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Who are we?
• Elisa Fromont is professor at Université de Rennes (ISTIC). 

She works at the IRISA/INRIA Lab in the LACODAM (“Large 
Scale Collaborative Data Mining”) team. 

• Research domain (AI)
– XAI
– Machine Learning/Data Mining applied to 

• computer vision,
• time series analysis, 
• fraud and anomaly detection

• Mail : elisa.fromont@irisa.fr
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• Denis Coquenet is associate professor at Université de 
Rennes (ISTIC). He works at IRISA in the SHADOC team.

• Research domain (AI)
– Document Analysis
– Computer vision

• Mail : denis.coquenet@irisa.fr



How will I be graded?
• Final exam 1h30 (E.g. 19/01/2024 at 11h30). Exercises similar to the 

ones seen during the lectures.

• Oral presentation 15’ (E.g. 17/01/2024 at 16h45). In the last session. 
A little manipulation of a deep neural network (group of 3 persons). 
You will be provided with a learned model (Pytorch code) and 
expected to :
– Explain/show (10’) to the class, the main parts of the code
– Test it (5’) on new examples (that you will provide) online in class 
10 pts: you have managed to use the model (install the necessary 
environment and run it). 
6 pts: your 15’ explanations are clear. 
4 pts: bonus if you managed to do additional tasks. E.g. propose another 
model for the same task, re-train the model on other data, change the output 
classes, combine it with something else, …..
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Which projects?
1) Classification / Vision Transformer / ImageNet

2) Object detection / SSD / COCO 

3) Segmentation / FCN / Pascal VOC 

4) Text line recognition / FCN / IAM 
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Each group needs to register now (3 persons per group) 
on the file indicated here :  
https://people.irisa.fr/Denis.Coquenet/courses/DLV.html



Outline 
21h 2 parts
Part 1 (7h30)

– Intro ML and main computer vision (learning) problems (1h30)
– NN learning bases (4h00)

• Perceptron, MLP, Backprop, learning tricks
– Deep learning Basis (2h)

• Convolutional Neural Networks (CNN)
• Recurrent Neural Networks (LSTM, GRU)
• Seq2Seq (CNN + LSTM) 

Part 2 (12h00)
– Vision architectures for feature extraction (VGG, Resnet, Vision Transformer) : 3h00
– Object detection dedicated architectures (YOLO, RCNN) : 1h30
– Semantic segmentation architectures (FCN, U-Net, …) : 1h30
– Generative models for vision : 3h

• GAN  & VAE for vision
• Diffusion Models

– Application (Handwriting recognition) : 1h30

• Oral Presentations : 1h30 (practical session)
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Machine Learning? 

Machine learning is 
a sub-field of AI that 
explores the 
construction and 
study of algorithms 
that enable 
machines to learn 
and acquire 
knowledge from past 
data.

Cf. SML in M2 SIF 6



Machine Learning Settings
1. Supervised learning 

(classification, regression)
Given a dataset (« training data ») S = 
(𝒙𝒊, 𝒚𝑖) 𝑖 = 1. . 𝑛 ,  find a model h such that, 

for any new example x (« test data »), we can 
predict y (h(x) = y)

2. Unsupervised learning
Automatically find relevant (to be 
defined) structural information in the 
data 𝒙𝑖 𝑖 = 1. . 𝑛

3. Reinforcement learning 
Learn from experience what actions to 
take to optimize a quantitative reward 
over time
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Supervised Machine Learning 101
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Function
F(x,W) = ŷ

Error

Loss
J(F(x,W), y)

Input x Ground truth
(label)  y

Prediction



Supervised Learning: Regression 
The computer has access to training input examples and their 
desired outputs, given by a teacher or an oracle. The aim is to 
learn a general rule that maps inputs to outputs. Once learned, 
the rule can be deployed on test data. 
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Supervised Learning: Classification
The computer has access to training input examples and 
their desired outputs, given by a teacher or an oracle. The 
aim is to learn a general rule that maps inputs to outputs. 
Once learned, the rule can be deployed on test data.
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Supervised learning algorithm
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True Risk (Generalization Error)
In order to pick the best hypothesis h*, we need a criterion 
to assess the quality of any hypothesis h.

The goal of supervised learning then becomes finding a 
hypothesis h that achieves the smallest true risk. 
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Empirical Risk (~ Training Error)
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Unfortunately, R(h) cannot be computed because DZ is unknown. We 
can only measure it on the training sample S. This is called the 
empirical risk. 



0/1 Loss or Classification Error
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A loss function L : H × Z → R+ measures the 
degree of agreement between h(x) and y. 

In binary classification,



Surrogate Losses 
(Convex Approximations of the 0/1 loss)

Due to the non convexity of the 0/1 loss, minimizing (or 
approximately minimizing) R(h) is known to be NP-hard even 
for simple classes of hypotheses (Ben-David et al., 2003). 

15



Surrogate Losses
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What is a good classifier?
From a same machine learning problem, several class of 
classifiers can be used leading to the same empirical rate. 
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Overfitting 
In statistics, overfitting occurs when a model describes 
random error or noise instead of the underlying 
relationship. In ML: when a model is excessively complex
or the size of the training dataset is small (too many 
degrees of freedom w.r.t. the amount of available data). 
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Underfitting
Underfitting occurs when a statistical model or ML 
algorithm cannot capture the underlying trend of the data = 
when a model is excessively simple. 
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Bias vs Variance
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Regularization
• A way of avoiding overfitting 
• Regularization, in mathematics and statistics 

and particularly in ML, refers to a process of 
introducing additional information in 
order to solve an ill-posed problem or to 
prevent overfitting. 
This information is usually of the form of a 
penalty for complexity, such as restrictions 
for smoothness or bounds on the vector 
space norm. 
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Regularized Risk Minimization 
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Empirical estimation of the 
generalization error (true risk)

= how good your model is

1. Estimation using the learning set S
2. Estimation using a test set T 
3. Estimation by cross-validation 
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Training set Validation 
set Test set



Estimation using the learning set S
😱
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Minimize the empirical risk over the m examples of 
S to choose the hypothesis h ∈ H:

with

Drawback: too optimistic because it tends to overestimate the 
generalization ability of h, and does not allow us to detect overfitting
situations (Breiman 84). 



Estimation using the test set T
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Split in two subsets such that S = S∗ ∪ T. S∗ is used to build
h, while T is used to test h on examples that have not been 
used for its inference, but for which the label y is known. 

with

Drawback: reduces the number of examples available for 
learning h.



Estimation by cross-validation 
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Drawback: costly from a complexity point of view. 
Tricky when needed for nested cross-validation to 
tune hyperpameters too (cf. later)



Ex: 8-fold cross validation

• For each fold i: learn from yellow, test on pink à get êi

• ê = somme (êi) / 8
• variant for small dataset: leave-one-out = 1 example in 

test 
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Tuning hyperparameters
Ex: lambda
• Bad idea: choose the one with the lowest training error 

(problem of overfitting). 
• Worst idea: choose the best parameter on the test set
• Good idea: 

– Use a validation set !
– k-fold cross-validation + select the value for hyper-parameter with the 

lowest cross-validation error. 
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Hyperparameter tuning is different from model 
performance estimation
(without test set, may need 2 loops of cross-val to do both)

Ensemble 
d’entrainement

Ensemble
de

validation

Ensemble
de
test



Which hyperparameters values to test?

A way to choose the combinations of 
values for multiple hyper-parameter 
tuning (p): 

1. fix the set sz of possible values per 
hyper-parameter λz
(ex. s1 = {0.001, 0.01, 0.1, 1, 10, 
100}); 

2. compute a cross-validation for each 
combination of values (λ1, λ2, ...); 

3. select the combination of values (λ1, 
λ2, ...) that gives the best error. 

4. Total number of cross-validations:
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Types of errors
= Confusion Matrix

Prediction
(in class c) (not in class c)

True
Positive (TP)

False 
Negative (FN)

False
Positive (FP)

True Negative 
(TN)G
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Evaluation (measures) 
of a classifier

• Accuracy =  fraction of correct classifications on 
unseen data (test set, cross validation, 
bootstrap, …)

• Error rate = 1 − Accuracy
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𝑇𝑁 + 𝑇𝑃
𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃

𝑇𝑃
𝐹𝑃 + 𝑇𝑃

• Precision =

𝑇𝑃
𝐹𝑁 + 𝑇𝑃

• Recall =



Typical measures in CV
• Intersection over Union (IoU) 

for object detection

(confusion matrix depends on 
the IoU threshold)
• Mean Average Precision 

(mAP)
• Average Precision(AP) is the 

area under the 
Precision/Recall curve 
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i = 
class
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Computer Vision: Supervised Problems

Object 
detection

Instance 
segmentationSemantic 

segmentation

Object 
classification

CAR



CV Tasks for Generative Algorithms
Image generation
using Super 
Resolution GAN 
architecture
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Image generation from 
multimodal deep architechtures
• Dall-E 

(https://openai.com/dall-e-2)
• Mid-Journey
(https://www.midjourney.com/)
…

https://www.midjourney.com/


Unsupervised learning?
• E.g. Dimensionality reduction, clustering, pattern 

mining
• Optimization or combinatorial enumeration (when 

working on discrete structures) 
• Also uses regularizations (or heuristics)
• Also used in CV but

– As a preprocessing step for the previous tasks
– As a basis for generative models
– For anomaly detection

• No clear target y:
– No general loss to optimize (different for each problem, ex: 

clustering)
– No clear way to evaluate the outcome (be creative)
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Reinforcement Learning?
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• Learn more here : 
http://ivg.au.tsinghua.edu.cn/DRLCV/

• And (David Silver course on RL) 
https://www.youtube.com/watch?v=2pWv7GOvuf0


