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Segmentation tasks

➤ Per-pixel classification

Input image Semantic segmentation

Instance segmentation Panoptic segmentation
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Segmentation tasks

Why?
Autonomous driving
Medical image segmentation (tumor detection)
Background removal (videoconference), filters

Challenges
Unknown number of items to recognize
Items can overlap
Must preserve the input shape
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Semantic segmentation

Goal
Each pixel is classified, all instances of same class are merged

Formulation

Input: x ∈ RH×W×C , a set of Nc classes C
Output: y ∈ [1..Nc]

H×W

➤ Adjacent objects of same class merged together
➤ No distinction of instances
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Instance segmentation

Goal
Each instance is segmented, whether it is fully visible or not
➤ The same pixel can be associated to multiple classes or to multiple instances of the
same class

Formulation

Input: x ∈ RH×W×C , a set of Nc classes C
Output: y = {(ck,mk) ∈ [1..Nc]× {0, 1}H×W }k with:
ck: the class of the instance k
mk: the binary mask for the instance k

➤ Object detection + semantic segmentation
➤ Only detected objects are segmented
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Panoptic segmentation

Goal
Each pixel is classified and associated to an instance of that class

Formulation

Input: x ∈ RH×W×C , a set of Nc classes C
Output: y ∈ NH×W×2 with :
yi,j,1 ∈ [1..Nc]: the class of pixel (i,j)
yi,j,2 ∈ N: the instance identifier of pixel (i,j)

➤ Best of both worlds
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Evaluation

Pixel-level
Accuracy
Precision
Recall
F1
IoU
mAP

➤ Can also be computed at object level (as for object detection)
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Example: corrected exercise

Compute the accuracy, precision, recall, F1 and IoU at pixel level for both predictions
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Correction

For both predictions: FN: 8, FP: 7, TP: 37, TN: 204
Accuracy: (37+204)/256 = 94.14%
Precision: 37/(37+7) = 84.09%
Recall: 37/(37+8) = 82.22%

IoU: 37/(37+8+7) = 71.15%
F1: (2× 84.09× 82.22)/(84.09 + 82.22) = 83.14%

➤ Exactly the same values but two different error cases (would be different at object level)
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Architectures

➤ Specific architectures for each segmentation task

Semantic segmentation
FCN, U-Net

Instance segmentation
Mask R-CNN

Panoptic segmentation
UPSNet
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FCN (2015) [2]

How to go from classification to semantic segmentation?
➤ Fully Convolutional Network (FCN)

Main constraint: output must be of same size than input
Classification: fixed-size input because of fully-connected layers

➤ Idea: convert dense 4096 → 1000 by conv with 1000 kernels 1× 1× 4096
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FCN (2015) [2]

➤ "Convolutionalization" of well-known classification architectures evaluated on Pascal
VOC 2011 (validation set):

➤ Downsampling (max stride=32) = information loss
How to improve the results?
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FCN (2015) [2]

➤ Combine multi-scale predictions to refine

Accuracy (%) IoU (%)
FCN-32s 89.1 59.4
FCN-16s 90.0 62.4
FCN-8s 90.3 62.7

➤ e.g., upsampling as bilinear interpolation
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FCN (2015) [2]

Training

A pixel-level supervision using Cross-Entropy (CE):

L =

W∑
i=1

H∑
j=1

LCE(Ŷi,j ,Yi,j)
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Deconvolution (2015) [3]

➤ Extend FCN with specific layers instead of bi-linear interpolations:
Deconvolution
Unpooling

M2 SIF - DLV Deep Learning for Vision (DLV) - Segmentation 15 / 39



Deconvolution (or transposed convolution)

Convolution 3× 3 Deconvolution 3× 3

➤ Use trainable kernels as convolutions
Source: https://github.com/vdumoulin/conv_arithmetic [4]
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Unpooling

➤ No parameters involved
➤ Requires to remember pooled locations
➤ Sparse representation
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U-Net (2015) [5]

➤ Generalization of conv/deconv architectures with skip connections

HeLa cell segmentation
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Mask R-CNN (2017) [6]

Goal: instance segmentation

➤ Extend Faster R-CNN with mask branch (CNN module)
➤ Output binary masks (foreground/background) for each Region of Interest (RoI)
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Mask R-CNN (2017) [6]

Training

L = Lcls + Lreg + Lmask

Lcls: cross-entropy for RoI classification
Lreg : smooth L1 for RoI regression
Lmask: binary cross-entropy for RoI segmentation (binary masks).
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UPSNet (2019) [7]

➤ Unified Panoptic Segmentation Network

Instance head: Mask R-CNN
Semantic head: CNN
Panoptic head: parameter-free aggregation
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Case study: 3D medical image segmentation

Data
Inputs: high-resolution CT-scan volumes
➤ tens/hundreds of slices 512× 512

➤ How to process such 3D data?
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Context

Medical application
Very few annotated data
➤ Few experts
➤ Data privacy
➤ Datasets ≃ tens of examples
Accuracy is crucial
➤ A matter of life and death
➤ Specific metrics
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Slice-by-slice process (2017) [8]

➤ Reduce complexity through 2D processing

1 FCN / axis
Slices processed independently across the same axis
➤ Context loss
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V-Net (2016) [9]

➤ Reduce complexity by downsampling the input

Extend U-Net with 3D
convolutions

Inputs downsampled to
fixed size: 128 × 128 × 64
➤ Information loss from
pre-processing
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V-Net (2016) [9]

Comparison

Input (256, 256, 512) → conv 2D with 1024 kernels 2× 2, stride 2× 2
➤ output (128, 128, 1024), 2.1 M parameters, 68.7 GFLOPs

Input (256, 256, 64, 512) → conv 3D with 1024 kernels 2× 2× 2, stride 2× 2× 2
➤ output (128, 128, 32, 1024), 4.2 M parameters, 4.4 TFLOPs
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Approaches
Process 2D slices independently: context loss in third axis
Downsampling volume: compression → information loss

➤ Trade-off: process sub-volumes
Preserve original resolution
Preserve 3D nature of the input
Long-term context loss
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UNETR (2022) [10]

➤ Combine CNN U-Net with Vision Transformer

Size of input sub-volume: 128× 128× 128× 4
Patch size: 16× 16× 16
Embedding size: 768
Input dimension for ViT: (8× 8× 8)× 768 → 512× 768
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Swin (2021) [11]

➤ Hierarchical Vision Transformer using Shifted windows (Swin)

Patch size: 4× 4
Patch merging: 2× 2 adjacent patches are merged together
(S)W-MSA: (Shifted) Window Multi Self-Attention
➤ Idea: perform attention on patch windows (locally), in parallel
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Swin (2021) [11]

Modeling global context with shifted windows
Windows are shifted from one layer to another to propagate the information from one
window to its neighbours
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Swin UNETR (2022) [12]

➤ Combining UNETR with Swin

Goal: reducing information compression when patching
Size of input sub-volume: 128× 128× 128× 4
Patch size: 2× 2× 2
Input dimension for Swin: (64× 64× 64)× 48 → 262, 144× 48
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Swin UNETR (2022) [12]
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Exercise: comparison with global self-attention

Reminder: simplified self-attention

Number of FLOPs: 8d2L+ 4dL2

With d the number of dimensions and L the sequence length

Compute the number of FLOPs for an input volume of size (64, 64, 32, 256)
for a traditional self-attention layer
for the shifted windows approach (window size: 8× 8× 8, first step only)

➤ Remark: the number of dimensions is preserved (from 256 to 256)
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Correction

Reminder: simplified self-attention

Number of FLOPs: 8d2L+ 4dL2

With d the number of dimensions and L the sequence length

For a traditional self-attention layer
Flatten: L = HWD = 64× 64× 32 = 131, 072
➤ 8× 2562 × 131, 072 + 4× 256× 131, 0722 = 17.7 TFLOPs

For a shifted-window self-attention layer
Window size: 8× 8× 8
Flatten: L = HWD = 8× 8× 8 = 512
➤ 8× 2562 × 512 + 4× 256× 5122 = 537 MFLOPs

Number of windows: 64
8 × 64

8 × 32
8 = 256

➤ 256× 537 = 137 GFLOPs
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SAM (2023) [13]

➤ Segment Anything Model (SAM)

Goal: segmentation task generalization

Interactive segmentation (point, rectangle)
Free-text prompt segmentation
Instance segmentation
Segmentation refinement from mask
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SAM (2023) [13]

Image encoder

Vision Transformer (pre-trained with Masked Auto Encoder)
➤ Used only once for multiple prompts

Prompt encoders
text: CLIP encoder
point/box: positional encoding + learned embedding
mask: CNN encoder
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SAM (2023) [13]

➤ Consider several predictions for the same
inputs

➤ Combining segmentation strategies can
help refine predictions
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SAM - demo

Want to try?
➤ https://segment-anything.com/demo
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Summary

Challenges

Output size (mostly same as input)
➤ U-Net-like models (compression then unpooling, deconvolution)
Hardware constraints, notably for 3D inputs (CT scan, video)
➤ Trade-off between context modeling and information compression

Segmentation tasks are diverse
Semantic, instance, panoptic
➤ Interactive segmentation (point, box, text prompting)

➤ Next time: handwritten text recognition!
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