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Some slides are borrowed from:
Damien Fourure, Kenrick Mock (University of Alaska, Anchorage), 
Tony R. Martinez (Brigham Young University), Hugo Larochelle, 
Yoshua Bengio, Jerome Louradour, Pascal Lamblin, Geoffrey 
Hinton, Andrew Ng., Andrew L. NelsonR. Salskhutdino, Su-A Kim.

For RNN:
• http://cs231n.stanford.edu/slides/winter1516_lecture1

0.pdf
• http://www.wildml.com/2015/09/recurrent-neural-

networks-tutorial-part-1-introduction-to-rnns/

• More to learn here: 
• Deep Learning (Adaptive Computation and Machine 

Learning series) by Ian Goodfellow, Yoshua Bengio
Aaron Courville

• Machine Learning Yearning (Andrew Ng)
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RESOURCES

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/


About the impact of AI on earth

• Chapter 1: mineral extraction 
needed to power contemporary 
computation

• Chapter 2: how artificial 
intelligence is made of human 
labor

• Chapter 3: the role of data (not 
people’s personal anymore but 
“infrastructure”)

• Chapter 4: how automatic 
classification can be really 
offensive

• Chapter 5: about recognizing 
affect 

• …
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Atlas of Ai: Power, Politics, and the Planetary Costs of Artificial Intelligence

2021 (pre Chat GPT)



Biological Neurons
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Neurons in the Brain
• Although heterogeneous, at a low level the brain is composed 

of neurons
– A neuron receives input from other neurons (generally thousands) from 

its synapses
– Inputs are approximately summed
– When the input exceeds a threshold the neuron sends an electrical 

spike that travels from the body, down the axon, to the next neuron(s)
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The McCullogh-Pitts model [1943]
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n spikes are interpreted as spike rates;
n synaptic strength are translated as synaptic 

weights;
n excitation means positive product between 

the incoming spike rate and the 
corresponding synaptic weight;

n inhibition means negative product between 
the incoming spike rate and the 
corresponding synaptic weight;



Neural Network History
• History traces back to the 50’s but became popular in 

the 80’s with work by Rumelhart, Hinton, and Mclelland
–  A General Framework for Parallel Distributed Processing : 

explorations in the microstructure of cognition
• Peaked in the 90’ then “desert crossing”.
• Today 

– confusion btw machine learning and deep learning!
– Hundreds of variants (thousands of research papers)
– Less a model of the actual brain than a useful tool, but still some 

debate
• Numerous applications

– Handwriting, face, speech recognition
– Autonomous vehicles
– Models of reading, sentence production, dreaming

• Debate for philosophers and cognitive scientists
– Can human consciousness or cognitive abilities be explained by 

a  connectionist model or does it require the manipulation of 
symbols?  
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Perceptron
x1

x2

x3

u

1

w1
w0

w2

w3

• Initial proposal of connectionist 
networks

• Rosenblatt (learning rule), late 
50’s 

• Essentially a linear discriminant 
composed of nodes, weights

• h is an activation function (in the 
original formulation, step function)

If h(x) is an activation function, then a perceptron (in this
example with 3 inputs) is defined as:

u = F(x,w)= h(w0 + w1x1+ w2x2 + w3 x3)
= h(∑!"#$ 𝑤! ∗ 𝑥𝑖)
= h(wxT)



Learning the Perceptron’s 
weights (with h = step function)
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Learning Procedure:

1. Randomly assign weights (e.g. between [-1,1])

2. Present inputs from training data (sequentially)

3. Get output F(x,W), change weights (with the perceptron learning 
rule) to gives results toward our desired output y

4. Repeat from 2; stop when no errors, or enough epochs completed
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Perceptron Learning Rule
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Example y: desired output, actual output u = F(x,W), 

2 inputs (x1, x2), x0 = 1, c = 1 (learning rate)

At step t : y=0, u=1, w1=0.5, w2=0.3, x1=2, x2=1, w0= -1

Note that if we present 
this input again, we’d 
output 0 instead

𝑊𝑖
𝑡 + 1 =𝑊𝑖

𝑡 + ∆ 𝑊𝑖
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𝑊0
𝑡 + 1 = −1 + 0 − 1 ∗ 1 = −2

𝑊1
𝑡 + 1 = 0,5 + 0 − 1 ∗ 2 = −1,5

𝑊2
𝑡 + 1 = 0,3 + 0 − 1 ∗ 1 = −0,7



How might you use a perceptron?
• They (and other networks) are generally used to learn 

how to make predictions (classification or regression)
• Say you have collected some data regarding the 

diagnosis of patients with heart disease
– Age, Sex, Chest Pain Type, Resting BPS, Cholesterol, …, 

Diagnosis (<50% diameter narrowing, >50% diameter narrowing)

– 67,1,4,120,229,…, 1
– 37,1,3,130,250,… ,0
– 41,0,2,130,204,… ,0

• Train network to predict heart disease of new patient
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Remark on (original) perceptrons
• Can add learning rate c to speed up the learning process; 

just multiply in with delta computation
• Essentially a linear discriminant
• Perceptron theorem [Rosenblatt et al. 1958]: If a linear 

discriminant exists that can separate the classes without 
error, the training procedure is guaranteed to find that line or 
plane.
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Class1 Class2



Ex: learning the logical OR

Step w0 w1 w2

Input 
(x0, x1, x2)TS0

2 wi xi u y w0 w1 w2

init 0 1 -1

1 0 1 -1 100 0 0 0 0+0x1 1+0x0 -1+0x0

2 0 1 -1 101 -1 0 1 0+1x1 1+1x 0 -1+1x1

3 1 1 0 110 2 1 1 1 1 0

4 1 1 0 111 2 1 1 1 1 0

5 1 1 0 100 1 1 0 1+(-1)x1 1+(-1)x0 0+(-1)x0

6 0 1 0 101 0 0 1 0+1x1 1+1x0 0+1x1

7 1 1 1 110 2 1 1 1 1 1

8 1 1 1 111 3 1 1 1 1 1

9 1 1 1 100 1 1 0 1+(-1)x1 1+(-1)x0 1 +(-1)x0

10 0 1 1 101 1 1 1 0 1 1
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Examples in {0,1}2, Perceptron inputs in {0,1}3,  first component (bias) x0 =1, two binary inputs: x1
and x2 . Weights initialisation : w0=0 (corresponds to WΘ) ; w1 = 1 and w2 = -1. 
Example are always given in the same order (binary). c = 1. 

Outpu
t

True label

No more changes from here… (so we can stop at the end of the epoch, 4 steps later)



1
0

1 0

XOR Problem:  Not Linearly Separable!  
(cannot be learned by a perceptron)

Exclusive Or (XOR) Problem
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Input: 0,0  Output: 0
Input: 0,1  Output: 1
Input: 1,0  Output: 1
Input: 1,1  Output: 0

We could however construct multiple layers of perceptrons to get around this 
problem.  



Multiple layers network
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1 layer vs multiple layers
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Exercise
(« by hand / no learning »)

1. Draw (by hand, do not learn) a perceptron with 
2 inputs which encodes the Boolean function: A 
Ù¬B (give some possible weights wA, wB and 
w0)

2. Draw a 2-layers perceptron to encode the 
Boolean function A XOR B (also give the 
weights in this case)
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First layer of neurones
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Activation function
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• Tanh
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• Recitified Linear 
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MLP: multi layer perceptron
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F3(F2(F1(x,w1), w2),w3) = F3(F2(F1(x)))) = F3 ° F2 ° F1 (x) 



What about changing the weights
when there are many layers?

• Ex: MLP
• Loss function non convex (composition of 

functions with non linear components)
– Gradient descent can deal with that (to find a local 

minimum)
• Need to propagate the error at the network’s

output to all the neurones
– Backpropagation (attributed to Rumelhart and 

McClelland, late 70’s)
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General learning rule

22

Δwi
t = −c ⋅ ∂J(W, y)

∂wi
t

wi
t+1 = wi

t +Δwi
t

c (or η) is the learning rate parameter (can be a constant, set 
by the optimizer)

We want to minimize the loss!

J

W

W(old)

W(new)

C-learning rate



Gradient descent

𝑊

𝐽(𝑾)
𝛻𝑾

W′

𝐽(𝑾)′
𝛻𝑾′

Objective: minimizing
an objective (loss) 
function

Gradient gives the 
slope of the function

Updating the parameters
in the opposite direction 
of the gradient according
to a learning rate 

𝑐 Repeat until convergence

Δwi
t = −c ⋅ ∂J(W, y)

∂wi
t

wi
t+1 = wi

t +Δwi
t



Which loss? …in multiclass classification
multiclass cross entropy (or neg log likelihood) 

(x,y) an instance,  y: one-hot vector of classes, n: nb of examples, 
C: nb of classes; u: output of the network for x; p: vector of predicted class 
probabilities t: index of the « 1 » in y

SOFTMAX (layer): 
convert the network outputs 
into probabilities

Multiclass Cross entropy loss
(or neg log likelihood):

Combinaison of both: 

http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/

J (W,y) = 



Example
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-2 3 1

0.0058 0.87 0.118

Network output u:

Class probabilities:

import numpy as np

def softmax(x):
return np.exp(x) / 

np.sum(np.exp(x))

u = [-2.0,3.0, 1.0]
print(softmax(scores))
[ 0.00589975  0.8756006   0.11849965]

def crossEnt(p,y):
return

np.sum(y*np.log(p))

def mycrossEnt(u,t):
return  -u[t]+

np.log(np.sum(np.exp(u)))

y = [0.0,1.0,0.0]

CLoss(p,y) = 0.1328

𝐽(u,1) = 0.1328



Which loss? … in regression
A set of N training examples N 
 P outputs. up is the raw output (for output p), as calculated by 
the network.

E = 1
2

uP − yP( )2
P
∑ ,MSE = 1

2N P
∑ uP − yP( )2

N
∑

E.g. if we have one example (n=1) and 
u = (u1,u2)T = (1,0) and y = (y1,y2) T = (0.8,0.5)
then 
E= (0.5)* [(1-0.8)2+(0-0.5)2] = 0.145

NB: this loss can also be used for classification but this is less common



Train complex (multilayer) 
feedforward networks
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Learning Procedure:
1. Randomly assign weights (within a “reasonable” 

range)

2. Present inputs from training data, propagate to 
outputs (= feedforward pass)

3. Compute outputs u, adjust weights according to 
the delta rule, backpropagating the errors.  The 
weights will be nudged closer so that the network 
learns to give the desired output.

4. Repeat from 2; stop when no errors, or enough 
epochs completed



Reminder: Chain rule

Composition function:

Derivative of a composition function:

Using Leibniz’s notation:



Back-propagation

29A lot more complex than for the simple perceptron !



Backprop: Computation flow
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Try it: http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-
example/

http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Ex: Gradient computation 
if Loss = MSE
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k
k w

Errorcw
d

d
-=D

To compute how much to change weight for link k:

δError
δwk

=
δError
δuj

∗
δuj
δwk

Chain rule:

δError
δuj

=
δ
1
2

(yP −uP )
2

P
∑
δuj

=
δ
1
2
(yj −uj )

2

δuj
= −(yj −uj )

We can remove the sum since we are taking the partial derivative w.r.t uj

δuj
δwk

= xk f ' xkWk( )

Δwk = −c −(yj −uj )( ) xk f ' xkWk( )
= c yj −uj( ) xk f ' xkWk( )

uj = f (X
TW )



Ex: backpropagation 
(with activation = sigmoid and loss = MSE)
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Les maths qui manquent…
https://ia802306.us.archive.org/30/items/c-
72_20211011/C72.pdf (lire l’Annexe 9 page 778/834)
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https://ia802306.us.archive.org/30/items/c-72_20211011/C72.pdf
https://ia802306.us.archive.org/30/items/c-72_20211011/C72.pdf


∆𝑤𝑗, k = 𝑐 ∗ 𝜎𝑗 ∗ 𝑦𝑘 − 𝑢𝑘 𝑢𝑘 1 − 𝑢𝑘

Backprop - Modifying Weights
 (for sigmoid activation)
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Δwk = c* xk yj −uj( ) f ' XTW( )
We had computed:

For the output units k, f(XTW)=uk.  So, for the output units, the learning rule is:

Δwk = c* xk yj −uj( ) f (XTW )(1− f (XTW )( )

𝜎	i
j σj k uk

Wi,j Wj,k

For the Hidden units (skipping some math), this is:

dk 

 f (x) = 1
1+ e−x
"

#
$

%

&
'

f '(x) = −(−e−x )
(1+ e−x ) ^ 2
"

#
$

%

&
'= f (x)*(1− f (x))

dj ∆𝑤𝑖, 𝑗  = c ∗ 𝜎𝑖 ∗ 𝜎𝑗 1 − 𝜎𝑗 ∗ ∑! 𝑦𝑘 − 𝑢𝑘 𝑢𝑘 1 − 𝑢𝑘 𝑤𝑗, 𝑘

j



Recap (for the previous setting)
• To change the weights going from neuron i to 

neuron j (c =learning rate): Dwi,j = c*dj*xi

 = change proportional to the error dj measured at neuron j and 
to the input value xi

• Error at each neurone uj of the output layer: 

 dj = (yj – uj) uj (1-uj)

• Error in the output of each neuron in a hidden 
layers Hj which compute σj computed 
recursively using gradient descent:

 dj = σj (1-σj) åkÎdest(j) dk wj,k
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Exercise 2 (use previous slide)
For an input vector XT =(x1, x2) = (1,1) , c= 1, y = 0 and using a 
sigmoid transfer/activation function and a MSE loss:

– Compute the output of each neuron 
– Compute the new weights and the new output after ONE back-

propagation step (using the formula of the previous slide)
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w(0,3) = 0,2

w(0,4) = -0,3

w(0,5) = 0,4

w(1,3) = 0,1

w(1,4) = -0,2

w(3,5) = 0,5

w(2,3) = 0,3

w(2,4) = 0,4

w(4,5) = -0,4
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Exercise: count # parameters
• Suppose that you have built a MLP architecture (by 

default fully connected) with 3 hidden layers that 
contain each 100 nodes. Your inputs are images of 
size 40*40 pixels (black and white) and you want to 
predict 10 classes.

• How many parameters should your network learn?
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Batch vs Stochastic vs Mini-Batch 
Gradient Descent
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Batch: compute the gradient of the cost function for 
the entire dataset:

SGD: parameter update for each training 
example (x(i), y(i)):

Mini batch: performs an update for every mini-batch of 𝑛
training examples:



Batch normalization (1/4)
• Standard practice to normalize the 

data to zero mean and unit 
variance

• The same logic that requires us to 
normalize the input for the first layer 
will also apply to each of these
hidden layers è batch norm!

Normalize the activations from each
previous layer so that the gradient 
descent will converge better during
training.
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https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-
neural-networks-need-it-b18919692739



Batch normalization (2/4)

• Another network layer that gets inserted between a hidden layer and 
the next hidden layer

• Just like the parameters (eg. weights, bias) of any network layer, a 
Batch Norm layer also has parameters of its own:

– Two learnable parameters called beta and gamma (per Batch Norm layer), not 
hyperparameters

– Two non-learnable parameters (Mean Moving Average and Variance Moving Average) 
are saved as part of the ‘state’ of the Batch Norm layer.

• Can be put before or after the activation layers (it depends…)
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Batch normalization (3/4)
Training
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Activation for 
feature i

M samples in 
the minibatch

Used only at 
Inference (not 
at training time)

Element-wise multiply, not a matrix multiply

Scalar ‘momentum’ hyperpameter ≠ 
momentum of the optimizer



• Moving Average acts as a good proxy for the 
mean and variance of the data (but with
incremental computation)
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Batch normalization (4/4)
Inference



Dropout

13 9 7 4

4 16 2 5

0 6 8 19

4 7 7 5

13 9 7 4

4 0 2 0

0 6 8 0

0 0 7 5

During training, for each forward pass, randomly set units to 0.

Input Output

Dropout
Drop 

factor =0.3

At test time, keep the same « energy » into the network

Equivalent to train all 
possible  networks at the 
same time in training, 
and averaging them out 
in testing.



Dropout vs BatchNorm
• Dropout: strong regularizer
• BatchNorm: less regularization, more popular but 

not usable in sequence models (RNN)
• Effect a bit redundant: should not be used at the 

same layer 

• “Understanding the Disharmony between Dropout 
and Batch Normalization by Variance Shift”: 
https://openaccess.thecvf.com/content_CVPR_2019
/papers/Li_Understanding_the_Disharmony_Betwee
n_Dropout_and_Batch_Normalization_by_Variance_
CVPR_2019_paper.pdf 
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https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf


Different SGD 
optimization algorithms

NAG: extension of momentum
Adagrad: adapts the learning rate to each parameters individually
Adadelta: extension of Adagrad
RMSprop: another extension of Adagrad
Adam: takes into account the mean and variance of gradients
Etc…

Momentum: adds a fraction of the previously computed gradient (gives
inertia to the gradient)



Gradient descent 
illustration

See:
http://sebastianruder.com/optimizing-gradient-descent/index.html#whichoptimizertouse

http://sebastianruder.com/optimizing-gradient-descent/index.html


Main drawbacks of NN
• The structure of the networks is not learned, 

it is usually set by test and trial
– In practice a small amount of layers is enough 

(too many is also harmful)
• The initialization of the weights has a great 

impact on the results
– nitialize the weights on unlabeled data using 

autoencoders or RBM ?
– Random between [-1;1]

• Too many other hyper parameters
– SGD or not, optimizers, ….
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