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The object detection task

What is in the image? and where?

Single class Multiple classes

Images from [1].

2 tasks:
Localize all the items with bounding boxes
Classify them
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The object detection task

Why?

Understanding environments (e.g.: autonomous shop)
Counting (e.g.: people in a crowd)
As first step in complex system (e.g.: HTR)

Difficulties
Classes must be known beforehand
Number of items to recognize for each class change from one image to another
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Formulation

Goal
Learn fθ : X → Y

Input: an image x ∈ RH×W×C , a set of Nc classes C
Output: {(bi,1, bi,2, bi,3, bi,4, ci)}i
{bi,j ∈ R}j the bounding box coordinates in pixels (2 corners or one corner + size)
ci ∈ RNc the corresponding class
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Evaluation

Left: ground truth. Middle: prediction. Right: comparison.

Images from https://docs.kolena.io/metrics

True Positive (TP): correct predictions
True Negative (TN): correct "no" predictions
False Positive (FP): wrong prediction
False Negative (FN): missed prediction

M2 SIF - DLV Deep Learning for Vision (DLV) - Object Detection 5 / 33



Evaluation

Intersection over Union (IoU, or Jaccard index)

IoU(y, ŷ) =
y ∩ ŷ

y ∪ ŷ
=

TP
TP + FN + FP
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Evaluation

Compute metrics at object level

TP if IoU ≥ α (left)
FP if IoU < α (middle)
FN if no prediction (right)
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Evaluation

Precision
➤ How much item predictions were correct? (confidence)

Precision =
TP

TP + FP

Recall
➤ How much of the annotated items have been found?

Recall =
TP

TP + FN

➤ Two metrics for two different aspects
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Evaluation

F1 score

F1 score =
2

1

Precision
+

1

Recall

=
2× Precision × Recall

Precision + Recall

➤ F1 score high only if both Precision and Recall are high

Intuition
If Precision → 0 then F1 score → 0 even if Recall = 1
If Recall → 0 then F1 score → 0 even if Precision = 1
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Evaluation

Average Precision (AP)

➤ How the proportion of correct predictions evolves as the model finds the expected
elements?

AP =

∫
p(r) dr

= Area under the curve Precision/Recall
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Evaluation

Approximation of the Average Precision

AP =
∑
i

(ri+1 − ri) ∗ pinterp(ri+1)

pinterp(ri+1) = max
r̃≥ri+1

p(r̃)

r0 = 0

p(0) = 1
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Evaluation

mean Average Precision (mAP)

➤ Average AP over the set of classes C

mAP =
1

|C|
∑
c∈C

APc

Can be weighted by the number of sample by class

➤ Average mAP for different IoU thresholds

mAP50:95:5 =
1

10

∑
k

mAPIoU>k

IoU thresholds from 50% to 95% with a step of 5%

➤ Be careful when comparing!
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Datasets

PASCAL VOC (Visual Object Class)

Bounding boxes annotations
Pascal VOC 2007: 3k train, 3k val, 5k test, 20 classes
Pascal VOC 2012: 6k train, 6k val, 11k test, 20 classes

MS COCO (MicroSoft Common Objects in COntext)

2014: 83k train, 40k val, 40k test, 80 classes
2017: 118k train, 5k val, 40k test, 80 classes

➤ more costly annotations than for classification
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Two main approaches

Two-stage detectors
Detection of regions of interest
Classification of these region

e.g., R-CNN, Faster R-CNN

One-stage detectors
A grid is applied on the image whose all cells are considered as a proposal of region of
interest
e.g., SSD, YOLO, RetinaNet
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R-CNN (2014) [2]

Approach

Region proposal with selective search (rule-based algorithm)
Feature extraction per proposal with AlexNet (pre-trained on ImageNet, removing
classif. head)
Classification with class-specific SVMs (trained on AlexNet features)

➤ 2,000 proposed regions!
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Non-Maximum Suppression (NMS) algorithm

Goal: remove redundant predictions

NMS

Algorithm
For each class:
1) Sort the predictions by confidence level
2) Keep the most confident prediction
3) Remove all other predictions which overlap too much (using IoU)
4) Repeat 2) and 3) until there is no more predictions
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R-CNN (2014) [2]

SOTA performance (66% mAP, VOC 2007) but some drawbacks

Region proposal technique based on rules
➤ Not optimized for a given task/dataset
Feature extraction performed on all proposals independently
➤ Inference time: 10 to 45 seconds per image on GPU
SVM trained on top of CNN features
➤ Two trainings
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Spatial Pyramid Pooling (2014) [3]

Goal: take input images of arbitrary size with fully-connected layers

Apply max-pooling on some fixed-length grids (adaptive pooling)
➤ Convert any feature maps (H, W, d) into a fixed-length feature vector, here: (21, d)
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Fast R-CNN (2015) [4]

Approach
Region proposals based on rules
Feature maps extraction with CNN
Adaptive (RoI) pooling on feature map crops (proposals)
Classification + regression (to refine proposals)

➤ Inference time: 1.5s for proposals + 0.3s/image
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Fast R-CNN (2015) [4]

Multitasking
➤ The network is trained to perform multiple tasks
e.g., classification and regression
➤ Tasks can be trained either simultaneously or alternatively
Multitask loss: L = LCE(ĉ, c) + λ

∑
i LsmoothL1(b̂i, bi)

LL1(ŷ, y) = |ŷ − y|

LL2(ŷ, y) = (ŷ − y)2

LsmoothL1(ŷ, y) =

{
0.5(ŷ − y)2 if |ŷ − y| < 1

|ŷ − y| − 0.5 otherwise

M2 SIF - DLV Deep Learning for Vision (DLV) - Object Detection 20 / 33



Faster R-CNN (2015) [1]

Faster R-CNN = Fast R-CNN + RPN

No more rule-based proposal algorithm
➤ Region Proposal Network (RPN)

Common CNN backbone

➤ RPN as CNN to preserve shift-equivariance
property
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Region Proposal Network

9 anchors per 2D position

Classification

object/non-object classification
positive if max IoU with a GT

IoU > 0.7 with a GT
negative if IoU < 0.3 with all GT
discarded otherwise

➤ Imbalanced classification (too many negatives): randomly sample 256 anchors (half positive)

Regression

Determine shift (position and size) with respect to the anchor

One regressor per anchor
Trained for positive samples only

➤ Another hybrid loss
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Faster R-CNN (2015) [1]

0.2s / image with a VGG backbone

Architecture mAP (%) on Pascal VOC 2007
R-CNN 66.0
Fast R-CNN 66.9
Faster R-CNN 69.9
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YOLO (2016) [5]

➤ You Only Look Once (YOLO)

For each grid cell: B bounding box predictions b̂ = (x, y, h, w, k) + Nc class
probabilities ci

k: confidence level measuring P(Object)× IoU(b̂, b)
ci = P(Classi|Object)
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YOLO (2016) [5]

End-to-end CNN, pre-trained on ImageNet (S=7, B=2, Nc = 20)
NMS used at inference time
Real-time system (trained on Pascal VOC 2007+2012):
VOC 2007: 45 FPS for 63.4% mAP
(Faster R-CNN: 7 FPS for 73.2% mAP)
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YOLO (2016) [5]

Limitations
Limited number of predictions per cell (B)
➤ people in crowd
Only one class per cell
➤ Cannot recognize multiple objects of different classes if there are too close
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SSD (2016) [6]

➤ Single-Shot Detector (SSD)

Multi-scale detection

SSD: 382 × 4 + 192 × 6 + 102 × 6 + 52 × 6 + 32 × 4 + 12 × 4 = 8, 732

YOLO: 72 × 2 = 98
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SSD (2016) [6]

➤ Multi-scale detection strategy

Prediction from layer
conv4_3 conv7 conv8_2 conv9_2 conv10_2 conv11_2 mAP (%)

✓ ✓ ✓ ✓ ✓ ✓ 74.3
✓ ✓ ✓ ✓ ✓ ✗ 74.6
✓ ✓ ✓ ✓ ✗ ✗ 73.8
✓ ✓ ✓ ✗ ✗ ✗ 70.7
✓ ✓ ✗ ✗ ✗ ✗ 64.2
✗ ✓ ✗ ✗ ✗ ✗ 62.4
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DETR (2020) [7]

➤ DEtection TRansformer (DETR)

Set of N learned object queries (must be high enough)
All predictions in parallel
➤ No need for anchors nor NMS
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DETR (2020) [7]

Training strategy
Dedicated bipartite matching loss
Auxiliary loss after each decoding layer
CNN backbone pre-trained on ImageNet
Slow convergence: 300 epochs, 16 GPU V100, 3 days (10x more than Faster
R-CNN)

➤ 10 FPS / 44.9 % mAP on COCO 2017
➤ 28 FPS / 42.0 % mAP with lighter backbone
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2D positional encoding

Adaptation of 1D positional encoding to 2D

PE(px, py, 2k) = sin(wk · px)
PE(px, py, 2k + 1) = cos(wk · px)
PE(px, py, dmodel/2 + 2k) = sin(wk · py)
PE(px, py, dmodel/2 + 2k + 1) = cos(wk · py)

∀k ∈ [0, dmodel/4], with wk = 1/100002k/dmodel

➤ First half dimensions dedicated to horizontal axis
➤ Second half dimensions dedicated to vertical axis

M2 SIF - DLV Deep Learning for Vision (DLV) - Object Detection 31 / 33



DETR (2020) [7]
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Conclusion

Two-approaches
While 2-step approaches used to have better performance than single-stage
detector, this is not true anymore
Single-stage detector faster
Transformer alternative competitive without anchor/NMS

Limitations of object detection

Bounding boxes may not be accurate enough (tumor detection)
Number of items to recognize conditioned by hyperparameters (# of anchors /
cell, # of object queries)
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