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Who are we?

Elisa Fromont is professor at Université de Rennes (ISTIC).
She works at the IRISA/INRIA Lab in the LACODAM (“Large
Scale Collaborative Data Mining”) team.
Research domain (Al)

— XAl

— Machine Learning/Data Mining applied to

computer vision,
time series analysis,
« fraud and anomaly detection

Mail : elisa.fromont@irisa.fr

Denis Coquenet is associate professor at Université de
Rennes (ISTIC). He works at IRISA in the SHADOC team.
Research domain (Al)

— Document Analysis

— Computer vision
Mail : denis.coquenet@irisa.fr




How will | be graded?

« Final exam 1h30 (E.g. 19/01/2024 at 11h30). Exercises similar to the
ones seen during the lectures.

« Oral presentation 15" (E.g. 17/01/2024 at 16h45). In the last session.
A little manipulation of a deep neural network (group of 3 persons).
You will be provided with a learned model (Pytorch code) and
expected to :

— Explain/show (10’) to the class, the main parts of the code
— Test it (5’) on new examples (that you will provide) online in class

10 pts: you have managed to use the model (install the necessary
environment and run it).
6 pts: your 15" explanations are clear.

4 pts: bonus if you managed to do additional tasks. E.g. propose another
model for the same task, re-train the model on other data, change the output
classes, combine it with something else, .....



Which projects?

1) Classification / Vision Transformer / ImageNet

)
2) Object detection / SSD / COCO

3) Segmentation / FCN / Pascal VOC
4) Text line recognition / FCN / IAM

Each group needs to register now (3 persons per group)

on the file indicated here :
https://people.irisa.fr/Denis.Coquenet/courses/DLV.html



Outline

21h 2 parts

Part 1 (7h30)
— Intro ML and main computer vision (learning) problems (1h30)
— NN learning bases (4h00)
» Perceptron, MLP, Backprop, learning tricks
— Deep learning Basis (2h)
» Convolutional Neural Networks (CNN)

* Recurrent Neural Networks (LSTM, GRU)
+ Seq2Seq (CNN + LSTM)

Part 2 (12h00)
— Vision architectures for feature extraction (VGG, Resnet, Vision Transformer) : 3h00
— Object detection dedicated architectures (YOLO, RCNN) : 1h30
— Semantic segmentation architectures (FCN, U-Net, ...) : 1h30
— Generative models for vision : 3h

» GAN & VAE for vision
» Diffusion Models

Application (Handwriting recognition) : 1h30

* Oral Presentations : 1h30 (practical session)



Machine Learning?

Machine learning is e S L
a sub-field of Al that (§
explores the

Applications

construction and -
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Machine Learning
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study of algorithms
that enable '“:-.',if:a
machines to learn
and acquire
knowledge from past
data.
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Machine Learning Settings

Bmarg s rffcatin. mﬂ diss dastfradion

1. Supervised learning

)S< AA X¥x
(classification, regression) oooo i On |
Given a dataset (« training data ») S =
{(x;,¥y)|i = 1..n}, find a model h such that,
for any new example x (« test data »), we can

predicty (h(x) =)

2. Unsupervised learning

Automatically find relevant (to be
defined) structural information in the
data {x;|i = 1..n}

3. Reinforcement learning

Learn from experience what actions to
take to optimize a quantitative reward
over time




Supervised Machine Learning 101




Supervised Learning: Regression

The computer has access to training input examples and their
desired outputs, given by a teacher or an oracle. The aim is to
learn a general rule that maps inputs to outputs. Once learned,
the rule can be deployed on test data.

outputs = continuous values




Supervised Learning: Classification

The computer has access to training input examples and
their desired outputs, given by a teacher or an oracle. The
aim is to learn a general rule that maps inputs to outputs.
Once learned, the rule can be deployed on test data.
outputs = discrete values (labels)
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Supervised learning algorithm

Let S be a set of m training examples {z; = (x;, yi) }'", independently and
identically (i.i.d.) from an unknown joint distribution Dz over a space
zZ =4 x).

© The x; values (x; € X) are typically vectors of the form
< X1, ..., Xid >, whose components are usually called features.

@ The y values (y € Y) are drawn from a discrete set of classes
(typically Y = {—1,41} in binary classification) or are continuous
values (regression).

© We assume that there exists a target function f such that y = f(x),
(x,y) € Z.




True Risk (Generalization Error)

In order to pick the best hypothesis h*, we need a criterion
to assess the quality of any hypothesis h.

The true risk R(h) (also called generalization error) of a hypothesis h
corresponds to the expected error made by h over the entire distribution

DZZ

R(h) = Ez=(x,y)~Dz Lysn(x)

where z ~ Dz denotes that z is drawn i.i.d. from Dz.

The goal of supervised learning then becomes finding a
hypothesis h that achieves the smallest true risk.
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Empirical Risk (~ Training Error)

Unfortunately, R(h) cannot be computed because D, is unknown. We
can only measure it on the training sample S. This is called the
empirical risk.

Let S = {z; = (x;,y;)}™, be a training sample. The empirical risk 72(h)
(also called empirical error) of a hypothesis h € H corresponds to the
expected error suffered by h on the instances in S.

/\

R(h) = E{zi=(xiyi)ym, Ly#£h(x)
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0/1 Loss or Classification Error

Aloss function L : H x Z — R+ measures the
degree of agreement between h(x) and .

L(h(X), y) — ]ly;éh(x)

corresponds to the proportion of time h(x) and y agree, i.e. the
proportion of correct predictions.

In binary classification,

1 if h(x)y <0

0 otherwise

L(h(x),y) = {
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Surrogate Losses
(Convex Approximations of the 0/1 loss)

Due to the non convexity of the 0/1 loss, minimizing (or
approximately minimizing) R(h) is known to be NP-hard even
for simple classes of hypotheses (Ben-David et al., 2003).

@ the hinge loss (used in SVM):

Lhinge(h(x),y) = [1 — yh(x)]+ = max(0, 1 — yh(x))

@ the exponential loss (used in boosting):

Lexp(h(x),y) = exp(yh(x))

o the logistic loss (used in logistic regression):

Liog(h(x),y) = log(1 + exp(yh(x)))




Surrogate Losses

T

log loss: log(1+exp(-x))
hinge loss: max(0,1-x)
square loss: (1-x)"2
exp loss: exp(-x)

0/1 loss




What is a good classifier?

From a same machine learning problem, several class of
classifiers can be used leading to the same empirical rate.
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Overfitting

In statistics, overfitting occurs when a model describes
random error or noise instead of the underlying
relationship. In ML: when a model is excessively complex
or the size of the training dataset is small (too many
degrees of freedom w.r.t. the amount of available data).
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Underfitting

Underfitting occurs when a statistical model or ML
algorithm cannot capture the underlying trend of the data =
when a model is excessively simple.
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Bias vs Variance
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Regularization

« A way of avoiding overfitting

» Regularization, in mathematics and statistics
and particularly in ML, refers to a process of
introducing additional information in
order to solve an ill-posed problem or to
prevent overfitting.

This information is usually of the form of a
penalty for complexity, such as restrictions
for smoothness or bounds on the vector
space norm.

21



Regularized Risk Minimization

New optimization problem:

h = argmin R(h;) + A||hil|
h,eH
where

@ )\ is the regularization parameter (or hyper-parameter)

@ ||.|| is a norm function

We select a hypothesis h that achieves the best trade-off between
empirical risk minimization and regularization.




Empirical estimation of the

generalization error (true risk)
= how good your model is

1. Estimation using the learning set S
2. Estimation using atestset T

3. Estimation by cross-validation

A
[ |

Validation

Training set Test set
set
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Estimation using the learning set S

o

Minimize the empirical risk over the m examples of
S to choose the hypothesis h € H:

with h = arg min R(h;)
hieH

RE(h(x), y) = — > £(h(x:), )
=1

Drawback: too optimistic because it tends to overestimate the
generalization ability of h, and does not allow us to detect overfitting
situations (Breiman 84).
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Estimation using the test set T

Split in two subsets such that S= S*u T. S* is used to build
h, while T is used to test h on examples that have not been
used for its inference, but for which the label y is known.

h = arg min R(h;)
. hieH
with .

RE(h(x).y) =77 L £(h(x).)

Drawback: reduces the number of examples available for
learning h.
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Estimation by cross-validation

Input: A learning algorithm L, a set of training examples S
Dutput: an estimate €,
Divide randomly § 1n & subsets Sy, ..., Sg;
or i=1/ to kdo
L Run L on the sample S — S; and generate the classifier A;;

Deduce the estimate of the real risk such that €, = L 7% €,, Where €, is the

error rate of h; on the subset S;;

Drawback: costly from a complexity point of view.
Tricky when needed for nested cross-validation to
tune hyperpameters too (cf. later)
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Ex: 8-fold cross validation

* For each fold i: learn from yellow, test on pink - get &

« é=somme (€)/8
 variant for small dataset: leave-one-out = 1 example in
test
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Tuning hyperparameters

Ex: lambda

 Bad idea: choose the one with the lowest training error
(problem of overfitting).

 Worst idea: choose the best parameter on the test set

« Good idea:

— Use a validation set !

— k-fold cross-validation + select the value for hyper-parameter with the
lowest cross-validation error.

, Hyperparameter tuning is different from model
performance estimation

(without test set, may need 2 loops of cross-val to do both)

28



Which hyperparameters values to test?

A way to choose the combinations of =
values for multiple hyper-parameter
tuning (p):

1. fix the set s, of possible values per
hyper-parameter A,
(ex. s; ={0.001, 0.01, 0.1, 1, 10,

100});
2. compute a cross-validation for each |- e
combination of values (A4, A,, ...); > accuracy =090
3. select the combination of values (A, S -
A,, ...) that gives the best error. Patsanti

4. Total number of cross-validations:

10-fold CV
» accurac y=0.95




Ground Truth

(not in class ¢) (in class ¢)

Types of errors
= Confusion Matrix

Prediction

(in class c)

(not in class ¢)

True
Positive (TP)

False
Negative (FN)

False
Positive (FP)

True Negative
(TN)




Evaluation (measures)
of a classifier

Accuracy = fraction of correct classifications on
unseen data (test set, cross validation,

bootstrap, ...) TN +TP

TN+ FP+FN+TP
Error rate = 1 — Accuracy

Estimate

TP : G - Gz &
FP+TP

TP
FN + TP

Precision =

Recall =
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Typical measures in CV

Intersection over Union (loU)
for object detection

Area of Overlap

loU =
Area of Union

(confusion matrix depends on
the loU threshold)

Mean Average Precision
(MmAP)

Average Precision(AP) is the
area under the
Precision/Recall curve

. SR ey
Hooii B
nding box" -

. _Predicted bounding box
; SRS _

;
mAP = — Zl AP,

Mean Average Precision Formula
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Computer Vision: Supervised Problems

Object
detection
Object
classification
Instance
Semantic segmentation

segmentation

KK]



CV Tasks for Generative Algorithms

Image generation
using Super
Resolution GAN
architecture

Image generation from
multimodal deep architechtures
« Dall-E
(https://openai.com/dall-e-2)
. Mid-Journey PR e
(https://www.midjourney.com/) REoRnE omas ieed withilele

the style of sharp & vivid colors,
luminous 3d objects, colorful portraits...

myl mymidjourney]l
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https://www.midjourney.com/

Unsupervised learning?

E.g. Dimensionality reduction, clustering, pattern
mining

Optimization or combinatorial enumeration (when
working on discrete structures)

Also uses regularizations (or heuristics)

Also used in CV but
— As a preprocessing step for the previous tasks
— As a basis for generative models
— For anomaly detection

No clear target y:

— No general loss to optimize (different for each problem, ex:
clustering)

— No clear way to evaluate the outcome (be creative)
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Reinforcement Learning?

Deep Rei nforcement Learning for Computer Vision

-Beach, w- :

ﬁ
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« Learn more here :
http://ivg.au.tsinghua.edu.cn/DRLCV/

* And (David Silver course on RL)
https://www.youtube.com/watch?v=2pWv7GOvuf0
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