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Goals of this course

Knowledge
Key principles of GAN and diffusion models
Advantages/drawbacks of both approaches
Be aware of ethical issues
Limitations of the evaluation approaches

Skills and know-how
Distinguish discrimative and generative tasks
Use off-the-shelf models (practical session)
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Generative VS discriminative

Discrimative model
Learn a probability distribution p(c|x) of a given set of classes c ∈ C
= what is the probability that image x belongs to class c
= competition between classes

➤ Impossible to handle unknown classes
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Generative VS discriminative

Generative model
Learn a probability distribution of the images p(x)
= what is the probability that image x belongs to the distribution ?
= competition between all images

➤ Needs a high-level image understanding

M2 SIF - DLV Deep Learning for Vision (DLV) - Generative models 4 / 77



Generative tasks

Image generation from scratch
Style transfering
Text-to-image generation
Image edition
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Generative tasks

Why?

Tools for artists / designers
Image upscaling
Social networks (face swapping, filters)

Challenges
The generated images must be various but coherent
Images must reflect the user’s wishes
Images can be of several nature: photorealistic, cartoon, painting
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Evaluation

Hard to evaluate
What is a good generated image?
➤ Depends on the goal

General goals:
Realism/Creative (given context)
Diversity

Approaches

Human evaluation (subjective, costly, biased)
Automatic evaluation (limited by model capacity)

Task-driven (e.g., result of classification model)
Distribution comparison between real/generated images
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Univariate Fréchet Distance

Goal
➤ Compute the distance between two distributions
X ∼ N (µX , σX) and Y ∼ N (µY , σY )

Fréchet distance

d(X,Y ) = (µX − µY )
2 + (σX − σY )

2

d(X,Y ) = 0 ⇔ µX = µY and σx = σy

➤ The lower the better
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Evaluation

Fréchet Inception Distance (FID)

Idea: compute distance between distributions of real and generated images
X: a set of real images
Y : a set of generated images
The distance is computed in the feature space using an Inception model pre-trained on
ImageNet, without the classification layer (vector of 2048)

FID(X,Y ) = ||µX − µY ||22 + Tr(ΣX +ΣY − 2(ΣXΣY )
1
2 )

with µX , µY the means, ΣX ,ΣY the covariance matrices and Tr the trace function
(sum of diagonal values)

➤ Requires enough data to be representative (>10,000)
➤ Can be long to compute
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Approaches

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models
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GAN (2014) [1]

➤ Generative Adversarial Networks

Idea
➤ Generate artificial images that look like a target domain
➤ A noise-to-image process to generate many different images

How
➤ Unsupervised representation learning
➤ Capture data distribution through discrimination between real/generated data

M2 SIF - DLV Deep Learning for Vision (DLV) - Generative models 11 / 77



GAN (2014) [1]

Generator G
z ∼ pz
(noise)

G(z)
(fake image)

x ∼ pdata
(real image)

Discriminator D
ŷ ∈ [0, 1]

(prediction)

A minimax two-player game approach
A generative model G:
➤ Generate samples as plausible as possible (w.r.t. the problem domain)
A discriminative model D:
➤ Classify samples as real (1=from domain) or fake (0=generated by D)
G tries to fool D, and D tries not to be fooled
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GAN (2014) [1]

Discriminator objective
➤ Maximize classification between real and generated examples

max
θd

[Ex∼pdata(x) logDθd(x)︸ ︷︷ ︸
descriminator output

for real examples

+Ez∼pz(z) log(1−Dθd(Gθg(z)))︸ ︷︷ ︸
descriminator output

for generated examples

]

Dθd(x) → 1 and Dθd(Gθg(z)) → 0

Generator objective
➤ Minimize classification performance = improve generation

min
θg

[Ez∼pz(z) log(1−Dθd(Gθg(z)))]

Dθd(Gθg(z)) → 1
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GAN (2014) [1]

Global objective function

min
θg

max
θd

[Ex∼pdata(x) logDθd(x) + Ez∼pz(z) log(1−Dθd(Gθg(z)))]

➤ Opposite goals

Training approach
➤ Alternate training between generator and discriminator
➤ Generator and discriminator implemented as MLP
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GAN (2014) [1]

Domain (black), discriminative (blue), generative (green) distributions

(a) D partially accurate, G differs from domain distribution
(b) D is further trained
(c) G is trained to fool D, which is frozen
➤ (b) and (c) repeated until:
(d) Cannot improve more: G(z) = pdata and D(x) = D(G(z)) = 1

2 .
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GAN (2014) [1]

➤ Predictions

Real samples are framed in yellow

➤ Hard to train
➤ Noisy predictions
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Deep Convolutional GAN (2015) [2]

➤ Arithmetic properties on noise space

Input vectors are averaged for three examples
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Deep Convolutional GAN (2015) [2]

A turn vector is computed from faces turning right or left
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Conditional GAN (2017) [3]

➤ Condition the generation process with an input image
Noise modeled as dropout in generative model
→ weak modifications for same input
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Conditional GAN (2017) [3]

➤ Can handle several image-to-image translation tasks
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Conditional GAN (2017) [3]

➤ Day to night

➤ Examples from the community
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Super resolution (2017) [4]

➤ Upsample (x4) low-resolution image
Y = original image (high resolution), X = degraded image

Which one is the original image ?
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Metrics

Peak Signal-to-Noise (PSNR)

PSNR = 20 log10

(
max(y)√
MSE(x, y)

)

Structural Similarity Index Measure (SSIM)

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ

Luminance: l(x, y) =
2µxµy + cl
µ2
x + µ2

y + cl

Contrast: c(x, y) =
2σxσy + cc
σ2
x + σ2

y + cc

Structure: s(x, y) =
2σxy + cs

σx + σy + cs
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Super resolution (2017) [4]

➤ Be careful with metrics!

Bicubic interpolation vs MSE-based training vs GAN-based training (PSNR/SSIM)

"PSNR and SSIM fail to capture image quality with respect to human the visual system"
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Cycle GAN (2017) [5]

➤ Translation between two domains, in both directions
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Cycle GAN (2017) [5]

Two domains: X, Y
Two generators: GX : Y → X, GY : X → Y
Two discriminators: DX : X → [0, 1], DY : Y → [0, 1]

➤ No need for paired data: only two sets of unlabeled data
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Cycle GAN (2017) [5]

GAN loss for X → Y

LGAN(GY , DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+ Ex∼pdata(x)[log(1−DY (GY (x)))]

Cycle consistency loss

Lcycle(GX , GY ) = Ex∼pdata(x)[||GX(GY (x))− x||1]
+ Ey∼pdata(y)[||GY (GX(y))− y||1]

Global loss

L = LGAN(GY , DY , X, Y ) + LGAN(GX , DX , Y,X) + Lcycle(GX , GY )
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Cycle GAN (2017) [5]

➤ Works well for texture/color changes
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Cycle GAN (2017) [5]

➤ Failure cases:

Geometric modifications
Out-of-domain data
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Style GAN (2019) [6]

➤ Enable control of the synthesis
➤ Include stochastic variation
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Style GAN (2019) [6]

➤ Use mapping network for disentanglement

"There are various definitions for disentanglement, but a common goal is a latent space
that consists of linear subspaces, each of which controls one factor of variation."

Adaptive Instance Normalization

➤ Representation w is used to extract several styles y = (ys, yb)

AdaIN(xi, y) = ys,i
xi − µxi

σxi

+ yb,i

Styles are applied per channel i, on whole 2D latent representations
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Style GAN (2019) [6]

➤ Mixing styles from two samples (zA, zB)
(using wB for specific layers and wA for the others)
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Style GAN (2019) [6]

➤ Noise is added at each layer at pixel level, enabling low-level variation while preserving
style
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GAN: conclusion

➤ GAN: a revolution in generative models (quality, resolution) but hard to train

Vanishing gradient
Discriminator too good: loss becomes very low, gradient too: no feedback for generator

Convergence issues

Generator sufficiently good (discrimator: 50% accuracy): cannot improve more, receive
junk feedback from discriminator

Mode collapse
The generator find an example which fool very well the discriminator and start
producing always the same outputs, while discriminator stuck in local minima
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Idea

Diffusion [7]

"The essential idea, inspired by non-equilibrium statistical physics, is to systematically
and slowly destroy structure in a data distribution through an iterative forward diffusion
process. We then learn a reverse diffusion process that restores structure in data,
yielding a highly flexible and tractable generative model of the data"
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Naive approach

Goal: from a complex, unknown data distribution to a gaussian distribution

Let x0 ∼ q(x) be the input image from the real data distribution and ϵt ∼ N (0, I) a
gaussian noise.
We want xT ∼ N (0,1) after t iterations

Naive iterative noising process

xt = xt−1 + ϵt−1

X ∼ N (µ, σ2) ⇔ X = µ+ σϵ with ϵ ∼ N (0, 1)
=⇒ xt ∼ N (xt−1, I)
=⇒ xt ∼ N (x0, tI)

Issues
Var(xt) keeps increasing with t
Mean remains the same
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Denoising Diffusion Probabilistic Models (DDPM, 2020) [8]

Forward diffusion process: Markov chain

xt =
√

1− βtxt−1 +
√
βtϵt−1

q(xt|xt−1) = N (xt;µ =
√
1− βtxt−1, σ

2 = βtI)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

βt: variance schedule (0 < βt < 1)
➤ A step-by-step process from original image x0 to pure noise xT
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Reparametrization trick

Property

If X ∼ N (µX , σ2
X), Y ∼ N (µY , σ

2
Y ) and Z = X + Y

then Z ∼ N (µX + µY , σ
2
X + σ2

Y )

By defining αt = 1− βt and ᾱt =
∏t

s=0 αs

xt =
√

1− βtxt−1 +
√
βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αt
√
αt−1xt−2 +

√
αt

√
1− αt−1ϵt−2︸ ︷︷ ︸

∼N (0,αt(1−αt−1))

+
√
1− αtϵt−1︸ ︷︷ ︸
∼N (0,1−αt)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2

=
√
ᾱtx0 +

√
1− ᾱtϵ

ᾱt can be precomputed → xt can be calculated for any t directly.
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Forward process properties

Recall

xt ∼ N (
√
ᾱx0,

√
1− ᾱI)

αt = 1− βt
ᾱt =

∏t
s=0 αs

Converge to N (0, I)

Choosing 0 < βt < 1
⇒ 0 < αt < 1
⇒ lim

t→+∞
ᾱt = 0

⇒ xT ∼ N (0, I) if T high enough
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Choice of βt

Too low (βt = 0.001 ∀t): too many iterations

Too high (βt = 0.1 ∀t): too much noise, difficult to learn transition

Linear from β0 = 0.0001 to βT = 0.2
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Reverse diffusion process

➤ From noise to image

Initial state
p(xT ) = N (xT ;0, I)
We need p(xt−1|xt) to reverse the process, but intractable!
➤ Learn it with neural networks instead: pθ(xt−1|xt)

Iterative denoising process

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
θ(xt, t))

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)
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Training

Loss function

L = Ex0,t,ϵ[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ︸ ︷︷ ︸

xt

, t)||2]

➤ Difference between added noise ϵ and predicted noise ϵθ(xt, t)
➤ ϵθ implemented as U-Net

M2 SIF - DLV Deep Learning for Vision (DLV) - Generative models 42 / 77



Sampling

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
θ(xt, t))

µθ(xt, t) =
1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t))

σ2
θ(xt, t) = σ2

t = βt

➤ Long sampling time: T steps to generate an image
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Denoising Diffusion Implicit Models (DDIM, 2021) [9]

Idea
Use a non-markovian process to skip steps when sampling

➤ 10-50 times faster

M2 SIF - DLV Deep Learning for Vision (DLV) - Generative models 44 / 77



Score-based generative modeling (2019) [10]

What is a score function?
Let p(x) be a Probability Density Function (PDF)
The score function of p is defined as:

s(x) = ∇x log p(x)

= direction vector to maximize probability
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Score-based generative modeling (2019) [10]

2D example

Density Score
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Score-based generative modeling (2019) [10]

Goal
Approximate the score function with a neural network sθ(x)

min
θ

Ep(x)[||s(x)− sθ(x)||22]

➤ But s(x) is unknown!

Equivalence

min
θ

Ep(x)

[
tr(∇xsθ(x)) +

1

2
||sθ(x)||22)

]
Only depends on sθ(x)
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Score-based generative modeling (2019) [10]

Sampling (denoising) with Langevin dynamics

xt−1 = xt + ϵsθ(xt) +
√
2ϵzt−1

zt ∼ N (0, 1)
ϵ: a fixed step size
➤ Repeat T times from xT ∼ N (0, 1) to x0

xT xt x0
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Diffusion guidance

Goal
Guiding the generation process

Conditioned generation
Add instruction as input to generate a specific item

Guiding the generation process

Use ∇x log p(x|y) instead of ∇x log p(x)
where y is an additional input which specifies what we want to generate

M2 SIF - DLV Deep Learning for Vision (DLV) - Generative models 49 / 77



Diffusion guidance

How to compute ∇x log p(x|y) ?

Bayes’ rule

p(x|y) = p(y|x) · p(x)
p(y)

log p(x|y) = log p(y|x) + log p(x)− log p(y)︸ ︷︷ ︸
∇x log p(y)=0

∇x log p(x|y) = ∇x log p(y|x) +∇x log p(x)
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Diffusion Models Beat GANs on Image Synthesis (2021) [11]

➤ ∇x log p(y|x) can be obtained using a classifier

Classification task
Learn pθ(y|x)
x: input image
y: class

Tuning the guidance impact
Introduction of a guidance scale γ:

∇x log pγ(x|y) = ∇x log p(x) + γ∇x log p(y|x)

➤ Needs to train a classifer on noisy images
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Diffusion Models Beat GANs on Image Synthesis (2021) [11]
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Classifier-free guidance

∇x log pγ(x|y) = ∇x log p(x) + γ∇x log p(y|x)

Bayes’ rule

p(y|x) = p(x|y) · p(y)
p(x)

log p(y|x) = log p(x|y) + log p(y)︸ ︷︷ ︸
∇x log p(y)=0

− log p(x)

∇x log p(y|x) = ∇x log p(x|y)−∇x log p(x)

⇒ ∇x log pγ(x|y) = (1− γ)∇x log p(x)︸ ︷︷ ︸
unconditional

+γ∇x log p(x|y)︸ ︷︷ ︸
conditional

➤ can be jointly train with a single diffusion model by dropping-out the conditional term
(10%-20% of the time)
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GLIDE (2022) [12]

➤ Guided Language to Image Diffusion for generation and Editing (GLIDE)

Compare (classifier-free) text guidance:

∇x log pγ(x|y) = (1− γ)∇x log p(x) + γ∇x log p(x|y)

with CLIP guidance:

∇x log pγ(x|y) = ∇x log p(x) + γ∇x (f(x) · g(y))

+ Super Resolution
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CLIP (2021) [13]

➤ Contrastive Language-Image Pre-training (CLIP)

Idea
Jointly train two encoders to avoid human annotation effort:

An image encoder f : ResNet/ViT
A text encoder g: transformer

➤ Both encoders are trained to generate a fixed-length latent representation from
text/image input sharing the same feature space

How?
Constrative learning between images and captions
➤ 400 million pairs (image, text) collected from the web
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CLIP (2021) [13]

x: image
y: caption

Image encoder: f(x) = I

Text encoder: g(y) = T

Symmetric loss

L =
1

2

( N∑
i=1

LCE(ŷ
I
i , y

I
i )︸ ︷︷ ︸

image i compared
to all texts

+

N∑
t=1

LCE(ŷ
T
t , y

T
t )︸ ︷︷ ︸

text t compared
to all images

) ŷIi,j = Ii · Tj

ŷTt,j = Ij · Tt
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Image super-resolution with diffusion [14]

➤ Image-conditioned guidance

Diffusion-based upscaling task
Generate high-resolution image from noise, conditioned on low-resolution image

16× 16 → 128× 128 pixels
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Image super-resolution with diffusion [14]

➤ Comparison with other approaches

64× 64 → 512× 512 pixels
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GLIDE (2022) [12]

➤ Classifier-free guidance better than CLIP guidance
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GLIDE (2022) [12]

➤ Image inpainting = image edition based on text and mask

Image inpainting task
Generate image from noise, conditioned on text and masked original image
= text-guided and image-guided

M2 SIF - DLV Deep Learning for Vision (DLV) - Generative models 60 / 77



GLIDE (2022) [12]

➤ Combining image generation and image inpainting

1) Generate first image from noise, conditioned by text
2) Update specific part of image from image, conditioned by masked image and text
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DALL-E 2 (2022) [15]

CLIP: align image/text representations
Prior P (zi|y): produces CLIP image embeddings zi conditioned on caption y =
diffusion
Decoder P (x|zi, y): produces image x conditioned on CLIP image embedding zi
(and optionally caption y) = diffusion
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DALL-E 2 (2022) [15]

CLIP with image encoder f and text encoder g

Given an input couple (image x, caption y):
zi = f(x)
zt = g(y)

Prior p
Generate z̃i with diffusion model conditioned on:

Transformer-encoded caption
CLIP-encoded caption (optionally)

Lprior = Et,zi [||z̃ti − zi||]
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DALL-E 2 (2022) [15]

Decoder
Generate 64× 64 image x̃ with diffusion model conditioned on:

Prior output z̃i (zi at training time)
Caption

Both conditions are randomly dropped to boost performance

Upscaling
Two upscaling stages:

64× 64 → 256× 256 diffusion model
256× 256 → 1024× 1024 diffusion model

Text conditioning useless from experiments
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DALL-E 2 (2022) [15]

➤ Examples

Input: "panda mad scientist mixing sparkling
chemicals, artstation"

Input: "a dolphin in an astronaut suit on
saturn, artstation"
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DALL-E 2 (2022) [15]

➤ Diffusion model stochasticity

Input: image x

Compute CLIP image embedding zi = g(x)

Decoder forward process with zi
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DALL-E 2 (2022) [15]

➤ Image interpolation

Input: images x1 and x2

Compute CLIP image embedding z1i = g(x1) and z2i = g(x2)

Compute interpolation embedding zi from z1i and z2i

Decoder forward process with zi
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DALL-E 2 (2022) [15]

➤ CLIP-based image edition trick

Input: couple (image x, caption y) + goal caption y∗

Compute difference vector zd between CLIP-encoded texts f(y) and f(y∗)

Gradually modify CLIP image embedding g(x) with respect to zd

Generate image from this altered image embedding
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Imagen (2022) [16]

➤ Another text-to-image diffusion model
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Imagen (2022) [16]

➤ Text-only encoder (T5) with very
large dataset is better than image-text
encoder (CLIP) with less data for
text-to-image generation

➤ Scaling text encoder more efficient
than scaling diffusion part
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Imagen (2022) [16]

➤ Improvements for some cases
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Imagen (2022) [16]

➤ Still some failure cases
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Diffusion results comparison (from Imagen paper)

➤ Evaluation on the MS COCO validation set
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Text-to-image generation

Plenty of models

GLIDE, DALL-E (OpenAI)
Imagen (Google)
CM3leon (Meta)
MidJourney (Independent)
Stable Diffusion (Stability AI, open source)

➤ What about training data? Intellectual property?
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Conclusion
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Conclusion

from www.trends.google.fr
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Conclusion

Two approaches for a same goal
GAN: generator vs discriminator
Diffusion: denoising process

Realism
Diffusion models mark a new stage in the generation of ultra-realistic photos
➤ Adaptation to video
➤ Be careful with deepfakes
➤ The beginning of a new era in cinema?

➤ Next time: practical session!
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