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Goals of this course
Knowledge

@ What is classification
@ Evolution of deep architectures for classification

@ Key components for stable training of deep models

Skills and know-how

@ Formalize classification as a deep learning task
o Evaluate a classification model

@ Compare neuronal layers in terms of parameters, output shape, memory
consumption, computational cost and input constraints
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Table of contents

0 The image classification task
@ What is image classification?
@ Why is it useful?
@ How to handle this task?
@ Problem formulation
@ Evaluating the task
@ Defining a training objective
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The image classification task

What is the main subject in the image?
Input: image

Output: Butterfly Output: Candle Output: Car

Task: find the main object in the image
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The image classification task

Fine-grained classification

The expected class is domain-specific, e.g., cat species:

Input: image

Output: Angora Output: Bengal Output: Persan
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The image classification task

Why?
@ Autonomous cars
o Tagging images (keyword)
@ Security: facial recognition
e Knowledge: mushroom identification (https://shroom.id/)

With deep supervised learning!

@ Classes must be known beforehand
@ Requires annotated data for each class

@ Item can be anywhere in the image (position, size)

M2 SIF - DLV Deep Learning for Vision (DLV) - Classification - part |



Supervised learning formulation

Goal

Given a set of ¢ classes, we want to learn a function fy : X — Y which associates a
class to each image.

Need: annotated data

Drrain = {(xi,yi) € X x Y} ;1 a set of n training images
x; € REXWixCi: an image of height H;, width W; and encoded on C; channels
(C; = 1 for gray-scaled, C; = 3 for RGB)

yi € {0,1}Ne the one-hot encoded class

Example for three classes: butterfly, candle and car
Butterfly — [1, 0, 0]

Candle — [0, 1, 0]

Car — [0,0,1]
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Key component: softmax activation

Let o be the output of the network: o = fy(z)
Class probabilities can be obtained through softmax activation:

e

= (&}
> e
j=1
Example for three classes: butterfly, candle and car

Class ‘ 0; ‘ Ui

Butterfly | 11.5 | 21.42%
Candle 12.8 | 78.58%
Car -2.4 | 0.00%

A~

§ = softmax(o) & s
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Softmax: temperature factor

Adding a temperature factor 7 enables to modulate the sharpness of the probability
eOi/T

distribution: §; = ————

Z er/T
=1

=
» Could be optimized at training time through gradient descent
» Could be used at inference time to bring stochasticity (NLP)
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Evaluation

Top-1 accuracy:

N 1 if argmax(y) = arg max(y)
0 otherwise

Similarly, top-5 accuracy.

b % > a(fo(xi), i)

i=1
But a not differentiable.
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Loss for classification

Cross-entropy loss

Lee(d,y) = —>5-1Y5log(d;)
= —Yer log(ger)

where ¢* is the index of the ground truth class.

New goal

1
m@m E ; ﬁCE(f9($z)7 yz)
Now the cost function is differentiable, but...

Training minimizes the error over the training set only
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Exercise

Metric computations

Compute the top-1 accuracy and top-5 accuracy for the following predictions/ground

truth

# Scores Ground

Sample | Apple Bike Car Cat Dog Pear Plane | truth
1 15 10 2 5 20 8 1 | Apple
2 2 5 10 8 4 12 3 Car
3 12 2 1 6 4 5 9 Car
4 1 2 3 4 5 6 7 Plane
5 7 6 5 4 3 2 1 Bike
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Table of contents

9 Case study: LeNet for digit recognition
@ The MNIST dataset
@ LeNet-5 architecture
@ Pytorch implementation of the whole task
@ Training and evaluation
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The MNIST dataset (1998) [1]

FHAEECBHAAAR
FRNEEHZEBAAENA

A handwritten digit classification dataset

@ Gray-scaled images of size 28 x 28
@ 10 classes: digits from 0 to 9
@ 60,000 training samples + 10,000 test samples
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The MNIST dataset (1998) [1]

Very low resolution

Gray-scaled: only one dimension for color
(28 x 28 x 1 — 784 values in total)

Deep Learn



LeNet-5 architecture (1998) [1]

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@26x28

32x32

S2: f. maps
6@14x14

' Full Coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

A Convolutional Neural Network (CNN)

@ 2 convolutions followed by max pooling
@ 3 fully-connected layers

@ Originally designed for inputs of size 32 x 32
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Pytorch implementation: architecture

from torch import nn

class LeNet(nn.Module):
__init__(self):

super (LeNet, self).__init__()

def

def

self
self
self
self

self.

.convl
.conv2
fcl =
fc2 =
fc3 =

= nn.Conv2d(1l, 6, kernel_size=5, stride=1, padding=0)
= nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0)
nn.Linear (400, 120)

nn.Linear (120, 84)

nn.Linear (84, 10)

# Non-parametric
self .max_pool = nn.MaxPool2d(kernel_size=2, stride=2)

forward(self, x):

out
out
out
out
out
out
out
out

= self

= self

return out

torch.tanh(self.convil(x))
self.
torch.tanh(self.conv2(out))
.max_pool (out)
out.reshape (out.size(0), -1)
torch.tanh(self.fcl(out))
torch.tanh(self.fc2(out))
.fc3(out)

max_pool (out)
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Model analysis

# Model instanciation

net = LeNet() Layer (type:depth-idx) Output Shape Param #
Conv2d: 1-1 [-1, 6, 28, 28] 156

# Summary MaxPool2d: 1-2 [-1, 6, 14, 14] --

from torchsummary import summary Convad: 1-3 [-1, 16, 10, 10] 2,416
MaxPool2d: 1-4 [-1, 16, 5, 5] -

summary (net, (1, 32, 32)) Linear: 1-5 [-1, 120] 48,120
Linear: 1-6 [-1, 84] 10,164
Linear: 1-7 [-1, 10] 850

# Forward pass
# inPUt image (11 1, 32, 32) Total params: 61,706
o =mnet(x) # (1, 10)

hat_y = torch.softmax(o, dim=1)

10 prediction 10 prediction

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0 1 2 3 4 5 6 7 8 9 0.0 0 1 2 3 4 5 6 7 8 9
Before training After training

Input image x
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Pytorch implementation: training

from torch.utils.data import DatalLoader
from torchvision.transforms import Compose, ToTensor, Resize
from torchvision.datasets import MNIST

num_epochs = 10

batch_size = 100

learning_rate = 0.01

transform = Compose([ToTensor(), Resize((32, 32))1])

train_loader = DataLoader (MNIST(root="./cache", train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)

test_loader = DatalLoader (MNIST(root="./cache", train=False, download=True, transform=transform),
batch_size=batch_size, shuffle=False)

device = ("cuda" if torch.cuda.is_available() else "cpu")

net = LeNet().to(device)

optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
loss_fn = torch.nn.CrossEntropyLoss()

for epoch in range(num_epochs):
train_epoch(train_loader, net, optimizer, loss_fn)
eval (test_loader, net)
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Pytorch implementation: training

def train_epoch(dataloader, net, optimizer, loss_fn):

epoch_loss = list()

epoch_topl_acc = list()

net.train()

for x, y in dataloader:
batch_loss, batch_topl_acc = train_batch(x, y, net, optimizer, loss_fn)
epoch_loss.append(batch_loss)
epoch_topl_acc.append(batch_topl_acc)
current_loss = np.mean(epoch_loss)
current_topl_acc = 100 * np.mean(epoch_topl_acc)

print(f"Train epoch {epoch+1}: loss: {current_loss:.4f} ; top-1 accuracy: {current_topl_acc:.2f}}%")

def train_batch(x, y, net, optimizer, loss_function):
X, ¥ = x.to(device), y.to(device)
optimizer.zero_grad() # zero the gradient buffers
output = net(x)
loss = loss_function(output, y)
loss.backward()
optimizer.step()
topl_acc = compute_topl_acc(output, y)
return loss.item(), topl_acc.item()
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Pytorch implementation: evaluation

def compute_topl_acc(prediction, ground_truth):
# prediction (B, N), ground_truth (B)
best_prediction = torch.argmax(prediction, dim=1)
return torch.mean(best_prediction == ground_truth, dtype=torch.float)

def eval_batch(x, y, net):
X, y = x.to(device), y.to(device)
output = net(x)
topl_acc = compute_topl_acc(output, y)
return topl_acc.item()

def eval(dataloader, net):

topl_acc = list()

net.eval()

with torch.no_grad():

for x, y in dataloader:

batch_topl_acc = eval_batch(x, y, net)
topl_acc.append(batch_topl_acc)

topl_acc = 100 * np.mean(topl_acc)

print (f"Eval epoch {epoch+1}: top-1 accuracy: {topl_acc:.2f}}")
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Let's run it!

Train epoch 1: loss: 2.1790 ; top-1 accuracy: 34.73J

Eval epoch 1: top-1 accuracy: 57.64% 8 100 Training

Train epoch 2: loss: 1.0242 ; top-1 accuracy: 73.68J E 80

Eval epoch 2: top-1 accuracy: 84.61% 2 60

Train epoch 3: loss: 0.5052 ; top-1 accuracy: 86.74% é a0 T T - ) =
Eval epoch 3: top-1 accuracy: 88.76% Epochs

Train epoch 4: loss: 0.3701 ; top-1 accuracy: 89.77%

Eval epoch 4: top-1 accuracy: 91.27% Training

N

Train epoch 5: loss: 0.2959 ; top-1 accuracy: 91.62%
Eval epoch 5: top-1 accuracy: 92.71%

Train epoch 6: loss: 0.2447 ; top-1 accuracy: 93.05%
Eval epoch 6: top-1 accuracy: 93.82 2 4 6 8 10
Train epoch 7: loss: 0.2068 ; top-1 accuracy: 94.17% Fpochs

Eval epoch 7: top-1 accuracy: 94.70%

Train epoch 8: loss: 0.1780 ; top-1 accuracy: 95.007
Eval epoch 8: top-1 accuracy: 95.44J

Train epoch 9: loss: 0.1555 ; top-1 accuracy: 95.62J
Eval epoch 9: top-1 accuracy: 96.04% w0

Train epoch 10: loss: 0.1384 ; top-1 accuracy: 96.04J, ? ¢ Emm: ¢ h
Eval epoch 10: top-1 accuracy: 96.50%

Cross-entropy loss
—

Evaluation
100

] /’/—_

60 1

Top-1 accuracy (%)
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Disentengling

T-SNE [2]

T-SNE (T-distributed Stochastic Neighbor Embedding):
Approach to reduce dimensions by preserving relative distance between points from
input space to output space.

o P N W & U1 O N W
-
;’(

O N W A U1 O N 0 W

T-SNE on raw data T-SNE on latent representation
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Table of contents

© Towards deep neural networks
@ The ImageNet dataset
@ AlexNet
@ VGG
@ GoogleNet
@ Depthwise Separable Convolution
@ ResNet
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The ImageNet dataset (2012) [3]

A large-scale dataset for image classification
@ 1,000 classes
e 1.2 M training images (average size: 469x387 pixels)
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AlexNet (2012) [3]

224
55 dense dense
7 13 13 13 fie
1 55 5 3 3 3
L. s b | I
1 5 27 3 13 3 13 3 13
384 384 256 1000
224 256 Max Max 4096 4096
% Max pooling pooling
oolin
Stride pooing
3 of 4

source: oreilly.com
@ 8-layer model (5 convolutions + 3 denses)
@ ~60 M parameters
@ Top-5 accuracy on ImageNet: 83.6%
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Model definition

from torch import nn
self.fcl = nn.Sequential(
class AlexNet(nn.Module) : nn.Dropout (0.5),
def __init__(self, num_classes=10): nn.Linear (9216, 4096),
super (AlexNet, self).__init__() nn.ReLU(Q))
self.convl = nn.Sequential( self.fc2 = nn.Sequential(
nn.Conv2d(3, 96, kernmel_size=11, stride=4, padding=2), nn.Dropout (0.5),
nn.BatchNorm2d (96) , nn.Linear (4096, 4096),
nn.ReLUQ), nn.ReLU())
nn.MaxPool2d(kernel_size=3, stride=2)) self.fc3 = nn.Sequential(
self.conv2 = nn.Sequential( nn.Linear (4096, num_classes))
nn.Conv2d (96, 256, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d (256) , def forward(self, x):
nn.ReLUQ), out = self.convl(x)
nn.MaxPool2d(kernel_size=3, stride=2)) out = self.conv2(out)
self.conv3 = nn.Sequential( out = self.conv3(out)
nn.Conv2d (256, 384, kernel_size=3, stride=1, padding=1), out = self.conv4(out)
nn.BatchNorm2d(384), out = self.conv5(out)
nn.ReLUQ)) out = out.reshape(out.size(0), -1)
self.conv4 = nn.Sequential( out = self.fcl(out)
nn.Conv2d(384, 384, kernel_size=3, stride=1, padding=1), out = self.fc2(out)
nn.BatchNorm2d(384), out = self.fc3(out)
nn.ReLUQ)) return out
self.convb = nn.Sequential(
nn.Conv2d (384, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d (256) ,
nn.ReLUQ),
nn.MaxPool2d(kernel_size=3, stride=2))
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Model analysis

Layer (type) Output Shape Param #
# Instanciation
Conv2d-1 [-1, 96, 55, 55] 34,944
net = AlexNet() BatchNorm2d-2 [-1, 96, 55, 55] 192
ReLU-3 [-1, 96, 55, 55] 0
MaxPool2d-4 [-1, 96, 27, 27] 0
# Summary Conv2d-5 [-1, 256, 27, 27] 614,656
from torchsummary import summary BatchNorm2d-6 [-1, 256, 27, 271 512
summary (net, (3, 224, 224)) ReLU-7 (-1, 256, 27, 27] 0
MaxPo012d-8 [-1, 256, 13, 13] 0
Conv2d-9 [-1, 384, 13, 13] 885,120
BatchNorm2d-10 [-1, 384, 13, 13] 768
ReLU-11 [-1, 384, 13, 13] 0
Conv2d-12 [-1, 384, 13, 13] 1,327,488
BatchNorm2d-13 [-1, 384, 13, 13] 768
ReLU-14 [-1, 384, 13, 13] 0
Conv2d-15 [-1, 2566, 13, 13] 884,992
BatchNorm2d-16 [-1, 2566, 13, 13] 512
ReLU-17 [-1, 2566, 13, 13] 0
MaxPoo0l2d-18 [-1, 256, 6, 6] 0
Dropout-19 [-1, 9216] 0
Linear-20 [-1, 4096] 37,752,832
ReLU-21 [-1, 4096] 0
Dropout-22 [-1, 4096] 0
Linear-23 [-1, 4096] 16,781,312
ReLU-24 [-1, 4096] 0
Linear-25 [-1, 10] 40,970

Total params: 58,325,066
Input size (MB): 0.57
Params size (MB): 222.49
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Feature extraction

@ Convolution for local feature extraction (shift-equivariance)

@ Dense for global feature extraction

Regularization

e BatchNorm
e Dropout

@ Data augmentation

@ Rel U activation for vanishing gradient issue
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Visualizing features [4]
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Visual Geometry Group (VGG, 2015) [5]

convl

conv2

conv3
conv4 .
i fc6 o7 fe8
YA 1512 1x1x4096 1x 11000
28 x 28 x 512 T
56 % 56 % 256 IXTX312

112/ 112 x 128
@ convolution+ReLU
@ max pooling
(7 fully connected+ReLU

224 %224 x 64
VGG-16

source: Ferguson et al., International Conference on Big Data, 2017
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VGG: a family of models

VGG-11 | VGG-13 | VGG-16 | VGG-19 | VGG-19 [384]

# conv. layers 8 10 13 16 16
# dense layers 3 3 3 3 3
# parameters (M) 133 133 138 144 144

ImageNet (valid)

Top-1 accuracy (%) 70.4 71.3 73.0 72.7 73.1

VGG-19 top-5 accuracy on ImageNet (test): 92.7%
» The deeper (and the wider) the better !

But: # parameters ', memory consumption *, computations .
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Receptive field

The receptive field corresponds to the size of the region in the input that produces the

feature of a given hidden state.

Input

Layer 1

convolution

Hidden state 1

Receptive field: (1, 1)

k (3x3), s (1x1) :

Receptive field: (3, 3)

» What is the receptive field in the decision layer?

Hidden state 2

Layer 2

pooling
R
k (2x2), s (2x1)

Receptive field: (4, 4)
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GoogleNet (Inception V1, 2015) [6]

Stem

___________

@ Conv. stem + stack of "Inception" blocks + output classifier
@ Auxiliary classifiers used during training only
@ 6.8 M parameters

@ Top-5 accuracy on ImageNet: 93.3%
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Aucxiliary classifiers

Assumption: latent representations are discrimative enough in the middle of the
network.
Goal: improve gradient propagation for lower layers.

Global loss

L= ACoutput = 0-3»Caux1 aF O'BLGUXQ

>

U< [l
X =
ma Ll
e 0
Yo =
<3 »
sSg Y
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Inception block

class Inception(nn.Module):
def __init__(self, in_channels, out_brl, red_br2, out_br2, red_br3, out_br3, out_br4d):
super () .__init__()
self.branchl = nn.Conv2d(in_channels, out_brl, kernel_size=1) # 128
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels, red_br2, kernel_size=1), # 128
nn.Conv2d(red_br2, out_br2, kernel_size=3, padding=1) # 256
)
self.branch3 = nn.Sequential(
nn.Conv2d(in_channels, red_br3, kernel_size=1), # 2/
nn.Conv2d(red_br3, out_br3, kernel_size=5, padding=1), # 64
)
self.branch4 = nn.Sequential( Fiter
nn.MaxPool2d(kernel_size=3, stride=1, padding=1), # 512 concatenation

nn.Conv2d(in_channels, out_br4, kernel_size=1), # 64 7
)
3x3 convolutions 5x5 convolutions 1x1 convolutions
def forward(self, x): # (B, 512, H, W) 1x1 i [} 7 T

branchl = Self'branc:hi(x) # (B’ 128’ H’ W) 1x1 convolutions 1x1 convolutions 3x3 max pooling
branch2 = self.branch2(x) # (B, 256, H, W) \\\\\“\\-‘~:\
branch3 = self.branch3(x) # (B, 64, H, W) =

branch4 = self.branch4(x) # (B, 64, H, W) Previous layer
return torch.cat([branchl, branch2, branch3, branch4], 1)
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Inception block

# x: latent representation of dimension (1, 512, H, W)

block = Inception(in_channels=512, out_br1=128, red_br2=128,
out_br2=256, red_br3=24, out_br3=64, out_brd=64)
out = block(x) # (1, 512, H, W) wusing 510,104 parameters

conv = nn.Conv2d(512, 512, kernel_size=3)
out = conv(x) # (1, 512, H, W) using 2,359,808 parameters

» 4 times less parameters

Another way to reduce the number of parameters: Depthwise Separable Convolutions
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Depthwise Separable Convolutions (DSC, 2017) [7]

oo < © (FOP  offP cfi@ oD

Pointwise
ﬁ @ convolution 3

Standard convolution:
k kernels 3 x 3 x C Depthwise separable convolution:
C kernels 3 x 3 x 1 followed by k kernels 1 x 1 x C'

0]

3
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Depthwise Separable Convolutions (DSC) [7]

# weights # weights
C nx kg kw convolution DSC
C X kg X kw X ny CX(kHka—f-’l’Lk)
512 512 3 3 2.4M 0.3M
1028 1028 3 3 9.5M 1.1M
1028 1028 5 5 26.4M 1.1M
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Residual connection

Goal: to make optimization easier

class Residual(nn.Module):
def __init__(self, in_channels, out_channels):

super () .__init__()
self.convl = nn.Conv2d(in_channels, out_channels) .
self.bnl = nn.BatchNorm2d(out_channels) Welght Iayer
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels) .F(X) relu
self.bn2 = nn.BatchNorm2d(out_channels) A

X

def forward(self, x): Welght Iayer

identity = x

identity

out = self.convi(x)

out = self.bnl(out)

out = self.relu(out) f(x) + X
out = self.conv2(out)

out = self.bn2(out)

out += identity

out = self.relu(out)

return out

Assumption: it is easier to learn the residual mapping F(z) = H(z) — = than directly H.
Easier to set weights to 0 (in case identity mapping is optimal) than to learn the identity mapping
through non-linear functions.

» Improve gradient propagation + multi-scale feature extraction
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ResNet (2016) [8]

image

layer name | output size 18-layer ‘ 34-layer ‘ 50-layer 101-layer 152-layer
convl | 112x112 77, 64, stride 2
3%3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] [ 1x1,64
com2x | 36x36 {Zizz]xz “ig‘gj] 3x3,64 | %3 3x3,64 | %3 3x3,64 | %3
X X | 1x1,256 | | 1x1,256 | | 1x1,256
[Ix1,128 [1x1,128 [Ix1,128
convax | 28x28 [gi:gg}xz [;i:gg}w 3x3,128 | x4 | | 3x3.128 | x4 3x3,128 |x8
> > | 1x1,512 | | 1x1,512 | | 1x1,512
1x1,256 [ 1x1,256 ] 1x1,256
convdx | 14x14 [gi: ;gg}xz [;ig'g;g}xﬁ 3x3,256 | x6 || 3x3.256 |x23 || 3x3.256 |x36
> > 1x1,1024 1x1,1024 | 1x1, 1024
1x1,512 1x1,512 [ 1x1,512
covsx | 7x7 [;i: giﬂxz [:i:g}ﬂxz 3x3,512 |x3 | | 3x3.512 [x3 | | 3x3.512 |x3
> b 1x1,2048 1x1,2048 | 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [ 36x107 ] 3.8x107 7.6x10° 11.3x107

Top-5 accuracy: 96.43% for the deepest model
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ResNet (2016) [8]

CIFAR 10

@ 50,000 training images (32 x 32)
@ 10 classes

W-g-—————"—"=—"—"=—"—"—"=—"—"—"—"—"—"=—— - - 20y
ResNet-20
ResNet-32

~ResNet-44

=—ResNet-56

—ResNet-110|

error (%)

Z0Tayer

error (%)
error (%)

110-layer

o i P 3
iter. (1c4) iter. (1e4)

Training curves (dashed lines) and test curves (bold lines)

M2 SIF - DLV

Deep Learning for Vision (DLV) - Classification - part |



The deeper the better ?!

—=- #layers @

’
/
/7
/
/
’
’
’
’
’
’
/

Top-5 error rate (%)

Shallow network AIexNet VGG
(2010-2011) (2012) (2015)

GoogLeNet
(2015)

Classification performance on ImageNet
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We talked a lot about architectures, but...

Architecture is not everything, be careful with benchmarks!

@ Training time, number of epochs/iterations, mini-batch size
o Weight initialization, optimizer, initial learning rate, learning rate scheduler
@ Dropout, normalization, activation functions

@ Pre-processing, post-processing

What is really due to architecture novelty?
What is due to training strategy?

» Really difficult to fairly compare approaches
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Exercise: reminder on layers

Question

Input image of size 28 x 28, floats encoded on 4 bytes

Compute the number of FLoating point OPerations (FLOPs), the number of parameters, the
output shape and the output tensor memory occupation when applying the following layers
independently:

@ Fully-connected layers made up of 256 neurons
@ Convolutional layer with 256 kernels of size 3 x 3, stride 1 x 1 and no padding
@ Max Pooling with kernel size 2 x 2, stride 2 x 2 and no padding

Biases are considered in the computations
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Input

L1

Perceptron example = fully-connected with single output

Input shape: 3 (vector)
Output shape: 1 (scalar)
Output size: 1 x 4 = 4 bytes (memory occupation)

Number of parameters: 4 (wq, w2, w3, b)
Two kinds of operation:

@ Multiply-Accumulate Computations (MAC):
Dot product: 6 = wixq, + waxs + wixs
3 MAC = 6 FLOPs (1 MAC = 2 FLOPs)

@ Addition:
Bias: 0 =06+ b (1 FLOP)

» Total: 7 FLOPs
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Which layer is parametric?
@ RelLU
Convolution

Pooling

Dropout

°
°
@ Batch Normalization
°
o Fully-connected

°

Softmax

M2 SIF - DLV Deep Learning for Vision (DLV) - Classification - part |



Is a fully connected layer...
e Shift-equivariant?
e Shift-invariant?
@ Dependant of the input size?
o Adapted to model global context?

» Same question for a convolutional layer
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Here are the curves for my cost function during my training on the training and validation
sets.

Cﬂ

Training Questions:
© Which phenomenon can we observe?

@ The weights from which epoch should
| keep to use my network for inference?

© What could cause such phenomenon?

@ What could be done to improve this
situation?
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@ Weights shared through sliding window
@ Must stack some of them to enlarge receptive field

@ Shift-equivariant property

Architectures

Deeper and deeper: more efficient but...
@ requires more data
@ requires regularization techniques to stabilize training
@ requires more computational resources

» Importance of multi-scale information with residual connections

» Next time: transformer architecture and how to deal with the lack of datal
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