Deep Learning for Vision (DLV) Classification - part I

Denis Coquenet

2024-2025

Knowledge

- What is classification
- Evolution of deep architectures for classification
- Key components for stable training of deep models

Skills and know-how

- Formalize classification as a deep learning task
- Evaluate a classification model
- Compare neuronal layers in terms of parameters, output shape, memory consumption, computational cost and input constraints

The image classification task

- What is image classification?
- Why is it useful?
- How to handle this task?
- Problem formulation
- Evaluating the task
- Defining a training objective

2 Case study: LeNet for digit recognition

3 Towards deep neural networks

What is the main subject in the image?

Output: Butterfly

Input: image

Output: Candle

Output: Car

Task: find the main object in the image

Fine-grained classification

The expected class is domain-specific, e.g., cat species:

Output: Angora

Output: Bengal

Output: Persan

Why?

- Autonomous cars
- Tagging images (keyword)
- Security: facial recognition
- Knowledge: mushroom identification (https://shroom.id/)

How?

With deep supervised learning!

Constraints

- Classes must be known beforehand
- Requires annotated data for each class
- Item can be anywhere in the image (position, size)

Goal

Given a set of c classes, we want to learn a function $f_{\theta} : \mathcal{X} \to \mathcal{Y}$ which associates a class to each image.

Need: annotated data

 $\begin{aligned} \mathcal{D}_{\mathsf{train}} &= \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n: \text{ a set of } n \text{ training images} \\ x_i \in \mathbb{R}^{H_i \times W_i \times C_i}: \text{ an image of height } H_i, \text{ width } W_i \text{ and encoded on } C_i \text{ channels} \\ (C_i &= 1 \text{ for gray-scaled}, \ C_i &= 3 \text{ for RGB}) \\ y_i \in \{0, 1\}^{\mathsf{N}_c} \text{ the one-hot encoded class} \end{aligned}$

Example for three classes: butterfly, candle and car

 $\begin{array}{l} \mathsf{Butterfly} \rightarrow [1,0,0] \\ \mathsf{Candle} \rightarrow [0,1,0] \\ \mathsf{Car} \rightarrow [0,0,1] \end{array}$

Softmax

Let o be the output of the network: $o = f_{\theta}(x)$ Class probabilities can be obtained through softmax activation:

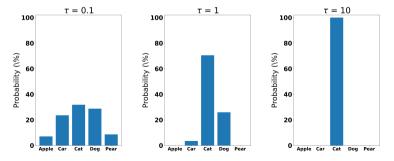
$$\hat{y} = \operatorname{softmax}(o) \qquad \Leftrightarrow \qquad \hat{y}_i = \frac{e^{o_i}}{\displaystyle\sum_{j=1}^{c} e^{o_j}}$$

Example for three classes: butterfly, candle and car

Class	o_i	\hat{y}_i		
Butterfly	11.5	21.42%		
Candle	12.8	78.58%		
Car	-2.4	0.00%		

Softmax: temperature factor

Adding a temperature factor τ enables to modulate the sharpness of the probability distribution: $\hat{y}_i = \frac{e^{o_i/\tau}}{\sum_{j=1}^{c} e^{o_j/\tau}}$ \blacktriangleright Could be optimized at training time through gradient descent \blacktriangleright Could be used at inference time to bring stochasticity (NLP)



Metrics

Top-1 accuracy:

$$a(\hat{y}, y) = \begin{cases} 1 & \text{if } \arg \max(\hat{y}) = \arg \max(y) \\ 0 & \text{otherwise} \end{cases}$$

Similarly, top-5 accuracy.

Goal

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} a(f_{\theta}(x_i), y_i)$$

But a not differentiable.

Cross-entropy loss

$$\begin{aligned} \mathcal{L}_{\mathsf{CE}}(\hat{y}, y) &= -\sum_{j=1}^{c} y_j \log(\hat{y}_j) \\ &= -y_{c^*} \log(\hat{y}_{c^*}) \end{aligned}$$

where c^{\ast} is the index of the ground truth class.

New goal

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\mathsf{CE}}(f_{\theta}(x_i), y_i)$$

Now the cost function is differentiable, but...

Training minimizes the error over the training set only

Metric computations

Compute the top-1 accuracy and top-5 accuracy for the following predictions/ground truth

#	Scores						Ground	
Sample	Apple	Bike	Car	Cat	Dog	Pear	Plane	truth
1	15	10	2	5	20	8	1	Apple
2	2	5	10	8	4	12	3	Car
3	12	2	1	6	4	5	9	Car
4	1	2	3	4	5	6	7	Plane
5	7	6	5	4	3	2	1	Bike

#	Scores							Ground	Top-1	Top-5
Sample	Apple	Bike	Car	Cat	Dog	Pear	Plane	truth	acc.	acc.
1	15	10	3	5	20	8	2	Apple	X	✓
2	2	5	10	8	4	12	3	Car	X	1
3	12	2	1	6	4	5	9	Car	×	X
4	1	2	3	4	5	6	7	Plane	1	1
5	7	6	5	4	3	2	1	Bike	×	1
									20%	80%

Remark: the softmax function is monotonic

▶ the argmax can be used directly on scores at prediction time

The image classification task

- 2 Case study: LeNet for digit recognition
 - The MNIST dataset
 - LeNet-5 architecture
 - Pytorch implementation of the whole task
 - Training and evaluation

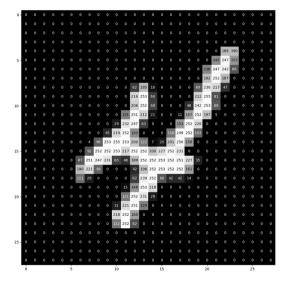
Towards deep neural networks

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

A handwritten digit classification dataset

- $\bullet\,$ Gray-scaled images of size 28×28
- 10 classes: digits from 0 to 9
- 60,000 training samples + 10,000 test samples

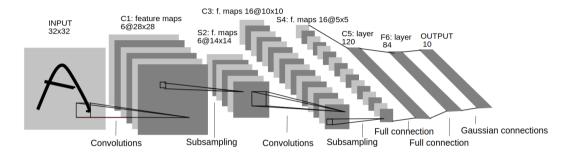
The MNIST dataset (1998) [1]



Very low resolution

Gray-scaled: only one dimension for color $(28 \times 28 \times 1 \rightarrow 784 \text{ values in total})$

LeNet-5 architecture (1998) [1]



A Convolutional Neural Network (CNN)

- 2 convolutions followed by max pooling
- 3 fully-connected layers
- \bullet Originally designed for inputs of size 32×32

```
from torch import nn
class LeNet(nn.Module):
    def init (self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0)
        self.fc1 = nn.Linear(400, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        # Non-parametric
        self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
    def forward(self, x):
        out = torch.tanh(self.conv1(x))
        out = self.max_pool(out)
        out = torch.tanh(self.conv2(out))
        out = self.max_pool(out)
        out = out.reshape(out.size(0), -1)
        out = torch.tanh(self.fc1(out))
        out = torch.tanh(self.fc2(out))
        out = self.fc3(out)
        return out
```

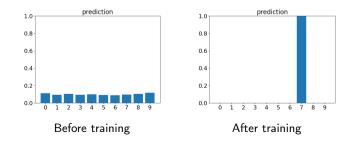
Model analysis

Model instanciation
net = LeNet()

Summary
from torchsummary import summary
summary(net, (1, 32, 32))

Forward pass # x: input image (1, 1, 32, 32) o = net(x) # (1, 10) hat_y = torch.softmax(o, dim=1)

Layer (type:depth-idx)	Output Shape	Param #
Conv2d: 1-1	[-1, 6, 28, 28]	156
MaxPool2d: 1-2	[-1, 6, 14, 14]	
Conv2d: 1-3	[-1, 16, 10, 10]	2,416
MaxPool2d: 1-4	[-1, 16, 5, 5]	
Linear: 1-5	[-1, 120]	48,120
Linear: 1-6	[-1, 84]	10,164
Linear: 1-7	[-1, 10]	850
Total params: 61,706		



Input image x

```
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Resize
from torchvision.datasets import MNIST
num epochs = 10
batch size = 100
learning rate = 0.01
transform = Compose([ToTensor(), Resize((32, 32))])
train_loader = DataLoader(MNIST(root="./cache", train=True, download=True, transform=transform),
        batch size=batch size. shuffle=True)
test_loader = DataLoader(MNIST(root="./cache", train=False, download=True, transform=transform),
        batch size=batch size. shuffle=False)
device = ("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet().to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
loss_fn = torch.nn.CrossEntropyLoss()
```

```
for epoch in range(num_epochs):
    train_epoch(train_loader, net, optimizer, loss_fn)
    eval(test_loader, net)
```

Pytorch implementation: training

```
def train_epoch(dataloader, net, optimizer, loss_fn):
    epoch_loss = list()
    epoch_top1_acc = list()
    net.train()
    for x, y in dataloader:
        batch_loss, batch_top1_acc = train_batch(x, y, net, optimizer, loss_fn)
        epoch_loss.append(batch_loss)
        epoch_top1_acc.append(batch_top1_acc)
        current_loss = np.mean(epoch_loss)
        current_top1_acc = 100 * np.mean(epoch_top1_acc)
        print(f"Train epoch {epoch+1}: loss: {current_loss:.4f} ; top-1 accuracy: {current_top1_acc:.2f}%")
```

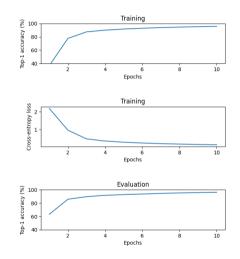
```
def train_batch(x, y, net, optimizer, loss_function):
    x, y = x.to(device), y.to(device)
    optimizer.zero_grad()  # zero the gradient buffers
    output = net(x)
    loss = loss_function(output, y)
    loss.backward()
    optimizer.step()
    top1_acc = compute_top1_acc(output, y)
    return loss.item(), top1_acc.item()
```

Pytorch implementation: evaluation

```
def compute_top1_acc(prediction, ground_truth):
    # prediction (B, N), around truth (B)
    best_prediction = torch.argmax(prediction, dim=1)
   return torch.mean(best_prediction == ground_truth, dtype=torch.float)
def eval_batch(x, y, net):
    x, y = x.to(device), y.to(device)
    output = net(x)
   top1_acc = compute_top1_acc(output, y)
   return top1_acc.item()
def eval(dataloader, net):
   top1_acc = list()
   net_eval()
    with torch.no_grad():
        for x, y in dataloader:
            batch_top1_acc = eval_batch(x, y, net)
            top1_acc.append(batch_top1_acc)
   top1_acc = 100 * np.mean(top1_acc)
    print(f"Eval epoch {epoch+1}: top-1 accuracy: {top1_acc:.2f}%")
```

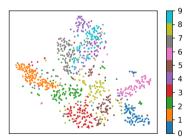
Let's run it!

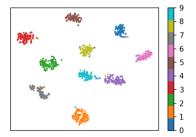
Train epoch 1: loss: 2.1790 ; top-1 accuracy: 34.73% Eval epoch 1: top-1 accuracy: 57.64% Train epoch 2: loss: 1.0242 ; top-1 accuracy: 73.68% Eval epoch 2: top-1 accuracy: 84.61% Train epoch 3: loss: 0.5052 ; top-1 accuracy: 86.74% Eval epoch 3: top-1 accuracy: 88.76% Train epoch 4: loss: 0.3701 ; top-1 accuracy: 89.77% Eval epoch 4: top-1 accuracy: 91.27% Train epoch 5: loss: 0.2959 ; top-1 accuracy: 91.62% Eval epoch 5: top-1 accuracy: 92.71% Train epoch 6: loss: 0.2447 ; top-1 accuracy: 93.05% Eval epoch 6: top-1 accuracy: 93.82% Train epoch 7: loss: 0.2068 ; top-1 accuracy: 94.17% Eval epoch 7: top-1 accuracy: 94.70% Train epoch 8: loss: 0.1780 ; top-1 accuracy: 95.00% Eval epoch 8: top-1 accuracy: 95.44% Train epoch 9: loss: 0.1555 ; top-1 accuracy: 95.62% Eval epoch 9: top-1 accuracy: 96.04% Train epoch 10: loss: 0.1384 : top-1 accuracy: 96.04% Eval epoch 10: top-1 accuracy: 96.50%



T-SNE [2]

T-SNE (T-distributed Stochastic Neighbor Embedding): Approach to reduce dimensions by preserving relative distance between points from input space to output space.





T-SNE on raw data

T-SNE on latent representation

1) The image classification task

3 Towards deep neural networks

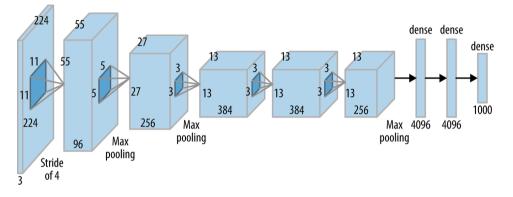
- The ImageNet dataset
- AlexNet
- VGG
- GoogleNet
- Depthwise Separable Convolution
- ResNet

The ImageNet dataset (2012) [3]

A large-scale dataset for image classification

- 1,000 classes
- 1.2 M training images (average size: 469x387 pixels)

source: https://cs.stanford.edu/people/karpathy/cnnembed/



source: oreilly.com

- 8-layer model (5 convolutions + 3 denses)
- ~60 M parameters
- Top-5 accuracy on ImageNet: 83.6%

Model definition

from torch import nn

```
class AlexNet(nn.Module):
    def __init__(self, num_classes=10):
        super(AlexNet, self), init ()
        self.conv1 = nn.Sequential(
           nn.Conv2d(3, 96, kernel size=11, stride=4, padding=2),
           nn.BatchNorm2d(96).
           nn.ReLU().
           nn_MaxPool2d(kernel_size=3, stride=2))
        self.conv2 = nn.Sequential(
           nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2).
           nn.BatchNorm2d(256),
           nn.ReLU().
           nn_MaxPool2d(kernel_size=3, stride=2))
        self.conv3 = nn.Sequential(
           nn.Conv2d(256, 384, kernel size=3, stride=1, padding=1).
           nn.BatchNorm2d(384).
           nn.ReLU())
        self.conv4 = nn.Seguential(
           nn.Conv2d(384. 384. kernel size=3. stride=1. padding=1).
           nn.BatchNorm2d(384).
           nn.ReLU())
        self.conv5 = nn.Seguential(
           nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
           nn.BatchNorm2d(256).
           nn.ReLU().
           nn.MaxPool2d(kernel size=3, stride=2))
```

self.fc1 = nn.Sequential(nn.Dropout(0.5), nn.Linear(9216, 4096), nn.ReLU()) self.fc2 = nn.Sequential(nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU()) self.fc3 = nn.Sequential(nn.Linear(4096, num_classes)) def forward(self, x):

sf forvard(seif, x): out = self.conv1(x) out = self.conv2(out) out = self.conv4(out) out = self.conv4(out) out = self.conv5(out) out = self.fc1(out) out = self.fc1(out) out = self.fc2(out) out = self.fc3(out) return out

Model analysis

	Layer (type)	Output Shape	Param #
# Instanciation	Conv2d-1	[-1, 96, 55, 55]	34,944
<pre>net = AlexNet()</pre>	BatchNorm2d-2	[-1, 96, 55, 55]	192
	ReLU-3	[-1, 96, 55, 55]	0
	MaxPool2d-4	[-1, 96, 27, 27]	0
# Summary	Conv2d-5	[-1, 256, 27, 27]	614,656
from torchsummary import summary	BatchNorm2d-6	[-1, 256, 27, 27]	512
summary(net, (3, 224, 224))	ReLU-7	[-1, 256, 27, 27]	0
Summary (net, (0, 224, 224))	MaxPool2d-8	[-1, 256, 13, 13]	0
	Conv2d-9	[-1, 384, 13, 13]	885,120
	BatchNorm2d-10	[-1, 384, 13, 13]	768
	ReLU-11	[-1, 384, 13, 13]	0
	Conv2d-12	[-1, 384, 13, 13]	1,327,488
	BatchNorm2d-13	[-1, 384, 13, 13]	768
	ReLU-14	[-1, 384, 13, 13]	0
	Conv2d-15	[-1, 256, 13, 13]	884,992
	BatchNorm2d-16	[-1, 256, 13, 13]	512
	ReLU-17	[-1, 256, 13, 13]	0
	MaxPool2d-18	[-1, 256, 6, 6]	0
	Dropout-19	[-1, 9216]	0
	Linear-20	[-1, 4096]	37,752,832
	ReLU-21	[-1, 4096]	0
	Dropout-22	[-1, 4096]	0
	Linear-23	[-1, 4096]	16,781,312
	ReLU-24	[-1, 4096]	0
	Linear-25	[-1, 10]	40,970

Total params: 58,325,066 Input size (MB): 0.57

Params size (MB): 222.49

Deep Learning for Vision (DLV) - Classification - part I

Feature extraction

- Convolution for local feature extraction (shift-equivariance)
- Dense for global feature extraction

Regularization

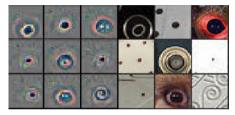
- BatchNorm
- Dropout
- Data augmentation

Activation

• ReLU activation for vanishing gradient issue

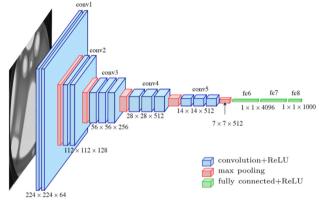
Visualizing features [4]

Layer 2



Layer 5

Visual Geometry Group (VGG, 2015) [5]



VGG-16

source: Ferguson et al., International Conference on Big Data, 2017

	VGG-11	VGG-13	VGG-16	VGG-19	VGG-19 [384]
# conv. layers	8	10	13	16	16
# dense layers	3	3	3	3	3
<pre># parameters (M)</pre>	133	133	138	144	144
ImageNet (valid) Top-1 accuracy (%)	70.4	71.3	73.0	72.7	73.1

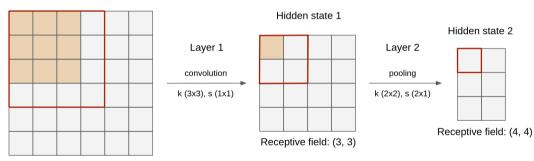
VGG-19 top-5 accuracy on ImageNet (test): 92.7%

➤ The deeper (and the wider) the better !

But: # parameters \nearrow , memory consumption \nearrow , computations \nearrow .

Definition

The receptive field corresponds to the size of the region in the input that produces the feature of a given hidden state.



Input

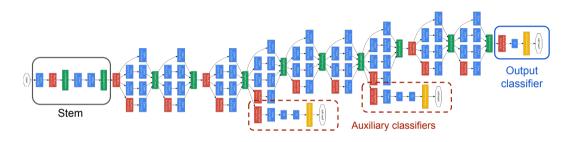
Receptive field: (1, 1)

► What is the receptive field in the decision layer?

M2 SIF - DLV

Deep Learning for Vision (DLV) - Classification - part I

GoogLeNet (Inception V1, 2015) [6]



- Conv. stem + stack of "Inception" blocks + output classifier
- Auxiliary classifiers used during training only
- 6.8 M parameters
- Top-5 accuracy on ImageNet: 93.3%

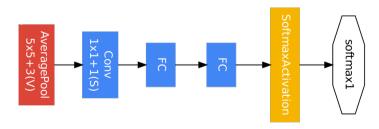
Idea

Assumption: latent representations are discrimative enough in the middle of the network.

Goal: improve gradient propagation for lower layers.

Global loss

$$\mathcal{L} = \mathcal{L}_{\mathsf{output}} + 0.3\mathcal{L}_{\mathsf{aux}_1} + 0.3\mathcal{L}_{\mathsf{aux}_2}$$



Inception block

```
class Inception(nn.Module):
    def __init__(self, in_channels, out_br1, red_br2, out_br2, red_br3, out_br3, out_br4):
        super().__init__()
        self.branch1 = nn.Conv2d(in channels, out br1, kernel size=1) # 128
        self.branch2 = nn.Sequential(
             nn.Conv2d(in_channels, red_br2, kernel_size=1), # 128
             nn.Conv2d(red_br2, out_br2, kernel_size=3, padding=1) # 256
        )
        self.branch3 = nn.Sequential(
             nn.Conv2d(in channels, red br3, kernel size=1), # 24
             nn.Conv2d(red_br3, out_br3, kernel_size=5, padding=1), # 64
        self.branch4 = nn.Sequential(
                                                                                Filter
             nn.MaxPool2d(kernel_size=3, stride=1, padding=1), # 512
                                                                              concatenation
             nn.Conv2d(in_channels, out_br4, kernel_size=1), # 64
                                                                           3x3 convolutions
                                                                                                     1x1 convolutions
                                                                                        5x5 convolutions
    def forward(self, x): # (B, 512, H, W)
                                                             1x1 convolutions
        branch1 = self.branch1(x) # (B. 128, H. W)
                                                                            1x1 convolutions
                                                                                        1x1 convolutions
                                                                                                     3x3 max pooling
        branch2 = self.branch2(x) # (B, 256, H, W)
        branch3 = self.branch3(x) # (B. 64. H. W)
        branch4 = self.branch4(x) # (B. 64. H. W)
                                                                              Previous laver
        return torch.cat([branch1, branch2, branch3, branch4], 1)
```

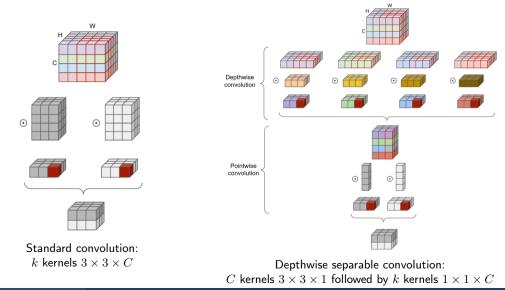
x: latent representation of dimension (1, 512, H, W)

conv = nn.Conv2d(512, 512, kernel_size=3)
out = conv(x) # (1, 512, H, W) using 2,359,808 parameters

► 4 times less parameters

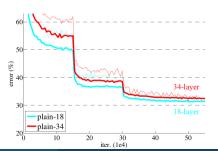
Another way to reduce the number of parameters: Depthwise Separable Convolutions

Depthwise Separable Convolutions (DSC, 2017) [7]



Deep Learning for Vision (DLV) - Classification - part I

С	$n_{\mathbf{k}}$	$k_{ m H}$	k_{W}	# weights convolution	# weights DSC	
				$C \times k_{\rm H} \times k_{\rm W} \times n_{\rm k}$	$C imes (k_{ m H} imes k_{ m W} + n_{ m k})$	
512	512	3	3	2.4M	0.3M	
1028	1028	3	3	9.5M	1.1M	
1028	1028	5	5	26.4M	1.1M	



- Stacking more layers leads to poorer results
- Not an overfiting issue (same behaviour during training)
- Why? If shallower network was optimal, additional layers should tend to identity mapping through training.

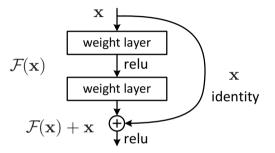
Residual connection

Goal: to make optimization easier

class Residual(nn.Module):

```
def __init__(self, in_channels, out_channels):
    super().__init__()
    self.conv1 = nn.Conv2d(in_channels, out_channels)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = nn.Conv2d(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
```

```
def forward(self, x):
    identity = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.cn2(out)
    out = self.bn2(out)
    out += identity
    out = self.relu(out)
    return out
```

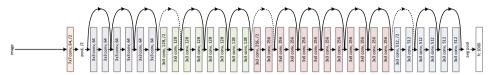


Assumption: it is easier to learn the residual mapping $\mathcal{F}(x) = \mathcal{H}(x) - x$ than directly \mathcal{H} . Easier to set weights to 0 (in case identity mapping is optimal) than to learn the identity mapping through non-linear functions.

► Improve gradient propagation + multi-scale feature extraction

M2 SIF - DLV

Deep Learning for Vision (DLV) - Classification - part I



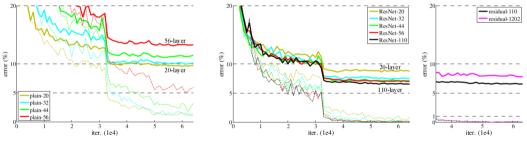
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10 ⁹	3.8×10 ⁹	7.6×10^{9}	11.3×10^{9}	

Top-5 accuracy: 96.43% for the deepest model

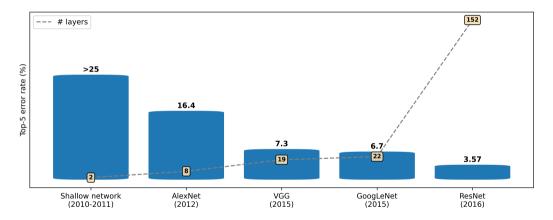
M2 SIF - DLV

CIFAR 10

- 50,000 training images (32×32)
- 10 classes



Training curves (dashed lines) and test curves (bold lines)



Classification performance on ImageNet

Architecture is not everything, be careful with benchmarks!

- Training time, number of epochs/iterations, mini-batch size
- Weight initialization, optimizer, initial learning rate, learning rate scheduler
- Dropout, normalization, activation functions
- Pre-processing, post-processing

What is really due to architecture novelty? What is due to training strategy?

► Really difficult to fairly compare approaches

Question

Input image of size 28×28 , floats encoded on 4 bytes

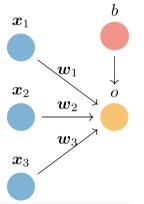
Compute the number of FLoating point OPerations (FLOPs), the number of parameters, the output shape and the output tensor memory occupation when applying the following layers independently:

- Fully-connected layers made up of 256 neurons
- Convolutional layer with 256 kernels of size 3×3 , stride 1×1 and no padding
- Max Pooling with kernel size 2×2 , stride 2×2 and no padding

Biases are considered in the computations

Example

Input



$Perceptron \ example = fully-connected \ with \ single \ output$

Input shape: 3 (vector) Output shape: 1 (scalar) Output size: $1 \times 4 = 4$ bytes (memory occupation)

Number of parameters: 4 (w_1, w_2, w_3, b)

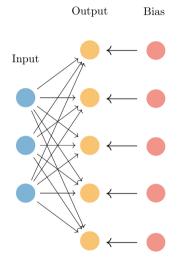
Two kinds of operation:

 Multiply-Accumulate Computations (MAC): Dot product: ô = w₁x₁ + w₂x₂ + w₃x₃ 3 MAC = 6 FLOPs (1 MAC = 2 FLOPs)

• Addition: Bias: $o = \hat{o} + b$ (1 FLOP)

➤ Total: 7 FLOPs

Correction



Fully-connected layers made up of 256 neurons

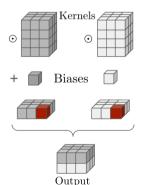
Input image shape: $28 \times 28 = 784$ Output shape: 256Output size: $256 \times 4 = 1,024$ bytes

Number of parameters: weights (#output \times #input) + biases (#output) $256 \times 784 + 256 = 200,960$ parameters

Number of FLOPs: $2 \times \text{#output} \times \text{#input} + \text{#biases}$ $2 \times 256 \times 784 + 256 = 401,664 \text{ FLOPs}$

Correction

Input



Convolutional layer with 256 kernels of size $3\times 3,$ stride 1×1 and no padding

W: width, H: height, L: length K: kernel size, P: padding, S: stride

Input image shape: $28 \times 28 \times 1$ Output shape: $W_o = H_o = \frac{L_i - K + P}{S} + 1 = \frac{28 - 3 + 0}{1} + 1 = 26 \rightarrow 26 \times 26 \times 256$ Output size: $26 \times 26 \times 256 \times 4 = 692, 224$ bytes

Number of parameters: weights (#kernel × kSize) + biases (#kernel) $256 \times (3 \times 3 \times 1) + 256 = 2,560$ parameters

Number of FLOPs: #kernel × #opsPerKernel × $(2 \times kSize + \#biasPerKernel)$ $256 \times (26 \times 26) \times (2 \times 3 \times 3 \times 1 + 1) = 3,288,064$ FLOPs

Correction

-0.1	0.1	-0.2
0.7	-0.8	0
0.6	0.9	0.2
0.1	-0.2	0
0.3	0.6	0.3
0.4	0.1	0
	0.7 0.6 0.1 0.3	0.7 -0.8 0.6 0.9 0.1 -0.2 0.3 0.6

0.7	0.1	1.2
0.6	0.9	0.6

Max Pooling with kernel size 2×2 , stride 2×2 and no padding

```
W: width, H: height, L: length
K: kernel size, P: padding, S: stride
```

Input image shape: $28 \times 28 \times 1$ Output shape: $W_o = H_o = \frac{L_i - K + P}{S} + 1 = \frac{28 - 2 + 0}{2} + 1 = 14 \rightarrow 14 \times 14 \times 1$ Output size: $14 \times 14 \times 1 \times 4 = 784$ bytes

Number of parameters: 0 Non-parameteric operation, nothing is learned!

Number of FLOPs:

 $H_i \times W_i \times C_i = 28 \times 28 \times 1 = 784$ FLOPs

Only select max value, just need to read all values

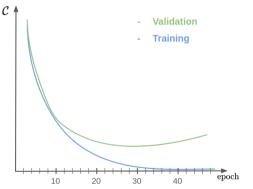
Which layer is parametric?

- ReLU
- Convolution
- Pooling
- Batch Normalization
- Dropout
- Fully-connected
- Softmax

Is a fully connected layer...

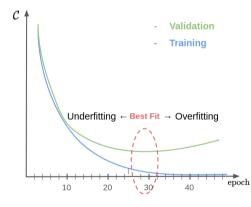
- Shift-equivariant?
- Shift-invariant?
- Dependant of the input size?
- Adapted to model global context?
- ► Same question for a convolutional layer

Here are the curves for my cost function during my training on the training and validation sets.



Questions:

- Which phenomenon can we observe?
- The weights from which epoch should I keep to use my network for inference?
- What could cause such phenomenon?
- What could be done to improve this situation?



Answers:

- This is a case of overfitting
- Weights from epoch 29 led to the best results
- Too many parameters with respect to the number of training data
 - ➤ The model learns non-discriminative information (noise) from training data
- Use more data, dropout, normalization...

Conclusion

Convolutions

- Weights shared through sliding window
- Must stack some of them to enlarge receptive field
- Shift-equivariant property

Architectures

Deeper and deeper: more efficient but...

- requires more data
- requires regularization techniques to stabilize training
- requires more computational resources
- ► Importance of multi-scale information with residual connections

► Next time: transformer architecture and how to deal with the lack of data!

References I

- Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition". In: *Proceedings IEEE* 86.11 (1998), pp. 2278–2324.
- Laurens van der Maaten and Geoffrey Hinton. "Visualizing Data using t-SNE". In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.
- [3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems. 2012, pp. 1106–1114.
- [4] Matthew D. Zeiler and Rob Fergus. "Visualizing and Understanding Convolutional Networks". In: 13th European Conference on Computer Vision. Ed. by David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne Tuytelaars. Vol. 8689. Lecture Notes in Computer Science. 2014, pp. 818–833.
- [5] Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". In: International Conference on Learning Representations. 2015.
- [6] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions". In: Conference on Computer Vision and Pattern Recognition. 2015, pp. 1–9.
- [7] François Chollet. "Xception: Deep Learning with Depthwise Separable Convolutions". In: Conference on Computer Vision and Pattern Recognition. 2017, pp. 1800–1807.

 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition". In: Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.