par with LSTM, but
computationally more efficient (less complex structure).

46

Exercise 8: count parameters in RNN

47

The input (e.g. a word) is of size m
There are n LSTM units (neurons) in the hidden layer
The output (e.g. a word) is of size k
What's the # parameters for this RNN model?

AE, VAE, GAN, DM
Towards Generative Models

48

Generative vs discriminative models

49

A generative model is a statistical model of the joint
probability distribution P (X,Y) on given observable variable
X and target variable Y. E.g Naive Bayes, HMM, VAE,
GAN, auto-regressive models (e.g. LLMs).

A discriminative model is a model of the conditional
probability P (Y∣X = x) of the target Y, given an observation
x E.g logistic regression,…

Classifiers computed without using a probability model are
also referred to loosely as "discriminative". E.g. Decision
trees, SVM, MLP,…

https://en.wikipedia.org/wiki/Generative_model

Classification in both cases

• Generative classifiers assume a functional form for P(Y) and P(X|Y),
then generate estimated parameters from the data and use the
Bayes’ theorem to calculate P(Y|X) (posterior probability).

• Discriminative (conditional) classifiers assume a functional form of
P(Y|X) and estimate the parameters directly from the provided data.

50
https://www.turing.com/kb/generative-models-vs-discriminative-models-for-deep-learning

Goal of (deep) generative models
Usually
trained « unsupervised »
(not for classification)
Estimate the unknown
distribution p(X) of the
data, so that by sampling
from this estimated
distribution, we can
generate new samples that
look very much like the
samples from the original
distribution.

51
https://emkademy.medium.com/1-first-step-to-generative-deep-learning-with-
autoencoders-22bd41e56d18

Autoencoders (AE)

52

x4

x5

x6

+1

Layer 1

Layer 2

x1

x2

x3

x4

x5

x6

x1

x2

x3

+1

Layer 3

Network is trained to
output the input (learn
identify function).

Trivial solution unless:
- Constrain number of
units in Layer 2 (learn
compressed
representation), or
- Constrain Layer 2 to
be sparse.

a1

a2

a3

Train Autoencoders

53

Training a sparse autoencoder.

Given unlabeled training set x1, x2, …

Reconstruction
error term

L1 sparsity term

a1
a2

a3

Auto-Encoders as feature
generators

Can use just new features in the new training set or concatenate
both

54

Autoencoders (AE)
• Autoencoder can do dimensionality reduction
• Autoencoders are not directly made for generative

modelling è reconstruction does not explicitly help
to model the data distribution.

• Autoencoder mostly learns a sparse latent space
=> « distinct clusters in the latent space. The
decoder has never learned to reconstruct vectors in
between the clusters, so it will produce very
abstract things - mostly garbage. »

• Here are a number of tasks where they can be
used:

– classification,
– clustering,
– anomaly detection,
– recommendation systems,
– dimensionality reduction,
– cleaning noisy images…

57

Variational Autoencoders (VAE)
VAE is an autoencoder whose
encodings distribution is regularised
during the training in order to ensure
that its latent space has good properties
allowing us to generate some new data.

Moreover, the term “variational” comes
from the close relation there is between
the regularisation and the variational
inference method in statistics.
https://en.wikipedia.org/wiki/Variational_
Bayesian_methods

58
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-
f70510919f73

VAE in practice

• i: index of the data point xi
• z = bottleneck = latent space
• Neg log likelihood = reconstruction error
• KL : comparison between two distributions

(Wassertein or Bhattacharyya distances are other
examples)

59

Negative log
likelihood

Kullback-Leibler
divergence

Normal
distribution with
mean zero and
variance one

Generative Adversarial Networks
([Goodfellow NIPS 2014])

60

Generator

Discriminator

Input:
noise

Output:
generated

images

Real images

{Real,
Generated}

• The discriminator is trained to discriminate real from generated images
• The generator is trained to fool the discriminator
• During the learning phase, neither the Generator nor the Discriminator become stronger

than the other

GAN in practice
• GAN Loss : min max(D, G)

• Discriminator Loss: maximize the average of the log probability for real
object and the log of the inverted probabilities of fake objects (from the
generator)

• Generator Loss: minimize

G gets rewarded if it successfully fools the discriminator, and gets penalized
otherwise. Too avoid saturation (generator stops too early) : – log(D(G(z))) instead.

61

https://machinelearningmastery.com/generative-adversarial-network-loss-functions/
https://arxiv.org/pdf/1711.10337.pdf (overview of all the different GAN)
https://neptune.ai/blog/gan-loss-functions

https://machinelearningmastery.com/generative-adversarial-network-loss-functions/
https://arxiv.org/pdf/1711.10337.pdf

Denoising Diffusion Probabilistic
Models (DDPM)

• DDPM = generative models
• Objective: generate data according to a given distribution from

random noise iteratively.
• DDPMs rely on two inverse processes: Forward and Backward.
• The DDPM is trained so the backward process matches the forward.

62
Ho, J., Jain, A., Abbeel, P., 2020. Denoising Diffusion Probabilistic Models, in: NeurIPS.

Forward: perturb data with a SDE

where is a vector-valued function called the drift coefficient,
is a real-valued function called the diffusion coefficient, w denotes

a standard Brownian motion, and dw can be viewed as infinitesimal white
noise.

63
https://yang-song.net/blog/2021/score/

Handpicked SDE

Backward: reversing the SDE for
sample generation

Reversing the perturbation process with
annealed Langevin dynamics

64

Closed form
for the
reverse SDE

SEQ 2 SEQ : THE SPECIAL CASE
OF TEXT GENERATION (WITHOUT
ATTENTION)
(THANKS TO GUILLAUME GRAVIER)

65

RNN-based Seq2Seq

Sequence to sequence encoder/decoder systems combine
– a RNN to encode a message from a prompt/text, i.e., h0 = RNNe(x1,...,xn)

è h0 is the context given to the decoder
– a RNN to generate a message condi<oned on h0, i.e., w1,...,wn = RNNd(h0)

66
from Tian Shi et al., 2018. Neural Abstractive Text Summarization with Sequence-to-Sequence
Models

The basic
seq2seq
model. SOS
and EOS
represent the
start and end
of a sequence,
respectively.

On practical aspects and use of
encoder/decoder

• Often convenient to also consider input sequence backward
– process from xn to x1
– use a bidirectional encoder

• Can layer RNNs, both in the encoder and decoder
• Better use ground truth in decoder at training time (or alternate) –

aka teacher forcing

67

But…

• the input message needs be fully summarized in a single
embedding h0 (hence only rather simple inputs work in prac9ce)

• (almost) independent choice of words might lead to poor language
– might not respect syntax
– short or truncated outputs
– repeats

https://cs.stanford.edu/~zxie/textgen.pdf

==> need for attention mechanisms !

Try it out

• TensorFlow (Google):
https://www.tensorflow.org/
– Python, deploy computation to one or more CPUs

or GPUs in a desktop, server, or mobile device
with a single API

• PyTorch (Facebook/ Twitter, Deepmind):
http://torch.ch/
– Python

68

https://www.tensorflow.org/
http://torch.ch/

