Partiel du cours PROG1

6 novembre 2024

Durée : 1 heure 30 minutes. Documents autorisés, machines interdites.

A. Listes en λ -calcul

On se donne l'encodage suivant des listes en λ -calcul, où [] représente la liste vide et h :: t représente la liste dont la tête est h et dont la queue est t :

$$([]) \stackrel{\text{def}}{=} \lambda n \, c. n$$
$$(h :: t) \stackrel{\text{def}}{=} \lambda n \, c. c \, h \, t$$

Pour inspecter le contenu d'une liste, on définit comme suit l'opérateur match l with $[] \mapsto bn \mid :: \mapsto bc$, qui exécute la branche bn si l est vide et qui exécute la branche bc avec les argument h et t si l est h :: t:

(match
$$l$$
 with $[] \mapsto bn \mid :: \mapsto bc) \stackrel{\text{def}}{=} l bn bc$

On veut que l'encodage satisfasse les conditions suivantes 1 , pour une certaine stratégie de réduction \longrightarrow :

$$\frac{t \longrightarrow t'}{(\mathsf{match}\ t\ \mathsf{with}\ [] \mapsto bn\ |\ ::\ \mapsto bc) \longrightarrow (\mathsf{match}\ t'\ \mathsf{with}\ [] \mapsto bn\ |\ ::\ \mapsto bc)}$$

$$\overline{(\mathsf{match}\ []\ \mathsf{with}\ [] \mapsto bn\ |\ ::\ \mapsto bc) \longrightarrow bn} \qquad \overline{(\mathsf{match}\ h::t\ \mathsf{with}\ [] \mapsto bn\ |\ ::\ \mapsto bc) \longrightarrow bc\ h\ t}}$$

Question 1: Montrer que ces conditions sont vérifiées si \longrightarrow est la stratégie de réduction en appel par nom.

Question 2: Les règles ci-dessus sont en petits pas. Donner des règles équivalentes en grands pas.

Question 3: Réduire (match h :: t with $[] \mapsto \Omega \mid :: \mapsto (\lambda h c.[])$) en appel par valeur. Expliquer le problème par rapport aux conditions attendues sur les réductions de notre encodage.

Pour la fin de l'exercice, on considère que \longrightarrow est en appel par nom. On considère l'opérateur de point fixe $\Theta \stackrel{\mathrm{def}}{=} (\lambda x \, y. y \, (x \, x \, y)) \, (\lambda x \, y. y \, (x \, x \, y)).$

Question 4: Montrer que l'on a $\Theta f \longrightarrow^* f(\Theta f)$.

Question 5: Donner une définition d'un opérateur map(f,t) en λ -calcul, basée sur les encodages précédents,

^{1.} Autrement dit, pour une relation \longrightarrow encodant une stratégie de réduction possible du λ -calcul, on souhaite que, pour chaque règle, la conclusion soit vérifiée quand les prémisses le sont.

et satisfaisant les règles suivantes :

$$\frac{t \longrightarrow t'}{\operatorname{map}(f,t) \longrightarrow \operatorname{map}(f,t')}$$

$$\overline{\operatorname{map}(f,[]) \longrightarrow []}$$

$$\overline{\operatorname{map}(f,h::t) \longrightarrow (f\,h)::\operatorname{map}(f,t)}$$

B. Cachoteries

On considère le code OCaml suivant, vu comme 2 une expression Mini-ML e :

```
let f =
  let r = ref (fun x -> x) in
  let f = fun x -> if x = 0 then 1 else x * !r (x-1) in
  r := f;
  !r
in
f 3
```

Question 1: On cherche à évaluer e dans l'environnement et la mémoire vides. Indiquer pour quelles valeurs de E, σ , σ' et n on verra apparaître $E \vdash \sigma$, $(f\ 3) \Downarrow \sigma'$, n dans la dérivation de $\emptyset \vdash \emptyset$, $e \Downarrow \sigma'$, n.

Question 2: Donner une expression OCaml de type int -> bool qui renvoie un booléen aléatoire ³ pour chaque nouvelle entrée, mais renvoie toujours le même booléen pour une entrée donnée. Autrement dit, cette fonction serait indistinguable d'une fonction pure choisie aléatoirement dans int -> bool.

- **Attention**: on demande une *expression*, il n'est donc pas permis d'écrire des *déclarations* toplevel OCaml. En particulier, il n'est pas possible d'utiliser une variable globale mutable (qui pourrait de toute façon être utilisée de façon maladroite par d'autres fonctions de notre application fictive) : tout utilisation d'un état mutable doit être cachée.
- Vous pouvez utiliser des fonctions de la librairie standard comme Hashtbl.create ou List.assoc.

C. Sémantique non-déterministe

On considère les expressions arithmétiques suivantes, où n dénote une constante entière et x une variable :

$$e := x \mid e_1 + e_2$$

On munit ces expressions d'une sémantique à grands pas non-déterministe, basée sur des environnements (notés E) qui associent à chaque variable un *ensemble* de valeurs entières possibles. Une première sémantique à grands pas est donnée pour ce langage, via la relation $E \vdash e \Downarrow_1 n$ exprimant qu'une expression e peut s'évaluer en $n \in \mathbb{N}$ dans l'environnement E:

$$\frac{E \vdash x \Downarrow_1 n}{E \vdash x \Downarrow_1 n} \ n \in E(x) \quad \frac{E \vdash e_1 \Downarrow_1 n_1 \quad E \vdash e_2 \Downarrow_1 n_2}{E \vdash e_1 + e_2 \Downarrow_1 n_1 + n_2}$$

Question 1: Donner toutes les valeurs de n telles que $E \vdash x + x \downarrow_1 n$ quand $E(x) = \{1, 2\}$.

^{2.} Pour cela, on remplace if x = 0 then ... par if z = 0 then ... et éventuellement fun $x \to \infty$ par fixfun f $x \to \infty$

^{3.} On utilisera ici Random.bool : unit -> bool.

Une seconde sémantique à grands pas, donnée par la relation $E \vdash e \Downarrow_2 S$ définie ci-dessous, donne d'un coup l'ensemble $S \subseteq \mathbb{N}$ de toutes les valeurs possibles pour e dans l'environnement E:

$$\frac{E \vdash e_1 \Downarrow_2 S_1 \quad E \vdash e_2 \Downarrow_2 S_2}{E \vdash x \Downarrow_2 E(x)} \quad \frac{E \vdash e_1 \Downarrow_2 S_1 \quad E \vdash e_2 \Downarrow_2 S_2}{E \vdash e_1 + e_2 \Downarrow_2 \{n_1 + n_2 \mid n_1 \in S_1, n_2 \in S_2\}}$$

On admet que cette seconde relation est totale et fonctionnelle :

pour tous
$$e$$
 et E tels que $fv(e) \subseteq dom(E)$, il existe S tel que $E \vdash e \downarrow_2 S$ (1)

pour tous
$$e, E, S$$
 et S' tels que $E \vdash e \Downarrow_2 S$ et $E \vdash e \Downarrow_2 S'$, on a $S = S'$ (2)

Ceci nous permet de définir $[\![e]\!]_E$ comme l'unique $S\subseteq \mathbb{N}$ tel que $E\vdash e\downarrow_2 S$.

Question 2: Soit E un environnement et e une expression. Montrer la propriété suivante, i.e. la correction de \downarrow_2 par rapport à \downarrow_1 :

$$\llbracket e \rrbracket_E \subseteq \{ n \in \mathbb{N} \mid E \vdash e \downarrow_1 n \} \tag{3}$$

On admet la propriété symétrique, i.e. la complétude de \downarrow_2 par rapport à \downarrow_1 :

$$\{n \in \mathbb{N} \mid E \vdash e \downarrow_1 n\} \subseteq \llbracket e \rrbracket_E \tag{4}$$

Définitions locales

On étend notre langage d'expressions avec des définitions locales :

$$e ::= x \mid e_1 + e_2 \mid \text{let } x = e_1 \text{ in } e_2$$

On ajoute les règles suivantes aux définitions de \downarrow_1 et \downarrow_2 :

$$\frac{E \vdash e_1 \Downarrow_1 n_1 \quad E + \{x \mapsto \{n_1\}\} \vdash e_2 \Downarrow_1 n_2}{E \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 \Downarrow_1 n_2} \qquad \frac{E \vdash e_1 \Downarrow_1 S_1 \quad E + \{x \mapsto S_1\} \vdash e_2 \Downarrow_1 S_2}{E \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 \Downarrow_2 S_2}$$

Question 3: Parmi les propriétés (1) à (4) ci-dessus, lesquelles restent vraies dans cette extension? Justifier brièvement sans détailler aucune preuve.

Conditionnelles

On enrichit notre langage de départ avec un ifz comme en Mini-ML :

$$e := x \mid e_1 + e_2 \mid \text{ifz } e_1 \text{ then } e_2 \text{ else } e_3$$

La définition initiale de la sémantique ψ_1 est étendue par les règles suivantes :

$$\frac{E \vdash e_1 \Downarrow_1 0 \quad E \vdash e_2 \Downarrow_1 n}{E \vdash \mathsf{ifz} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \Downarrow_1 n} \qquad \frac{E \vdash e_1 \Downarrow_1 m \quad E \vdash e_3 \Downarrow_1 n}{E \vdash \mathsf{ifz} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 \Downarrow_1 n} \ m \neq 0$$

Question 4: Étendre la définition de \downarrow_2 pour que les propriétés (1) à (4) restent vraies. Aucune preuve n'est demandée, mais vérifiez que vous sauriez les faire pour être sûrs de ne rien oublier!

Implémentation

On revient pour cette dernière partie au langage original. On définit les types suivants :

```
type expr = Var of string | Add of expr*expr
type env = (string * int list) list
```

Question 5: Implémenter un interprète pour la sémantique ψ_1 , qui itère une fonction donnée en argument sur tous les résultats possibles :

```
val eval : env -> expr -> (int -> unit) -> unit
```

```
Ainsi, eval ["x",[1;2]; "y",[1]] (Add (Var "x", Var "y")) devrait être équivalent à fun f -> List.iter f [2;3].
```

Question 6: Implémenter une fonction first de type env -> expr -> int qui renvoie un entier pair vers lequel l'expression peut s'évaluer, si un tel entier existe, et lève l'exception Not_found sinon. Votre implémentation ne devra pas ré-implémenter une variante de la fonction d'évaluation mais utiliser eval env expr "en boîte noire". De plus, l'évaluation devra être interrompue à la première valeur paire rencontrée : dans ce cas on souhaite éviter d'itérer sur les valeurs suivantes.

Question 7: Passer votre interprète en CPS:

```
val eval_cps :
  env -> expr -> (int -> (unit -> 'a) -> 'a) -> (unit -> 'a) -> 'a
```

Question 8: Pouvez-vous faire la même chose qu'en question 6 avec eval_cps, sans utiliser aucun effet (état, exceptions, entrées-sorties, etc.)? On renverra un int option plutôt que de lever une exception en cas d'échec.