Deep Learning for Vision (DLV) Handwritten Text Recognition

Denis Coquenet

2024-2025

Goals of this course

Knowledge

- How CTC works?
- Advantages/drawbacks of CTC and Attention paradigms
- Differences between line-level and end-to-end approaches for text recognition

Skills and know-how

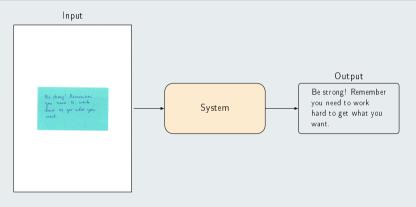
- Compute Levenshtein distance, CER and WER between two sequences of characters/words
- Apply the decoding process of the CTC: from probability lattice to final string prediction
- Propose an approach to handle an image-to-sequence task

Table of contents

- HTR task
 - What? Why?
 - Evaluation
- 2 Line-level approach
- 3 End-to-end approach

Handwritten Text Recognition (HTR)

An image-to-sequence problem



Input: an image $oldsymbol{X} \in \mathbb{R}^{H imes W imes C}$

Output: a sequence of characters $m{y}$ (with $m{y}_i \in \mathcal{A}$, an alphabet)

HTR task

Why?

- Transcription of historical documents
- Industrial document processing: bank checks, forms, invoices
- Real-time document translation
- Exam correction

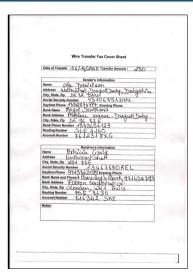
Challenges

- Writing style variety
- Heterogeneous layouts / background
- No a priori reading order, number of characters to recognize

to the children any more but those hopes were dashed. harvest of which may when they went to bed Shi will undulahi o

➤ Spacing, character shapes, slant, color, stroke width

Challenges: layout



➤ The reading order is conditioned by the layout

Challenges: background

➤ Non-textual items, slanted lines

Evaluation

Metrics

Character Error Rate (CER) and Word Error Rate (WER) = edit distance between sequences of characters (or words)

$$\mathsf{CER} = \frac{I + D + S}{N}$$

I: number of insertions

D: number of deletions

S: number of substitutions

N: number of characters in the ground truth sequence

Evaluation

Example

Ground truth: "SUNDAYS"
Prediction: "SATURDAY"

- S A T U R D A
- S U N D A Y S No edition Substitution

Metrics

$${\sf CER} = \frac{I + D + S}{N} = \frac{1 + 2 + 1}{7} \simeq 57.14\%$$

Deletion

Addition

Levenshtein distance (= edit distance)

The Levenshtein distance d_{lev} between two sequences of tokens s_A and s_B is defined as:

$$d_{\mathsf{lev}}(\boldsymbol{s}_A, \boldsymbol{s}_B) = \begin{cases} \max(|\boldsymbol{s}_A|, |\boldsymbol{s}_B|) & \text{if } \min(|\boldsymbol{s}_A|, |\boldsymbol{s}_B|) = 0 \\ d_{\mathsf{lev}}(\boldsymbol{s}_{A_{[1:]}}, \boldsymbol{s}_{B_{[1:]}}) & \text{if } \boldsymbol{s}_{A_0} = \boldsymbol{s}_{B_0} \\ d_{\mathsf{lev}}(\boldsymbol{s}_{A_{[1:]}}, \boldsymbol{s}_B) & \textit{del.} \\ d_{\mathsf{lev}}(\boldsymbol{s}_A, \boldsymbol{s}_{B_{[1:]}}) & \textit{ins.} & \text{otherwise} \\ d_{\mathsf{lev}}(\boldsymbol{s}_{A_{[1:]}}, \boldsymbol{s}_{B_{[1:]}}) & \textit{sub.} \end{cases}$$

➤ Implementation with dynamic programming

Levenshtein distance

		s	Α	Т	U	R	D	Α	Υ
	0	1	2	3	4	5	6	7	8
s	1	?							
U	2								
N	3								
D	4								
Α	5								
Υ	6								
s	7								

Matrix D

$$D_{i,j}=\minegin{cases} 1+D_{i-1,j}& ext{ins.}\ 1+D_{i,j-1}& ext{del.}\ D_{i-1,j-1}+egin{cases} 0& ext{if }m{s}_{A_i}=m{s}_{B_j}\ 1& ext{otherwise} \end{cases}$$

Here:

$$D_{1,1} = \min \begin{cases} 1 + D_{0,1} \\ 1 + D_{1,0} \\ D_{0,0} + 0 \end{cases} = \min \begin{cases} 1 + 1 \\ 1 + 1 \\ 0 \end{cases} = 0$$

Levenshtein distance

		s	Α	Т	U	R	D	Α	Υ
	0	1	2	3	4	5	6	7	8
s	1	0	1	2	3	4	5	6	7
U	2	1	1	2	2	3	4	5	6
N	3	2	2	2	3	3	4	5	6
D	4	3	3	3	3	4	3	4	5
Α	5	4	3	4	4	4	4	3	4
Υ	6	5	4	4	5	5	5	4	3
s	7	6	5	5	5	6	6	5	4

Determining path: from bottom-right to top-left

➤ Select a minimum between adjacent values

Reading path: from top-left to bottom-right Diagonal cell: keep if same value, substitution otherwise

Right cell: removal Bottom cell: addition

To go from SATURDAY to SUNDAYS: Keep S, Substitue "A" by "U", Remove "T", Remove "U", Substitue "R" by "N", Keep "D", Keep "A", Keep "Y", Add "S"

Exercise

Compute the WER for the following sequences using the dynamic programming algorithm:

Ground truth: "The dog is brown"

Prediction: "The brown dog"

Correction

Ground truth: $s_A = ['The', 'dog', 'is', 'brown']$

Prediction: $s_B = ['The', 'brown', 'dog']$

		The	dog	is	brown
	0	1	2	3	4
The	1	0	1	2	3
brown	2	1	1	2	2
dog	3	2	1	2	3

(1) From GT to prediction

		The	brown	dog
	0	1	2	3
The	1	0	1	2
dog	2	1	1	1
is	3	2	2	2
brown	4	3	2	3

(2) From prediction to GT

WER =
$$\frac{d_{\text{lev}}(s_A, s_B)}{|s_A|} = \frac{3}{4} = 75\%$$

➤ Interpretation (1): Keep 'The', Add 'brown', Keep 'dog', Remove 'is', Remove 'brown'

➤ Interpretation (2): Keep 'The', Remove 'brown', Keep 'dog', Add 'is', Add 'brown'

Approaches

➤ Two main approaches

A sequential paradigm at line level

The recognition process is split into three steps that are performed sequentially: segmentation, ordering and recognition

➤ Mature approach

An end-to-end paradigm

The recognition of a whole document is performed in a single step

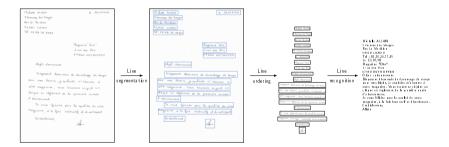
➤ Proposed in 2023

Table of contents

- 1 HTR task
- 2 Line-level approach
 - Line segmentation
 - Line ordering
 - Line recognition
 - Connectionist Temporal Classification
 - Attention-based recognition
- 3 End-to-end approach

The line-level sequential paradigm

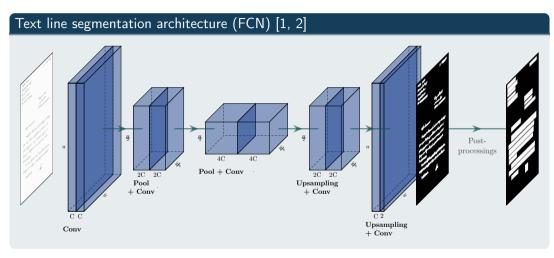
- Segmentation
- Ordering
- Recognition



Exercise

How would you solve the segmentation task? Which kind of model? Which loss?

Segmentation stage



Could also be solved with an object detection approach [3]

Ordering stage

A rule-based approach

Intuition: order bounding boxes from top to bottom and from left to right for most Latin languages.

Expected reading order by column.

À: Stéphane Lacroix
Téléphone: 03 70 76 25 55
Télécopie: 03 70 76 25 60
Nom de la Société: CHARCUTY'S STE

Expected reading order by row.

➤ Must be adapted given the layout/dataset → human effort

Recognition stage

Goal

Input: 2D image $\boldsymbol{X} \in \mathbb{R}^{H \times W \times C}$

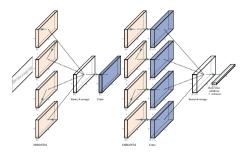
Output: 1D sequence of characters $oldsymbol{y}$ of length L_y

- ➤ How to go from 2D input to 1D output?
- ➤ How to predict an ordered output whose length does not depend on that of the input?

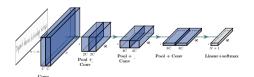
Before ~ 2005

- Character segmentation
- Character classification
- ➤ Requires segmentation network (costly annotations) + ordering

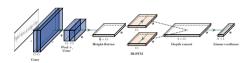
Recognition stage (until \sim 2020)



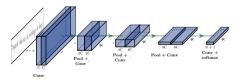
CNN + Multi-Dimensional LSTM [4, 5]



CNN [8, 9]



CNN + Bidirectional LSTM [6, 7]



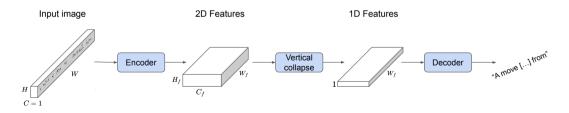
FCN [10, 11]

Recognition stage (until \sim 2020)

➤ Many architectures...

... but a common approach

- Extraction of 2D feature maps
- Collapse of the verticale axis (pooling/convolution with vertical kernel)
- Decoding with CTC



Decoding stage

Goal

Handle the alignment between two 1D sequences of different length:

- ullet 1D sequence of probability vectors (prediction $oldsymbol{p} \in \mathbb{R}^{W_f imes |\mathcal{A}|})$
- ullet 1D sequence of characters (ground truth $oldsymbol{y} \in \mathcal{A}^{L_y}$)

Input side:

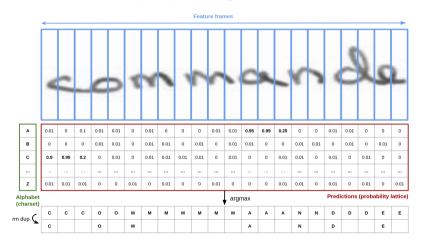
➤ A character can be written over a variable number of pixels

Output side:

 \blacktriangleright No a priori knowledge about L_y

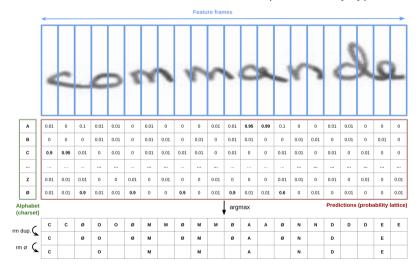
Naive approach

Frame-by-frame classification + post-processing



➤ Final prediction: "comande" ≠ "commande"

▶ Introduction of a new token: CTC blank token \varnothing ($\mathcal{A}^* = \mathcal{A} \cup \{\varnothing\}$)



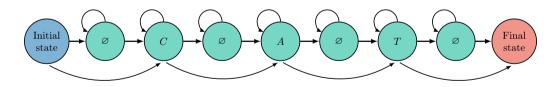
➤ How to train a model to generate a correct probability lattice?

What is a correct prediction sequence?

Let $\beta: \mathcal{A}^{*^L} \mapsto \mathcal{A}^{\leq L}$ be the mapping function which first remove all the successive duplicated predictions, and then remove all the blank tokens \varnothing .

For example, for the ground truth "CAT":

$$\beta(CAAAT) = \beta(CAT) = \beta(C\varnothing AAT) = CAT$$
, but $\beta(CCA\varnothing AT) = CAAT$



Automaton describing a correct prediction

 $m \sim$ Training must maximize the prediction of any prediction sequence (also known as path π) leading to y

Equivalent to minimizing $-\ln$

$$\mathcal{L}_{\mathrm{CTC}}(\boldsymbol{p}, \boldsymbol{y}) = -\ln p(\boldsymbol{y}|\boldsymbol{p})$$

with $\boldsymbol{p} = f_{\theta}(\boldsymbol{X})$

Probability of u

$$p(\boldsymbol{y}|\boldsymbol{p}) = \sum_{\boldsymbol{\pi} \in \mathcal{B}^{-1}(\boldsymbol{y})} p(\boldsymbol{\pi}|\boldsymbol{p})$$

= all paths that lead to y through β

Probability of a specific path π

$$p(oldsymbol{\pi}|oldsymbol{p}) = \prod_{t=1}^{W_f} oldsymbol{p}_{oldsymbol{\pi}^t}^t, orall oldsymbol{\pi} \in \mathcal{A}^{*^{W_f}}$$

where $m{p}_{m{\pi}^t}^t$ is the probability of observing label $m{\pi}^t$ at position t in the input sequence $m{p}$

			p^3							
C	0:1-	- 0:9	0.8	0	0.1	0	0.1	0.2	0	0.1
Α	0.1	0	0.8 0 .1 -	- 0.2-	-0.7 -	-0.1	- 0. 1.	0.2	0.1	0.1
Т	0.1	0.05	0.75	0.1	0.1	0.2	0.2	0.5-	-0 .9 -	-0. 8
Ø	0.7	0.05	0.25	0.7	0.1	0.7	0.6	0.1	0	0

		p^2								
C	0.1	0.9	8.0	D.	0.1	0	0.1	0.2	0	0.1
Α	0.1	0	0.1	0.2	0.7-	- 0.4 -	-0.1	0.2	0.1	0.1
Т	0.1	0.9 0 0.05	0.75	0.1	0.1	0.2	0.2	0.5	0.9	8.0
Ø	0.7-	-0.05-	- 0. 2 5	0.7	0.1	0.7	0.6	0.1	` - -	- - 0

➤ Computed with dynamic programming

Best path decoding (greedy search)

The best path is computed by keeping the character with maximum probability at each step

$${m \pi^*}^t = rg \max {m p}^t$$

	p^1	p^2	p^3	p^4	p^5	p^6	p^7	p^8	p^9	p^{10}
С	0.1	0.9-	0.8	0	0.1	0	0.1	0.2	0	0.1
Α	0.1	/ 0	0.1	0.2	0.7	0.1	0.1	0.2	0.1	0.1
Т	0.1	0.05 0.05	0.75	0.1	0.1	0.2	0.2	0.5-	-0 .9 -	-0. 8
Ø	0.7	0.05	0.25	0.7	0.1	0.7-	-0.6	0.1	0	0

$$\boldsymbol{\pi^*} = \varnothing \mathsf{CC} \varnothing \mathsf{A} \varnothing \mathsf{TTT}$$
$$p(\boldsymbol{\pi^*}|\boldsymbol{p}) = 0.7 \times 0.9 \times 0.8 \times 0.7 \times 0.7 \times 0.7 \times 0.6 \times 0.5 \times 0.9 \times 0.8$$

➤ Very fast decoding approach (all steps are processed independently, in parallel)

Given an alphabet $\mathcal{A}^* = \{A, C, T, \varnothing\}$ and the following probability lattice:

- Deduce the best path chosen with best path decoding approach. Compute its probability.
- What are the paths that lead to the prediction "C" after CTC decoding? Compute the associated probability p("C").
- Conclude.

	p^1	p^2
С	0.3	0.35
Α	0.25	0.4
Т	0.2	0.1
Ø	0.25	0.15

Prediction	Paths	Probability
Null sequence	p(∅∅)	3.75 %
С	$p(CC) + p(\varnothing C) + p(C\varnothing)$	23.75%
Α	$p(AA) + p(\varnothing A) + p(A\varnothing)$	23.75%
Т	$p(TT) + p(\varnothing T) + p(T\varnothing)$	7.5%
AC	p(AC)	8.75%
AT	p(AT)	2.5%
CA	p(CA)	12%
CT	p(CT)	3%
TA	p(TA)	8%
TC	p(TC)	7%

Best path decoding: CA, with
$$p("CA") = 12\% < p("C") = 23.75\%$$

➤ Best path decoding is not optimal

Best-path decoding

Local estimation: not optimal

Computation of all possible paths

Number of paths: $|A^*|^{W_f}$

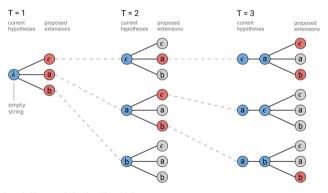
with $|A^*| pprox 10^2$ and $W_f pprox 10^2$

➤ Intractable

Trade-off: beam-search decoding

Iterative process which extends only the best partial candidates

➤ Beam search decoding

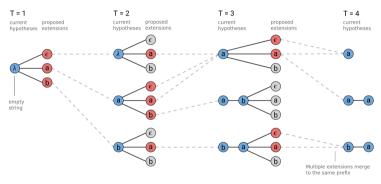


A standard beam search algorithm with an alphabet of $\{\epsilon,a,b\}$ and a beam size of three.

 ϵa and $a\epsilon$ correspond to the same prediction after CTC decoding

➤ We should merge their probabilities

➤ Beam search decoding, merging equivalent prefixes

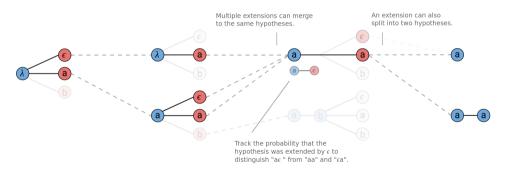


The CTC beam search algorithm with an output alphabet $\{\epsilon,a,b\}$ and a beam size of three.

 $a\epsilon a$ and aaa do not correspond to the same prediction after CTC decoding

➤ We should split their probabilities

➤ Beam search decoding, merging equivalent prefixes, with two probabilities (ending with CTC blank or not)



Recognition stage with attention (from \sim 2020) [13, 14]

An iterative decoding process

- ➤ Predict the characters one after the other
 - Begin with a specific start-of-transcription token: $\hat{y}^0 = \langle \text{sot} \rangle$
 - Stop with a specific end-of-transcription token: $\hat{y}^{L_y+1} = <$ eot>

At iteration t:

Input:

- The image features $\boldsymbol{f} \in \mathbb{R}^{1 \times W_f \times C}$
- ullet The predicted tokens $\hat{oldsymbol{y}}^{0:t-1} = [\hat{oldsymbol{y}}^0, \hat{oldsymbol{y}}^1, ..., \hat{oldsymbol{y}}^{t-1}]$

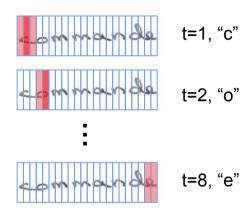
Compute:

- The attention weights $\boldsymbol{\alpha}^t \in [0,1]^{W_f}$ $(\sum_{i=1}^{W_f} \boldsymbol{\alpha}_i^t = 1)$
- ullet The character representation $oldsymbol{c}^t = \sum_{i=1}^{W_f} oldsymbol{lpha}_i^t \cdot oldsymbol{f}_i$
- The character probabilities $p^t = \operatorname{softmax}(c_t)$

Output:

• The predicted token $\hat{\boldsymbol{y}}^t = \arg\max(\boldsymbol{p}^t)$

Recognition stage with attention (from \sim 2020) [13, 14]



- Transformer decoder
- No direct left-to-right constraint
 Reading order learned through text supervision
- Stops only when predicting the <eot> token
 - ➤ In practice, set a maximum number of iterations to avoid infinite loop

t=9, <eot>

Recognition stage with attention (from \sim 2020) [13, 14]

Training

$$\mathcal{L}_{\mathsf{attention}} = \sum_{t=1}^{L_y+1} \mathcal{L}_{\mathsf{CE}}(oldsymbol{y}^t, oldsymbol{p}^t)$$

➤ Requires to predict all the characters: can be long!

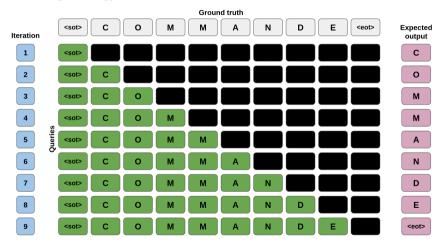
Teacher forcing

Speeding up training by parallelizing the decoding process using the ground truth $y^{[0:t-1]}$ instead of the prediction $\hat{y}^{[0:t-1]}$

➤ Only possible at training time!

Teacher forcing

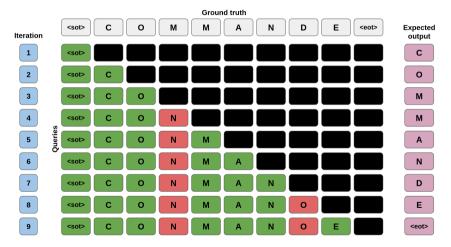
➤ Use a masking strategy



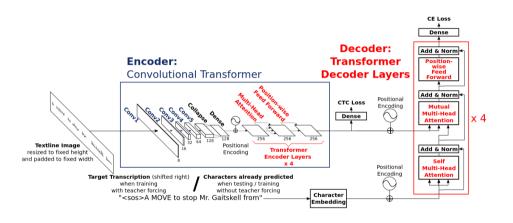
➤ Generalization issue: only trained with "perfect" queries

Teacher forcing

➤ Inject errors in queries



CTC VS attention [13]



$$\mathcal{L} = \lambda \mathcal{L}_{\mathsf{CTC}} + (1 - \lambda) \mathcal{L}_{\mathsf{attention}}$$

CTC VS attention [13]

IAM dataset

Training	Validation	Test
6,482	976	2,915

(+10,000 synthetic samples per epoch)

the Symptics can be removably solved by prophy due regard to the time and

seas around support a large population

bring on an almost immediate feeling of

Justinian I souds a Byzantine army (30,000

Real samples

Synthetic samples

	I.A	λM	IAM + synthetic		
	CER (%) WER (%)		CER (%)	WER (%)	
CTC	6.14	23.26	5.66	21.62	
Attention	10.26	26.36	6.76	19.62	
CTC + attention	5.70	18.86	4.76	16.31	

Conclusion

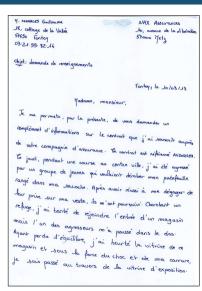
The line-level paradigm: a mature approach... with some limitations

- Three steps treated independently
- A complex pipeline, hard to maintain
- Cumulative errors between steps
- Additional segmentation annotations
- Rule-based reading order
- ➤ Towards end-to-end document recognition

Table of contents

- 1 HTR task
- 2 Line-level approach
- End-to-end approach
 - Challenges
 - Specific metrics
 - DAN

HTR at document level

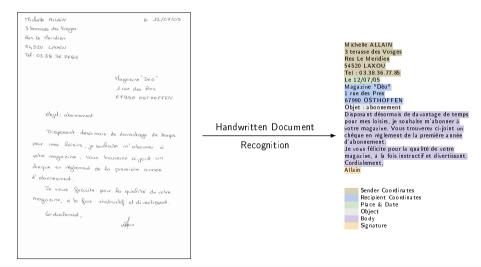


Challenges from paragraph to document

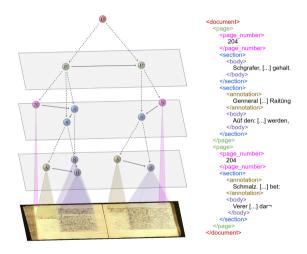
- Layout-dependent reading order
- Larger input images and output sequences
 - GPU constraints
 - More complex attention

Handwritten Document Recognition (HDR)

Goal: joint recognition of both text and layout from whole documents



How to encode both text and layout?



> XML paradigm

Evaluate the text recognition

- CER / WER
- ➤ Normalized edit distance between sequences of characters / words

Prediction: "<A>HTR2HDR"

Metric computed on: "HTR2HDR"

Evaluate the text recognition

CER / WER

Evaluate the layout recognition

- LOER (Layout Ordering Error Rate)
- Normalized edit distance between graphs

Prediction: "<A>HTR2HDR"
Metric computed on: "<A>"

Evaluate the text recognition

CER / WER

Evaluate the layout recognition

• LOER (Layout Ordering Error Rate)

△ Not sufficient:

Ground truth: "<A>HTR2HDR"
Prediction: "<A>

LOER = 0% CER = 0%

Evaluate the text recognition

CER / WER

Evaluate the layout recognition

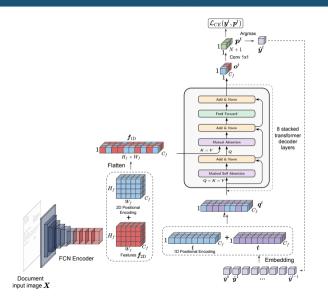
• LOER (Layout Ordering Error Rate)

Evaluate text and layout recognition altogether

- mAP_{CER}
- > Area under the precision / recall curve

Prediction: "<A>HTR2HDR"
Metric computed on: "HTR2HDR". "HTR". "HDR"

Document Attention Network (2023) [15]



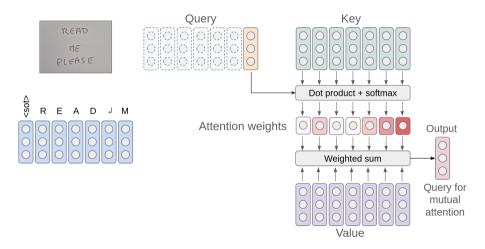
$$\mathcal{L} = \sum_{t=1}^{L_y+1} \mathcal{L}_{\mathsf{CE}}(oldsymbol{y}^t, oldsymbol{p}^t)$$

$$\boldsymbol{y}^t \in \mathcal{A}$$

$$\mathcal{A} = \mathcal{D}_{\mathsf{char}} \cup \mathcal{D}_{\mathsf{xml}} \cup \mathcal{D}_{\mathsf{eot}}$$

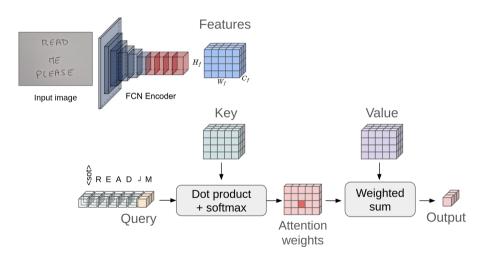
➤ Teacher forcing

DAN: self attention



➤ Query, Key and Value from same source (decoder input)

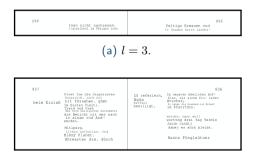
DAN: mutual attention



➤ Query from decoder, Key and Value from encoder (image features)

DAN - Training strategy

- Pre-training encoder on synthetic text line images (with CTC loss)
- Curriculum learning with synthetic documents:



(b)
$$l = 15$$
.

(c) $l = l_{\rm max} = 30$ (end of curriculum stage, no crop).

Datasets

LE SAUX YOU 36 von Principal. SPECE. PETTTE POSECE T2/: 03 97 23 21 31 MACE AMMONSES Francis de Provens Combattante 20530 ROWEVEZ ON FRAU Ref client, UNCWOSP le ol. 12.2.. G hadame. having Je nou qui de lien vouloir moren ma nouvelle adresse à conster de ce jour. Virant maintenant and ma conjunte, newley sogalement l'ajuter à la lite de somme converte par la ressonalible civile Vewly agreer, hadame, howen mos rolatalem distinguises. 76 Same

Dataset	Level	Training	Validation	Test	# char tokens	# layout tokens
RIMES 2009	Page	1,050	100	100	108	14
READ 2016	Page	350	50	50	00	10
READ 2010	Double page	169	24	24	89	10

DAN results on the RIMES dataset

➤ Metrics do not take into account the segmentation step

Dataset	Approach	CER (%) ↓	WER (%) ↓	LOER (%)↓	mAP _{CER} (%) ↑
	Line level				
	[16] FCN	3.04	8.32	×	X
	[7] CNN+BLSTM ^a	2.3	9.6	×	X
RIMES	[15] DAN (FCN+transformer) ^c	2.63	6.78	×	X
2011	Paragraph level				
2011	[17] SPAN (FCN)	4.17	15.61	×	X
	[18] CNN+MDLSTM ^b	2.9	12.6	×	X
	[16] VAN (FCN+LSTM) ^b	1.91	6.72	×	X
	[15] DAN (FCN+transformer) ^c	1.82	5.03	×	X
	Paragraph level				
RIMES	[15] DAN (FCN+transformer) ^c	5.46	13.04	×	X
2009	Page level				
	[15] DAN (FCN+transformer) ^c	4.54	11.85	3.82	93.74

^a This work uses a slightly different split (10,203 for training, 1,130 for validation and 778 for test).

b with line-level attention.

c with character-level attention.

DAN results on the READ 2016 dataset

➤ Metrics do not take into account the segmentation step

Approach	CER (%) ↓	WER (%) ↓	LOER (%)↓	mAP _{CER} (%)↑
Line level				
[19] CNN+BLSTM ^a	4.66	×	×	×
[20] CNN+RNN	5.1	21.1	×	X
[16] VAN (FCN+LSTM) ^b	4.10	16.29	×	×
[15] DAN (FCN+transformer) ^a	4.10	17.64	×	×
Paragraph level				
[17] SPAN (FCN)	6.20	25.69	×	×
[16] VAN (FCN+LSTM) ^b	3.59	13.94	×	×
[15] DAN (FCN+transformer) ^a	3.22	13.63	×	×
Single-page level				
[15] DAN (FCN+transformer) ^a	3.53	13.33	5.94	92.57
Double-page level				
[15] DAN (FCN+transformer) ^a	3.69	14.20	4.60	93.92

^a with character-level attention.

^b with line-level attention.

DAN demonstration

https://youtu.be/HrrUsQfW66E

DAN conclusion

- A unique end-to-end process
- Structured output sequence
- ➤ No need for any physical segmentation annotation
- ➤ Can follow the slant of the lines (character-level attention)

Line-level / paragraph-level limitations

- Three steps treated independently
- A complex pipeline, hard to maintain
- Cumulative errors between steps
- Additional segmentation annotations
- Rule-based reading order

Drawback: prediction times grow with the character sequence (~ 1 second / 100 characters)

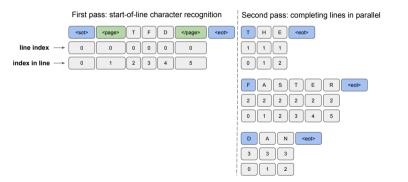
Faster DAN: parallelizing text line recognition [21]

(a) DAN

(b) Faster DAN

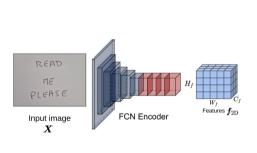
Faster DAN - Positional encoding

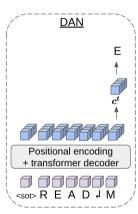
(a) DAN single-pass prediction process

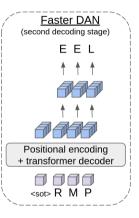


(b) Faster DAN two-pass prediction process

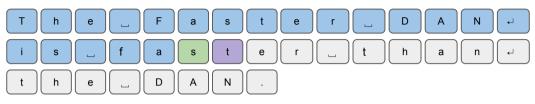
Faster DAN - Multi-target queries







Faster DAN - Context



(a) Context used by the DAN

(b) Context used by the Faster DAN $\,$

Results

Architecture	READ 2016 (single-page)			READ 2016 (double-page)				
Architecture	CER ↓	$WER\downarrow$	$LOER\downarrow$	$\mathrm{mAP}_{\mathrm{CER}}\uparrow$	CER ↓	$WER\downarrow$	$LOER\downarrow$	$\mathrm{mAP_{CER}}\uparrow$
DAN [15]	3.43	13.05	5.17	93.32	3.70	14.15	4.98	93.09
Faster DAN [21]	3.95	14.06	3.82	94.20	3.88	14.97	3.08	94.54

Architecture	RIMES 2009				
Architecture	CER ↓	$WER\downarrow$	LOER ↓	$\mathrm{mAP}_{\mathrm{CER}}\uparrow$	
DAN [15]	4.54	11.85	3.82	93.74	
Faster DAN [21]	6.38	13.69	4.48	91.00	

	RIMES 2009	READ 2016		
		single-page	double-page	
Dataset details (a	averaged for a	document o	n the test set)	
width (px)	1,235	1,190	2,380	
height (px)	1,751	1,755	1,755	
# chars	578	528	1,062	
# lines	18	23	47	
# chars / line	31	22	22	
# layout tokens	11	15	30	
Prediction times	(in seconds)			
DAN [15]	5.6	4.6	8.5	
Faster DAN [21]	1.4	0.9	1.9	
Speed factor	×4	x5.1	×4.5	

Faster DAN demonstration

https://youtu.be/_pBsO2W8XRE

Other image-to-sequence tasks

A dog is standing on a hardwood floor.

A group of <u>people</u> sitting on a boat in the water.

Image captioning [22]

Visual Question-Answering [23]

Conclusion

What's next for HDR?

Still some limitations:

- Models are layout-specific
- Models are language-specific
- Models only recognize raw text items (what about equations, tables, images?)
- Prediction are still "slow"
- ➤ Next time: practical session!

References I

- [1] Guillaume Renton, Yann Soullard, Clément Chatelain, Sébastien Adam, Christopher Kermorvant, and Thierry Paquet. "Fully convolutional network with dilated convolutions for handwritten text line segmentation". In: International Journal on Document Analysis and Recognition (IJDAR) 21.3 (2018), pp. 177–186.
- [2] Mélodie Boillet, Christopher Kermorvant, and Thierry Paquet. "Robust text line detection in historical documents: learning and Evaluation methods". In: International Journal on Document Analysis and Recognition (IJDAR) (2022).
- [3] Manuel Carbonell, Alicia Fornés, Mauricio Villegas, and Josep Lladós. "A neural model for text localization, transcription and named entity recognition in full pages". In: Pattern Recognition Letters 136 (2020), pp. 219–227.
- [4] Alex Graves and Jürgen Schmidhuber. "Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks". In: Advances in Neural Information Processing Systems 21 (NIPS). 2008, pp. 545–552.
- [5] Paul Voigtlaender, Patrick Doetsch, and Hermann Ney. "Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks". In: International Conference on Frontiers in Handwriting Recognition (ICFHR). 2016, pp. 228–233.
- [6] Curtis Wigington, Seth Stewart, Brian L. Davis, Bill Barrett, Brian L. Price, and Scott Cohen. "Data Augmentation for Recognition of Handwritten Words and Lines Using a CNN-LSTM Network". In: International Conference on Document Analysis and Recognition (ICDAR). 2017, pp. 639–645.

References II

- [7] Joan Puigcerver. "Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition?" In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). 2017, pp. 67–72.
- [8] Raymond W. Ptucha, Felipe Petroski Such, Suhas Pillai, Frank Brockler, Vatsala Singh, and Paul Hutkowski. "Intelligent character recognition using fully convolutional neural networks". In: Pattern Recognition 88 (2019), pp. 604–613.
- [9] Denis Coquenet, Yann Soullard, Clément Chatelain, and Thierry Paquet. "Have convolutions already made recurrence obsolete for unconstrained handwritten text recognition?" In: Workshop on Machine Learning (WML@ICDAR). 2019, pp. 65–70.
- [10] Mohamed Yousef, Khaled F. Hussain, and Usama S. Mohammed. "Accurate, data-efficient, unconstrained text recognition with convolutional neural networks". In: Pattern Recognition 108 (2020), p. 107482.
- [11] Denis Coquenet, Clément Chatelain, and Thierry Paquet. "Recurrence-free unconstrained handwritten text recognition using gated fully convolutional network". In: 17th International Conference on Frontiers in Handwriting Recognition (ICFHR). 2020, pp. 19–24.
- [12] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks". In: International Conference on Machine Learning (ICML). Vol. 148. 2006, pp. 369–376.

References III

- [13] Killian Barrere, Yann Soullard, Aurélie Lemaitre, and Bertrand Coüasnon. "A Light Transformer-Based Architecture for Handwritten Text Recognition". In: Document Analysis Systems - 15th IAPR International Workshop. Vol. 13237. 2022, pp. 275–290.
- [14] Christoph Wick, Jochen Zöllner, and Tobias Grüning. "Transformer for Handwritten Text Recognition Using Bidirectional Post-decoding". In: 16th International Conference on Document Analysis and Recognition (ICDAR). Vol. 12823. 2021, pp. 112–126.
- [15] Denis Coquenet, Clément Chatelain, and Thierry Paquet. "DAN: a Segmentation-free Document Attention Network for Handwritten Document Recognition". In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 45.7 (2023), pp. 8227–8243,
- [16] Denis Coquenet, Clément Chatelain, and Thierry Paquet. "End-to-end Handwritten Paragraph Text Recognition Using a Vertical Attention Network". In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 45.1 (2023), pp. 508–524.
- [17] Denis Coquenet, Clément Chatelain, and Thierry Paquet. "SPAN: a Simple Predict & Align Network for Handwritten Paragraph Recognition". In: International Conference on Document Analysis and Recognition (ICDAR). Vol. 12823. 2021, pp. 70–84.
- [18] Théodore Bluche. "Joint Line Segmentation and Transcription for End-to-End Handwritten Paragraph Recognition". In: Advances in Neural Information Processing Systems 29 (NIPS). 2016, pp. 838–846.

References IV

- [19] Johannes Michael, Roger Labahn, Tobias Grüning, and Jochen Zöllner. "Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition". In: International Conference on Document Analysis and Recognition (ICDAR). 2019, pp. 1286–1293.
- [20] Joan-Andreu Sánchez, Verónica Romero, Alejandro H. Toselli, and Enrique Vidal. "ICFHR2016 Competition on Handwritten Text Recognition on the READ Dataset". In: 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). 2016, pp. 630–635.
- [21] Denis Coquenet, Clément Chatelain, and Thierry Paquet. "Faster DAN: Multi-target Queries with Document Positional Encoding for End-to-end Handwritten Document Recognition". In: International Conference on Document Analysis and Recognition (ICDAR). Vol. 14190. Lecture Notes in Computer Science. 2023, pp. 182–199.
- [22] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention". In: Proceedings of the 32nd International Conference on Machine Learning. Vol. 37. 2015, pp. 2048–2057.
- [23] Kevin J. Shih, Saurabh Singh, and Derek Hoiem. "Where to Look: Focus Regions for Visual Question Answering". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 4613–4621.