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Goals of this course

Knowledge

o What is attention, how it works
o What is Transformer:

e main components: multi-head self/cross attention, positional encoding, encoder vs
decoder
e advantages and drawbacks

Skills and know-how

@ Choose between fully-connected, convolution and attention layers given context
@ Choose/adapt architecture according to constraints

@ Propose ways to deal with few labeled data given context
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Table of contents

0 The Transformer revolution
@ Attention mechanism: why and how?
@ The Transformer architecture
@ The Vision Transformer
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Exercise on embedding

The Transformer was proposed for Neural Machine Translation (NMT) task

This is known as a sequence-to-sequence problem.
Input: a sequence of tokens. Output: a sequence of tokens

Let's assume we want to translate French sentences to English.

We are working at character level (i.e., each token corresponds to a character).

We use a simple character set common for both English and French and made up of 26
letters.

Propose a way to encode each character on a vector of d dimensions.
This is known as input embedding.

Q ifd>26
Q ifd<26
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Context

Neural Machine Translation (NMT)

A sequence-to-sequence task
x: a sequence of input tokens representing some text.
y: a sequence of output tokens representing the translated text.

Cx
+
@ CIC

For instance, encoder and decoder can be LSTM/GRU.

Decoder
@ \
o _> _>
E J
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Context

Limitation

@ The whole input sequence is compressed into a fixed-size context vector c.

[elelefafe]- ]

From a static context vector: o
c=f(w) (o [ ot ot - |-~
to a dynamic context vector: ~U

Ly
c = E afe”
i=1

with: > a; = 1.
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Context modeling comparison

he black cat is walking on he grass
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Attention Convolution (kernel size: 3) LSTM
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Attention is all you need: Transformer (2017) [1]

(a0 Two main blocks:

@ Transformer encoder

@ Transformer decoder

b One-shot encoding

f = encoder(x + PE)

Iterative decoding

c! = decoder(f,{9°,...,9" '} +PE)

Feed Forward
Add & Norm

K.
WV Q
Add & Norm

Masked Self Attention
QK. V

| . ————
Positional
®
Input Output
Embedding Embedding

o e 9" = argmax(We')

» Mainly relies on the Query-Key-Value attention paradigm
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Query-Key-Value paradigm

Goal: retrieve the useful information among a collection of data
Inputs: a query and a set of data

Approach

@ Compute a similarity score between the query and all the data
@ Generate an answer based on the most relevant data

» Two representations of the data are used: keys for comparison with the query, and
values for the answer

Analogy with library search engine

Query: keywords; Keys: book titles; Values: book contents
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Query-Key-Value paradigm

Issue

Gradient propagation for hard attention (select only the most relevant item)
» Soft attention (weighted sum of items)

Scaled Dot-Product Attention

q € R%: a query vector
K € REX4: 3 matrix gathering key vectors for each available item
V € REX4: 3 matrix gathering values vectors for each available item

gKT

Vd

Attention(q, K, V') = softmax ( ) V=c (eR%

N~
@y

» Dot product as distance function
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Why scaling by \%1?

For 1 query and 10,000 keys (from normal distribution):
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Self-attention

» Queries, Keys and Values are from the same source

Query-key-value for feature extraction

X: the latent representation of an input sequence.

Q = XW(e Rl=x4)
K = XW¥(e RF=x9)
V= XWV (e RF+"%)

T
Y = softmax (Qj{c_l > %

WEC WHEandWV are matrices of trainable weights (fully-connected layers)
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Self-attention

| Key
+ softmax
g ©00000

P11 td

- llllll

Value

<eos>

AT

O0O0o

Source: Input X

» Output can be computed in parallel through matrix multiplications
» Output length = Query length ( = Key length = Value length)
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Multi-head self-attention (MSA)

h self-attention in parallel

Qi=XW? ... Q=XW¢
K, =XWEF ... K,=XWK
Vi=XW/ ... V,=XWW
KT K
0O, = softmax <Q1 1 ) Vi ... Oy = softmax (Qh i ) Vi,
Vd Vd

Y = concat(Oy,...,0,)W?
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Multi-head Self-Attention (MSA)

o

Source: X

Self-attention
head #1

Self-attention #2

M2 SIF - DLV

*{ Self-attention #3

Concatenate

imm

Q

w

Output: Y
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Multi-head Self-Attention (MSA)

Each head is specialized for a specific query (e.g., action, location, description)

he black cat is  walking on grass
g " 2 ]

S = 2 o B _ = 2 % i @

5 o = c ®© S o © © o @

I i I I i I I E ok g m : ; J;
Head #1 Head #2 Head #3
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Positional encoding

Issue with Multi-head Self Attention (MSA)

Self-attention is invariant to input permutation:
MSA([z1, 2, z3]) = [Y1, Y2, Y3] = MSA([z2, 1, x3]) = [y2, Y1, Y3]
The position information is lost whereas it is crucial

» A word/sentence is a sequence of characters, not a set of characters

Goal
Inject positional information to preserve the sequentiality

Solution

Additive positional encoding:
» Input of transformer encoder: I = X + PE

M2 SIF - DLV Deep Learning for Vision (DLV) - Classification - part 11



Positional encoding

A combination of sines and cosines

PE(p, k): k" value of positional embedding vector for position p.

PE(p, 2k) = sin(wy, - p)
PE(p, 2k + 1) = cos(wg, - p)

Vk € [0,d/2], with wy, = 1/100002+/4
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Positional encoding

@ Does not depend on the input length

@ Encoding unique for each position

@ Periodicity of sine/cosine could help to adapt to unseen position
o

Bonus: no additional trainable parameters

I

Raw text

L))ol ) llllllllllll

Raw position Es FEc<eot> PE;

<eos>
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Transformer encoder

,,,,,,,,,,,,,, S
e R
: A stack of 6 transformer encoder layers
i ( Add & Norm J
¥ @ Multi-head Self Attention
Encoder | ( e FF'W“" ) » Global context modeling
xN |
( Add & Norm @ Add: residual connections
( t ) » Multi-scale representation
| Self Attention . . .
: ERR » Reinforce identity
AN J .
N IrrTrr- ] @ Norm: layer normalization

@ » Stabilize training (range of values)
@ Feed Forward: 2 fully-connected layers

Qutput - -
» Local projection
Y

Inputs

M2 SIF - DLV Deep Learning for Vision (DLV) - Classification - part Il



Normalization techniques

» Normalization approaches differs on how data is segmented to perform normalization

A A A

N N N
L L L L
Batch Normalization Layer Normalization Instance Normalization Group Normalization

T — iy N: batch dimension (one sample)

T = R +_ L: length dimension (one character, or pixel)
Tz TE C: channel dimension (one feature)
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Exercise

Transformer encoder layer

Input sequence of L token embedding: X of shape L x d

Express as a function of L, d and n, the number of parameters, the number of floating
point operations and the output shape (biases are ignored)

@ for a succession of two fully-connected layers: Y = (XW!1)W?
(applied on the channel axis, same weights for all tokens)
The first one is made up of n neurons, the second one of d neurons

@ for the simplified self-attention layer: Y = (XWQ)(XWK)T(XWV)W©O
We keep d dimensions through the attention process

In both cases, compute those metrics for d = 1024, n = 2048 and
Q@ L=50
Q L="T784
© L=1,048,576
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Mutual attention (also known as cross attention)

» Queries from target domain, and keys and values from source domain

General case

Inputs: X: the features from the encoded input sequence (source domain),
z: the query sequence (e.g., a question)

z: the query vector (z = g(2)).

q=2W@%ERY)
K = XW¥(e RF=*)
V = XWV (e RE=xd)

T
c = Attention(g, K, V') = softmax (q ) |4

g

Prediction: y = h(c), with g and h parametric functions
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Mutual attention (also known as cross attention)

» Queries from target domain, and keys and values from source domain

The iterative decoding process case

Inputs: X: the features from the encoded input sequence (source domain),

z = %=1 an ouput sequence (target domain)

2': a query vector at iteration t (2! = g(g°,...,9'1)).
q' = 2'W?(e RY)
K = XWE(e RL=xd)
V = XWV (e RF=*9)

t T
c' = Attention(q’, K, V) = softmax (q > 1%

~"
b

New prediction: g = h(c!), with g and h parametric functions
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Mutual attention

wk

Key
U N ] g 79976"‘)/7 | lIIllI
I“II
+ softmax
Attention
weights @@@@@o
' vy
Target: Features from X

| - |I||I|I||I|I||I

Value

<S0s>

Source: Predictions §

<eos>

Q00 »

» Output length = Query length (# Key length = Value length)
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Mutual attention: attention
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Images from [2]
» Size: target sequence length X source sequence length
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Transformer decoder

( Linear & Softmax )
_______________ . A stack of 6 transformer decoder layers
( T )4\\ : @ Multi-head Masked Self Attention
i } » Global query modeling
( Feed Forward ) :
it 3 @ Add: residual connections
( - ?N"'m < . » Multi-scale representation
T I » Reinforce identity
1 =xv S 1 | .
( T =< | @ Norm: layer normalization
t } » Stabilize training (range of values)
( Masked Self Attention ) :
_ R — @ Multi-head mutual attention
TR ’ » Look for relevant information from
) source
o Feed Forward: 2 fully-connected layers
Embedding . )
Y » Local projection

Outputs
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Masked self attention and teacher forcing

» Parallelize decoding process at training time using ground truth

Ground truth

. (oo [ u | n [ L [ e ][ u ][ a][ 1 |[«woe]| expecte

=1 1 I I I I I 1 |
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The transformer architecture

@ A modular approach: expressivity can be enhanced by adding more
encoder/decoder layers
» But slower training/inference and more required data

o Self attention: a way to model global context without sequential computations
(at each layer, each token can attend to all the other tokens)
» But a quadratic complexity

@ Parameter-free additive positional encoding
» But the relation between positions must be learned through training

@ Defined for Natural Language Processing: SOTA architecture
» How to adapt it for computer vision?
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Vision Transformer (2021) [3]

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

I
1
|
1
.. I
|
1
1
1
- 1 -
PEmbeaang > 0 () @5 @5 | Multi-Head
1
|
1
1
|
1

# Extra learnable R N R
[class] embedding [ Linear Projection of Flattened Patches ]

S [T T 1T 11T
- R Y Y e i P

e s

Embedded
Patches

Input image: 224 x 224, patch size: 16 x 16 = 196 patches
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Vision Transformer (2021) [3]

Architecture | Top-1 accuracy (%) on ImageNet | # params (M)
ResNet-50 79.26 26
ResNet-101 80.13 45
ResNet-152 80.62 60
ViT-B/16 77.01 86
ViT-B/32 73.38 86
ViT-L/16 76.53 307
ViT-L/32 71.16 307

Attention-based architectures require more data to exploit their full potential:
» Spatial relations between patches must be learned from scratch

» What to do when there is not enough labeled data?
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Table of contents

9 Dealing with few annotated data
@ Create artificial data
@ Use annotation from other datasets
@ Benefit from unlabeled data
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Dealing with few annotated data

Create artificial examples

» Data augmentation
» Synthetic data

Benefit from other annotated datasets

» Transfer learning
» Fine-tuning

Benefit from unlabeled data

» Semi-supervised learning
» Self-supervised learning
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Data augmentation

» Deformation function applied on labeled data

B R TR -

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

o

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

/N\Must preserve the information of interest (should not modify the associated ground
truth)
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Synthetic data

» Create new couples (input, ground truth) from scratch

Video games as simulation engines

GTA V for semantic segmentation [4]

Digital fonts for handwritten text recognition

This is an artificial text line image
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Transfer learning

The knowledge learned from task A can be helpful for task B
» Benefit from annotated data of another task/dataset

First step: pre-training

Train on a source task/dataset
e.g., classification on ImageNet

D)) s keep
L A convs __f6 &7 &

(et lavers

8 x 28 x 512 : —

x7x512

2245224 x 64
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Transfer learning

Adaptation to target dataset

e.g., classification on CIFAR 10
» Classes different: change projection head
» Semantically similar: preserve top layers

conv3

convd
convs

—
lax 14x512 | 1x1x2048 1x1x10

7x7x512

freeze train
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Transfer learning

Adaptation to target task
e.g., segmentation

convl

freeze train freeze train

semantically far semantically close
much data few data
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If enough target data: fine-tuning

Additional training step
» Training the transfered part of the architecture (either completely or top layers only),

with low learning rate

28 x28x 512

X256

conv3
convd
convs
j% 14 14 x 512 s
2 TxTx5

12

freeze train
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Getting back to ViT performance

Performance on ImageNet (fine-tuning included)

Architecture

Top-1 accuracy (%) on ImageNet

Pre-trained on ImageNet

Pre-trained on JFT-300M

ResNet-50 79.26 X
ResNet-101 80.13 X
ResNet-152 80.62 X
ViT-B/16 77.91 84.15
ViT-B/32 73.38 80.73
ViT-L/16 76.53 87.12
ViT-L/32 71.16 84.37
ViT-H/14 X 88.04

M2 SIF - DLV
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Semi-supervised learning

Idea: use prediction as ground truth

» Use trained model to generate pseudo-labels from unlabeled data
» Further train the model with both annotated data and pseudo-labels

A network [ initialized with
weights 6,

Few annotated data

Many unlabeled data

1) Train model with annotated data

oA - ,
OO ™

2) Generate pseudo-labels
(when confidence > threshold)

00 00
00 00
00 ~ @0
08 ~ 00
00 00
00 0D

3) Repeat
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Self-supervised learning

Idea: Learn from unlabeled data

Two main approaches

Generative architecture

The goal is to solve a pretext task
@ Solve Jigsaw puzzles

@ Reconstruct the input image:
(Variational) Auto-encoders, Masked auto-encoders

Joint Embedding Architecture

o Contrastive learning: SimCLR
Learning from positive and negative samples
@ Non-contrastive learning: DINO
Learning from different representations of the same input
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Jigsaw puzzle (2016) [5]

» Find the right permutation: classification formulation

{

==
)
P

I

o

'l A

4608 ﬁﬁ/lw/ _
f

c7  fcs softmax

o

Permutation Set

index permutation Reorder patches according to 7
the selected permutation

3

64 9.4,68325,1.7

©

TIX11x96  5x5x256  3x3x384 33x384 3X3X256
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Contrastive learning: SimCLR (2020) [6]

» Idea: generate two views for each input (= positive pair). Bring latent representations of
positives closer and keep latent representations of negatives away

» Siamese networks: same architecture with same weights used on different inputs while com-
paring outputs

Algorithm 1 SimCLR’s main learning algorithm. Maximize agreement
input: batch size N, constant 7, structure of f, g, 7. Z; z]
for sampled minibatch {z;}{_; do
forallk € {1,...,] N} do
draw two augmentation functions t~7, ¢/ ~T g ( . ) g’( . )
# the first augmentation
Eop1 = t(wk) .
hogy = (@) #representation h; <— Representation — h;
zok—1 = g(har—1) # projection
# the second augmentation
Zop = t'(@k)
hoi = f(@ar) # representation
2o, = g(hok) # projection
end for
forallic {1,....2N}andj € {1,...,2N} do
si; = 2] zi/(|zillllz;|l)  # pairwise similarity
end for

. o N\ exp(si;/T)
define £(i, j) as £(i,j)=—log ST 1 o0l /)

L= 55 Sal, [0(2k—1,2K) + ((2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)
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Contrastive learning: SimCLR (2020) [6]

» Find the matching pairs
» Cosine similarity as distance metric

o B

o transform

- o B @000
- S innEnio
]l 8 | Bue-x
@ o B X
o
B, J

transform
—_—

» Efficiency depends on mini-batch size
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Contrastive learning: SimCLR (2020) [6]

Classification performance (Top-1 accuracy) with ResNet architecture

Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 68.4 90.6 71.6 37.4 588  50.3 503 80.5 74.5 83.6 90.3 91.2
Supervised 72.3 93.6 78.3 53.7 619 66.7 61.0 82.8 749 91.5 94.5 94.7
Fine-tuned:

SimCLR (ours) 88.2 97.7 85.9 75.9 63.5 913 88.1 84.1 732 89.2 92.1 97.0
Supervised 88.3 97.5 86.4 75.8 643 921 86.0 85.0 74.6 92.1 933 97.6
Random init 86.9 95.9 80.2 76.1 53.6 914 859 67.3 64.8 81.5 72.6 92.0

Pre-training on ImageNet
Backbone either frozen (linear evaluation=transfer learning) or trained (fine-tuning)
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DINO (self-Distillation with NO labels, 2021) [7]

» Self-distillation through teacher-student paradigm

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

loss:
# gs, gt: student and teacher networks Q - P2 lOg P1
# C: center (K)

# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates

gt.params = gs.params
for x in loader: # load a minibatch x with n samples e
x1, x2 = augment (x), augment (x) # random views softmax

sl, s2 = gs(xl), gs(x2) # student output n-by-X .
tl, t2 = gt(xl), gt(x2) # teacher output n-by-K centering
loss = H(tl, s2)/2 + H(t2, sl)/2
loss.back d() # back-p ema
—

# student, teacher and center updates student g6s teacher 8ot
update (gs) # SGD
gt .params = lxgt.params + (1-1)xgs.params
C = m#C + (1-m)*cat ([tl, t2]).mean(dim=0)

def H(t, s):
t = t.detach() # stop gradient
s

softmax (s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + shazpen
return - (t * log(s)).sum(dim=1) .mean ()

x1,To are two augmentations of an image z (crop vs whole image).

Student trained to output same distribution as teacher with cross-entropy loss (H)
Stop-gradient (sg): only the student is trained through gradient descent.
Exponential moving average (ema): 6, = A0, + (1 — \)0s A € [0.996, 1]

M2 SIF - DLV Deep Learning for Vision (DLV) - Classification - part II



DINO (self-Distillation with NO labels, 2021) [7]

» Keywords

Knowledge distillation / teacher-student paradigm

Transfering knowledge from one network to another (generally for compression purposes).
e.g., a small network (student) is trained to mimick the output of a bigger network (teacher).

Self-distillation

Teacher and student share the same architecture (but not the same weights: these are not
siamese network)
Teacher weights are not updated through gradient descent but with EMA from student weights.
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DINO (self-Distillation with NO labels, 2021) [7]

Failing modes

One dimension dominates, no matter the input:

» Centering: t < t — C with C < mC + (1 — Zg‘)t (z:)

Uniform distribution, no matter the input:
» Sharpening: t < t/7

Attention maps: self-attention for CLS token
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DINO (self-Distillation with NO labels, 2021) [7]

Classification performance (Top-1 accuracy) with ViT architecture

Cifaryp Cifarjoo INat;g INatjg Flwrs Cars INet

ViT-S/16
Sup. [69]  99.0 89.5 707 7T76.6 982 921 79.9
DINO 99.0 90.5 72.0 782 98.5 93.0 81.5

ViT-B/16
Sup. [69]  99.0 90.8 732 777 984 921 81.8
DINO 99.1 917 726 78.6 98.8 93.0 82.8

Pre-training on ImageNet
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Masked auto-encoder (2022) [8]

» Reconstruct the missing parts (pixel-level MSE loss)

[l
L]
o -
~ i

EnsEE =
[ 1] P N =
l....—) 4 |encoder - decoder n
nunnE M .
EEREE [ =
input . B
R =
[
[ |

» Vision Transformer architecture
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Masked auto-encoder (2022) [8]

» Classification performance (Top-1 accuracy) with ViT architectures, pre-trained and
evaluated on ImageNet

Approach ‘ViT—B ViT-L  ViT-H ViT-Hygs
Supervised | 82.3 82.6 83.1 X

DINO 82.8 X X X
MAE 83.6 85.9 86.9 87.8

Left: masked input, Middle: reconstructed image, Right: ground truth
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Fully Convolutional Masked auto-encoder (ConvNext-v2, 2023) [9]

ConvNeXt V2 Block

input”g »
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» 88.9% top-1 accuracy on ImageNet (659M params)
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Be careful with benchmarks V2

Architecture is not everything, be careful with benchmarks!

e Training time, number of epochs/iterations, mini-batch size

o Weight initialization, optimizer, initial learning rate, learning rate scheduler
@ Dropout, normalization, activation functions

@ Pre-processing, post-processing
°

Pre-training, transfer learning, data augmentation, synthetic data

» Really difficult to fairly compare approaches
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Conclusion

Architectures
@ Deeper and deeper — more efficient but requires more data

o Powerful attention mechanism — requires even more data

Data is crucial

@ There are many ways to deal with few labeled data

@ But still an active field of research (e.g., medical data)

Classification
@ Performance constantly increasing but still not perfect

@ Task limited (one instance per image, no location information)

» Next time: Practical Session!
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