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Goals of this course

Knowledge
What is classification
Evolution of deep architectures for classification
Key components for stable training of deep models

Skills and know-how
Formalize classification as a deep learning task
Evaluate a classification model
Compare neuronal layers in terms of parameters, output shape, memory
consumption, computational cost and input constraints
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The image classification task

What is the main subject in the image?
Input: image

Output: Butterfly Output: Candle Output: Car

Task: find the main object in the image
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The image classification task

Fine-grained classification
The expected class is domain-specific, e.g., cat species:

Input: image

Output: Angora Output: Bengal Output: Persan
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The image classification task

Why?
Autonomous cars
Tagging images (keyword)
Security: facial recognition
Knowledge: mushroom identification (https://shroom.id/)

How?
With deep supervised learning!

Constraints
Classes must be known beforehand
Requires annotated data for each class
Item can be anywhere in the image (position, size)
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Supervised learning formulation

Goal
Given a set of c classes, we want to learn a function fθ : X → Y which associates a
class to each image.

Need: annotated data
Dtrain = {(xi, yi) ∈ X × Y}ni=1: a set of n training images

xi ∈ RHi×Wi×Ci : an image of height Hi, width Wi and encoded on Ci channels

(Ci = 1 for gray-scaled, Ci = 3 for RGB)

yi ∈ {0, 1}Nc the one-hot encoded class

Example for three classes: butterfly, candle and car

Butterfly → [1, 0, 0]
Candle → [0, 1, 0]
Car → [0, 0, 1]
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Key component: softmax activation

Softmax
Let o be the output of the network: o = fθ(x)
Class probabilities can be obtained through softmax activation:

ŷ = softmax(o) ⇔ ŷi =
eoi
c∑

j=1

eoj

Example for three classes: butterfly, candle and car

Class oi ŷi
Butterfly 11.5 21.42%
Candle 12.8 78.58%
Car -2.4 0.00%
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Softmax: temperature factor

Adding a temperature factor τ enables to modulate the sharpness of the probability

distribution: ŷi =
eoi/τ

c∑
j=1

eoj/τ

➤ Could be optimized at training time through gradient descent
➤ Could be used at inference time to bring stochasticity (NLP)
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Evaluation

Metrics
Top-1 accuracy:

a(ŷ, y) =

{
1 if argmax(ŷ) = argmax(y)
0 otherwise

Similarly, top-5 accuracy.

Goal

min
θ

1

n

n∑
i=1

a(fθ(xi), yi)

But a not differentiable.
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Loss for classification

Cross-entropy loss

LCE(ŷ, y) = −
∑c

j=1 yj log(ŷj)

= −yc∗ log(ŷc∗)

where c∗ is the index of the ground truth class.

New goal

min
θ

1

n

n∑
i=1

LCE(fθ(xi), yi)

Now the cost function is differentiable, but...

Training minimizes the error over the training set only
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Exercise

Metric computations

Compute the top-1 accuracy and top-5 accuracy for the following predictions/ground
truth

# Scores Ground
Sample Apple Bike Car Cat Dog Pear Plane truth

1 15 10 2 5 20 8 1 Apple
2 2 5 10 8 4 12 3 Car
3 12 2 1 6 4 5 9 Car
4 1 2 3 4 5 6 7 Plane
5 7 6 5 4 3 2 1 Bike
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The MNIST dataset (1998) [1]

A handwritten digit classification dataset
Gray-scaled images of size 28× 28

10 classes: digits from 0 to 9
60,000 training samples + 10,000 test samples
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The MNIST dataset (1998) [1]

Very low resolution

Gray-scaled: only one dimension for color
(28× 28× 1 → 784 values in total)
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LeNet-5 architecture (1998) [1]

A Convolutional Neural Network (CNN)

2 convolutions followed by max pooling
3 fully-connected layers
Originally designed for inputs of size 32× 32
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Pytorch implementation: architecture

from torch import nn
class LeNet(nn.Module):

def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0)
self.fc1 = nn.Linear(400, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
# Non-parametric
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)

def forward(self, x):
out = torch.tanh(self.conv1(x))
out = self.max_pool(out)
out = torch.tanh(self.conv2(out))
out = self.max_pool(out)
out = out.reshape(out.size(0), -1)
out = torch.tanh(self.fc1(out))
out = torch.tanh(self.fc2(out))
out = self.fc3(out)
return out
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Model analysis

# Model instanciation
net = LeNet()

# Summary
from torchsummary import summary
summary(net, (1, 32, 32))

# Forward pass
# x: input image (1, 1, 32, 32)
o = net(x) # (1, 10)
hat_y = torch.softmax(o, dim=1)

Input image x

=================================================================
Layer (type:depth-idx) Output Shape Param #
=================================================================
Conv2d: 1-1 [-1, 6, 28, 28] 156
MaxPool2d: 1-2 [-1, 6, 14, 14] --
Conv2d: 1-3 [-1, 16, 10, 10] 2,416
MaxPool2d: 1-4 [-1, 16, 5, 5] --
Linear: 1-5 [-1, 120] 48,120
Linear: 1-6 [-1, 84] 10,164
Linear: 1-7 [-1, 10] 850
==================================================================
Total params: 61,706
==================================================================

Before training After training
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Pytorch implementation: training

from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Resize
from torchvision.datasets import MNIST

num_epochs = 10
batch_size = 100
learning_rate = 0.01
transform = Compose([ToTensor(), Resize((32, 32))])
train_loader = DataLoader(MNIST(root="./cache", train=True, download=True, transform=transform),

batch_size=batch_size, shuffle=True)
test_loader = DataLoader(MNIST(root="./cache", train=False, download=True, transform=transform),

batch_size=batch_size, shuffle=False)

device = ("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet().to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
loss_fn = torch.nn.CrossEntropyLoss()

for epoch in range(num_epochs):
train_epoch(train_loader, net, optimizer, loss_fn)
eval(test_loader, net)
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Pytorch implementation: training

def train_epoch(dataloader, net, optimizer, loss_fn):
epoch_loss = list()
epoch_top1_acc = list()
net.train()
for x, y in dataloader:

batch_loss, batch_top1_acc = train_batch(x, y, net, optimizer, loss_fn)
epoch_loss.append(batch_loss)
epoch_top1_acc.append(batch_top1_acc)
current_loss = np.mean(epoch_loss)
current_top1_acc = 100 * np.mean(epoch_top1_acc)

print(f"Train epoch {epoch+1}: loss: {current_loss:.4f} ; top-1 accuracy: {current_top1_acc:.2f}%")

def train_batch(x, y, net, optimizer, loss_function):
x, y = x.to(device), y.to(device)
optimizer.zero_grad() # zero the gradient buffers
output = net(x)
loss = loss_function(output, y)
loss.backward()
optimizer.step()
top1_acc = compute_top1_acc(output, y)
return loss.item(), top1_acc.item()
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Pytorch implementation: evaluation

def compute_top1_acc(prediction, ground_truth):
# prediction (B, N), ground_truth (B)
best_prediction = torch.argmax(prediction, dim=1)
return torch.mean(best_prediction == ground_truth, dtype=torch.float)

def eval_batch(x, y, net):
x, y = x.to(device), y.to(device)
output = net(x)
top1_acc = compute_top1_acc(output, y)
return top1_acc.item()

def eval(dataloader, net):
top1_acc = list()
net.eval()
with torch.no_grad():

for x, y in dataloader:
batch_top1_acc = eval_batch(x, y, net)
top1_acc.append(batch_top1_acc)

top1_acc = 100 * np.mean(top1_acc)
print(f"Eval epoch {epoch+1}: top-1 accuracy: {top1_acc:.2f}%")
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Let’s run it!

Train epoch 1: loss: 2.1790 ; top-1 accuracy: 34.73%
Eval epoch 1: top-1 accuracy: 57.64%
Train epoch 2: loss: 1.0242 ; top-1 accuracy: 73.68%
Eval epoch 2: top-1 accuracy: 84.61%
Train epoch 3: loss: 0.5052 ; top-1 accuracy: 86.74%
Eval epoch 3: top-1 accuracy: 88.76%
Train epoch 4: loss: 0.3701 ; top-1 accuracy: 89.77%
Eval epoch 4: top-1 accuracy: 91.27%
Train epoch 5: loss: 0.2959 ; top-1 accuracy: 91.62%
Eval epoch 5: top-1 accuracy: 92.71%
Train epoch 6: loss: 0.2447 ; top-1 accuracy: 93.05%
Eval epoch 6: top-1 accuracy: 93.82%
Train epoch 7: loss: 0.2068 ; top-1 accuracy: 94.17%
Eval epoch 7: top-1 accuracy: 94.70%
Train epoch 8: loss: 0.1780 ; top-1 accuracy: 95.00%
Eval epoch 8: top-1 accuracy: 95.44%
Train epoch 9: loss: 0.1555 ; top-1 accuracy: 95.62%
Eval epoch 9: top-1 accuracy: 96.04%
Train epoch 10: loss: 0.1384 ; top-1 accuracy: 96.04%
Eval epoch 10: top-1 accuracy: 96.50%
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Disentengling

T-SNE [2]

T-SNE (T-distributed Stochastic Neighbor Embedding):
Approach to reduce dimensions by preserving relative distance between points from
input space to output space.

T-SNE on raw data T-SNE on latent representation
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The ImageNet dataset (2012) [3]

A large-scale dataset for image classification
1,000 classes
1.2 M training images (average size: 469x387 pixels)

source: https://cs.stanford.edu/people/karpathy/cnnembed/
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AlexNet (2012) [3]

source: oreilly.com

8-layer model (5 convolutions + 3 denses)

∼60 M parameters

Top-5 accuracy on ImageNet: 83.6%
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Model definition

from torch import nn

class AlexNet(nn.Module):
def __init__(self, num_classes=10):

super(AlexNet, self).__init__()
self.conv1 = nn.Sequential(

nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),
nn.BatchNorm2d(96),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2))

self.conv2 = nn.Sequential(
nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2))

self.conv3 = nn.Sequential(
nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(384),
nn.ReLU())

self.conv4 = nn.Sequential(
nn.Conv2d(384, 384, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(384),
nn.ReLU())

self.conv5 = nn.Sequential(
nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2))

self.fc1 = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(9216, 4096),
nn.ReLU())

self.fc2 = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(4096, 4096),
nn.ReLU())

self.fc3 = nn.Sequential(
nn.Linear(4096, num_classes))

def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
out = self.conv4(out)
out = self.conv5(out)
out = out.reshape(out.size(0), -1)
out = self.fc1(out)
out = self.fc2(out)
out = self.fc3(out)
return out
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Model analysis

# Instanciation
net = AlexNet()

# Summary
from torchsummary import summary
summary(net, (3, 224, 224))

Layer (type) Output Shape Param #
================================================================

Conv2d-1 [-1, 96, 55, 55] 34,944
BatchNorm2d-2 [-1, 96, 55, 55] 192

ReLU-3 [-1, 96, 55, 55] 0
MaxPool2d-4 [-1, 96, 27, 27] 0

Conv2d-5 [-1, 256, 27, 27] 614,656
BatchNorm2d-6 [-1, 256, 27, 27] 512

ReLU-7 [-1, 256, 27, 27] 0
MaxPool2d-8 [-1, 256, 13, 13] 0

Conv2d-9 [-1, 384, 13, 13] 885,120
BatchNorm2d-10 [-1, 384, 13, 13] 768

ReLU-11 [-1, 384, 13, 13] 0
Conv2d-12 [-1, 384, 13, 13] 1,327,488

BatchNorm2d-13 [-1, 384, 13, 13] 768
ReLU-14 [-1, 384, 13, 13] 0

Conv2d-15 [-1, 256, 13, 13] 884,992
BatchNorm2d-16 [-1, 256, 13, 13] 512

ReLU-17 [-1, 256, 13, 13] 0
MaxPool2d-18 [-1, 256, 6, 6] 0

Dropout-19 [-1, 9216] 0
Linear-20 [-1, 4096] 37,752,832

ReLU-21 [-1, 4096] 0
Dropout-22 [-1, 4096] 0
Linear-23 [-1, 4096] 16,781,312

ReLU-24 [-1, 4096] 0
Linear-25 [-1, 10] 40,970

================================================================
Total params: 58,325,066
Input size (MB): 0.57
Params size (MB): 222.49
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Key items

Feature extraction
Convolution for local feature extraction (shift-equivariance)
Dense for global feature extraction

Regularization
BatchNorm
Dropout
Data augmentation

Activation
ReLU activation for vanishing gradient issue
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Visualizing features [4]

Layer 2 Layer 5
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Visual Geometry Group (VGG, 2015) [5]

VGG-16

source: Ferguson et al., International Conference on Big Data, 2017
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VGG: a family of models

VGG-11 VGG-13 VGG-16 VGG-19 VGG-19 [384]

# conv. layers 8 10 13 16 16
# dense layers 3 3 3 3 3
# parameters (M) 133 133 138 144 144
ImageNet (valid)

70.4 71.3 73.0 72.7 73.1
Top-1 accuracy (%)

VGG-19 top-5 accuracy on ImageNet (test): 92.7%

➤ The deeper (and the wider) the better !

But: # parameters ↗, memory consumption ↗, computations ↗.
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Receptive field

Definition
The receptive field corresponds to the size of the region in the input that produces the
feature of a given hidden state.

➤ What is the receptive field in the decision layer?
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GoogLeNet (Inception V1, 2015) [6]

Auxiliary classifiers
Stem

Output 
classifier

Conv. stem + stack of "Inception" blocks + output classifier
Auxiliary classifiers used during training only
6.8 M parameters
Top-5 accuracy on ImageNet: 93.3%
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Auxiliary classifiers

Idea
Assumption: latent representations are discrimative enough in the middle of the
network.
Goal: improve gradient propagation for lower layers.

Global loss

L = Loutput + 0.3Laux1 + 0.3Laux2
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Inception block

class Inception(nn.Module):
def __init__(self, in_channels, out_br1, red_br2, out_br2, red_br3, out_br3, out_br4):

super().__init__()
self.branch1 = nn.Conv2d(in_channels, out_br1, kernel_size=1) # 128
self.branch2 = nn.Sequential(

nn.Conv2d(in_channels, red_br2, kernel_size=1), # 128
nn.Conv2d(red_br2, out_br2, kernel_size=3, padding=1) # 256

)
self.branch3 = nn.Sequential(

nn.Conv2d(in_channels, red_br3, kernel_size=1), # 24
nn.Conv2d(red_br3, out_br3, kernel_size=5, padding=1), # 64

)
self.branch4 = nn.Sequential(

nn.MaxPool2d(kernel_size=3, stride=1, padding=1), # 512
nn.Conv2d(in_channels, out_br4, kernel_size=1), # 64

)

def forward(self, x): # (B, 512, H, W)
branch1 = self.branch1(x) # (B, 128, H, W)
branch2 = self.branch2(x) # (B, 256, H, W)
branch3 = self.branch3(x) # (B, 64, H, W)
branch4 = self.branch4(x) # (B, 64, H, W)
return torch.cat([branch1, branch2, branch3, branch4], 1)
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Inception block

# x: latent representation of dimension (1, 512, H, W)

block = Inception(in_channels=512, out_br1=128, red_br2=128,
out_br2=256, red_br3=24, out_br3=64, out_br4=64)

out = block(x) # (1, 512, H, W) using 510,104 parameters

conv = nn.Conv2d(512, 512, kernel_size=3)
out = conv(x) # (1, 512, H, W) using 2,359,808 parameters

➤ 4 times less parameters

Another way to reduce the number of parameters: Depthwise Separable Convolutions
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Depthwise Separable Convolutions (DSC, 2017) [7]

Standard convolution:
k kernels 3× 3× C Depthwise separable convolution:

C kernels 3× 3× 1 followed by k kernels 1× 1× C
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Depthwise Separable Convolutions (DSC) [7]

C nk kH kW

# weights # weights
convolution DSC

C × kH × kW × nk C × (kH × kW + nk)

512 512 3 3 2.4M 0.3M
1028 1028 3 3 9.5M 1.1M
1028 1028 5 5 26.4M 1.1M
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Going deeper [8]

P
la

in
-1

8
P

la
in

-3
4

Thin curves = training, bold = validation

Stacking more layers leads to poorer
results

Not an overfiting issue (same behaviour
during training)

Why? If shallower network was optimal,
additional layers should tend to identity
mapping through training.
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Residual connection

Goal: to make optimization easier
class Residual(nn.Module):

def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast intoF(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Assumption: it is easier to learn the residual mapping F(x) = H(x)− x than directly H.
Easier to set weights to 0 (in case identity mapping is optimal) than to learn the identity mapping
through non-linear functions.
➤ Improve gradient propagation + multi-scale feature extraction
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layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

 1×1, 64
3×3, 64

1×1, 256

×3

 1×1, 64
3×3, 64

1×1, 256

×3

 1×1, 64
3×3, 64

1×1, 256

×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

 1×1, 128
3×3, 128
1×1, 512

×4

 1×1, 128
3×3, 128
1×1, 512

×4

 1×1, 128
3×3, 128
1×1, 512

×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

 1×1, 256
3×3, 256
1×1, 1024

×6

 1×1, 256
3×3, 256
1×1, 1024

×23

 1×1, 256
3×3, 256

1×1, 1024

×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

 1×1, 512
3×3, 512
1×1, 2048

×3

 1×1, 512
3×3, 512

1×1, 2048

×3

 1×1, 512
3×3, 512
1×1, 2048

×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

Top-5 accuracy: 96.43% for the deepest model
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ResNet (2016) [8]

CIFAR 10
50,000 training images (32× 32)
10 classes

Training curves (dashed lines) and test curves (bold lines)
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The deeper the better ?!

Classification performance on ImageNet
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We talked a lot about architectures, but...

Architecture is not everything, be careful with benchmarks!

Training time, number of epochs/iterations, mini-batch size
Weight initialization, optimizer, initial learning rate, learning rate scheduler
Dropout, normalization, activation functions
Pre-processing, post-processing

What is really due to architecture novelty?
What is due to training strategy?

➤ Really difficult to fairly compare approaches
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Exercise: reminder on layers

Question
Input image of size 28× 28, floats encoded on 4 bytes

Compute the number of FLoating point OPerations (FLOPs), the number of parameters, the
output shape and the output tensor memory occupation when applying the following layers
independently:

Fully-connected layers made up of 256 neurons

Convolutional layer with 256 kernels of size 3× 3, stride 1× 1 and no padding

Max Pooling with kernel size 2× 2, stride 2× 2 and no padding

Biases are considered in the computations
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Example

Perceptron example = fully-connected with single output

Input shape: 3 (vector)
Output shape: 1 (scalar)
Output size: 1× 4 = 4 bytes (memory occupation)

Number of parameters: 4 (w1,w2,w3, b)

Two kinds of operation:

Multiply-Accumulate Computations (MAC):
Dot product: ô = w1x1 +w2x2 + w3x3

3 MAC = 6 FLOPs (1 MAC = 2 FLOPs)

Addition:
Bias: o = ô+ b (1 FLOP)

➤ Total: 7 FLOPs
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Quizz

Which layer is parametric?
ReLU
Convolution
Pooling
Batch Normalization
Dropout
Fully-connected
Softmax
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Quizz

Is a fully connected layer...
Shift-equivariant?
Shift-invariant?
Dependant of the input size?
Adapted to model global context?

➤ Same question for a convolutional layer
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Case study

Here are the curves for my cost function during my training on the training and validation
sets.

Questions:
1 Which phenomenon can we observe?
2 The weights from which epoch should

I keep to use my network for inference?
3 What could cause such phenomenon?
4 What could be done to improve this

situation?
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Conclusion

Convolutions
Weights shared through sliding window
Must stack some of them to enlarge receptive field
Shift-equivariant property

Architectures
Deeper and deeper: more efficient but...

requires more data
requires regularization techniques to stabilize training
requires more computational resources

➤ Importance of multi-scale information with residual connections

➤ Next time: transformer architecture and how to deal with the lack of data!
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