Examen du cours PROG1

9 novembre 2022

Durée : 1 heure 30 minutes. À réaliser sans document ni machine.

1 Lambda-calcul non typé

Dans cet exercice on considère le λ -calcul pur, non typé. On utilisera la β -réduction (sémantique à petits pas) notée \rightarrow_{β} comme dans le cours.

Question 1 Donner un λ -terme qui soit α -équivalent à $(\lambda x. x (\lambda x. \lambda x. x) x)$ mais où chaque abstraction utilise un nom de variable qui lui est propre.

Question 2 On pose $\top = \lambda x$. $\lambda y.x$ et $\bot = \lambda x.\lambda y.y$. On pose $D = (\lambda x. x x \top) (\lambda x. x x \bot)$. On considère le terme $M = (\lambda x. x D \top) \bot$. Le terme M est-il faiblement normalisant? fortement normalisant?

Question 3 On pose $\gamma_1 = \lambda x.\lambda y.((y\ x)\ y)$ et $\gamma_2 = \lambda x.\lambda y.((x\ y)\ x)$

- a. Décrire les séquences de β -réductions possibles de γ_1 γ_2 .
- b. Donner un λ -terme dont le graphe des β -réductions possibles soit un 3-cycle (i.e. trois sommets s_0, s_1, s_2 avec pour arêtes $s_i \to s_{(i+1) \mod 3}$).

2 Sémantique à grands pas

Dans cet exercice, vous aurez à étendre une sémantique à grands pas. Il n'y aura pas toujours une unique réponse possible : si des choix se présentent, vous pouvez simplement les mentionner ou les discuter brièvement.

On considère un langage d'expressions arithmétiques, dont la syntaxe est donnée par la grammaire suivante, où q désigne une constante rationnelle :

$$E ::= q \mid E \oplus E \mid E \otimes E \mid E \oslash E$$

Par exemple, $3 \oplus (3 \oslash 2)$ est une expression. On notera les opérations arithmétiques de façon usuelle, pour les distinguer des constructions syntaxiques précédentes : ainsi, 3+3/2 est un nombre rationnel, pas une expression.

On considère la sémantique à grands pas suivante, définissant comment les expressions sont évaluées en valeurs dans \mathbb{Q} :

$$\frac{1}{q \Downarrow q} \qquad \frac{E_1 \Downarrow q_1 \quad E_2 \Downarrow q_2}{E_1 \oplus E_2 \Downarrow q_1 + q_2} \qquad \frac{E_1 \Downarrow q_1 \quad E_2 \Downarrow q_2}{E_1 \otimes E_2 \Downarrow q_1 \times q_2} \qquad \frac{E_1 \Downarrow q_1 \quad E_2 \Downarrow q_2}{E_1 \otimes E_2 \Downarrow q_1/q_2}$$

Bien entendu, la dernière règle ne s'applique que lorsque q_2 est non-nul.

Question 1 On souhaiterait que toute expression s'évalue en quelquechose. On ajoute donc une valeur spéciale \bot , et la règle suivante :

$$\frac{E_2 \Downarrow 0}{E_1 \oslash E_2 \Downarrow \bot}$$

Cet ajout crée de nouveaux problèmes, puisque nos opérations arithmétiques ne sont pas définies sur \bot .

- a. Donner des règles supplémentaires pour que toute expression ait une valeur. Par exemple, on devra avoir $(3 \oslash 0) \oplus 1 \Downarrow \bot$.
- b. On veut maintenant permettre l'évaluation paresseuse de la multiplication : inutile de calculer une sous-expression quand l'autre s'évalue en 0. Ajouter encore des règles pour avoir, par exemple, $0 \otimes (3 \otimes 1) \downarrow 0$.

Question 2 On souhaite maintenant ajouter une règle de gestion des erreurs. On étend la syntaxe avec la construction try E with $\bot \mapsto E'$, qui devra se comporter comme en OCaml. Par exemple, on veut :

(try
$$1 \oslash 0$$
 with $\bot \mapsto 42) \Downarrow 42$
(try $1 \oslash 1$ with $\bot \mapsto 42) \Downarrow 1$

Ajouter des règles d'inférence pour doter cette construction de la sémantique attendue.

3 Normalisation forte

Question 1 On considère le résultat suivant :

Soient M et N des λ -termes quelconques, et C un contexte. On suppose que N et C[M[x:=N]] sont fortement normalisants. Alors $C[(\lambda x.M) \ N]$ est aussi fortement normalisant.

Démontrer ce résultat quand le contexte est trivial : si N et M[x:=N] sont fortement normalisants, alors $((\lambda x.M)\ N)$ aussi.

On admettra dans la suite le résultat précédent dans sa forme générale, pour tout contexte.

On rappelle maintenant deux notions utilisées dans la preuve de normalisation du λ -calcul simplement typé : le degré d'un redex dans un terme typable, et la mesure d'un terme typable. On considère pour cela un λ -terme M et une dérivation Π_M de $\Gamma \vdash M : T$ pour un certain environnement Γ et un certain type T.

- À chaque (occurrence de) redex $((\lambda x.N_1)\ N_2)$ de M est associée une (unique) sousdérivation de Π_M de la forme $\Gamma, \Gamma', x : T' \vdash N_1 : T''$ et l'on définit le degré du redex comme le type T'.
- On définit la mesure de M comme le multi-ensemble des degrés de ses redexes. La mesure sera notée $\|\Pi_M\|$ ou simplement $\|M\|$ quand la dérivation Π_M associée à M est non-ambigue.

Par exemple, il existe une unique dérivation Π de

$$a: T_a, b: T_b \vdash ((\lambda x. \lambda y. x) ((\lambda x. b) a) ((\lambda x. b) a)): T_b$$

et l'on a $\|\Pi\| = \{\!\!\{ T_a, T_a, T_b \}\!\!\}$ car le terme comporte trois redexes dont deux sont des occurrences distinctes du sous-terme $((\lambda x.b) \ a)$.

— On ordonne les types en comparant leur taille : T < T' quand |T| < |T'|. On ordonne les mesures en prenant l'extension multi-ensembliste de l'ordre sur les types : pour deux multi-ensembles de types S et S', on aura S < S' si S peut être obtenu à partir de S' en remplaçant, une ou plusieurs fois, un type par un nombre arbitraire mais fini de types strictement plus petits.

En reprenant l'exemple ci-dessus dans le cas où $T_a = T'_a \to T''_a$, on aurait notamment $\{\!\!\{T'_a, T'_a, T_a, T_a\}\!\!\} < \{\!\!\{T_a, T_a, T_b\}\!\!\}$ mais aussi $\{\!\!\{T'_a, T'_a, T'_a, T_a\}\!\!\} < \{\!\!\{T'_a, T'_a, T_a, T_b\}\!\!\}$ et ce qui s'ensuit par transitivité.

Question 2 On fixe un terme M et une dérivation Π de $\Gamma \vdash M : T$. On suppose que pour toute dérivation de typage Π' , de conclusion $\Gamma' \vdash M' : T'$ pour Γ', M' et T' quelconques, $\|\Pi'\| < \|\Pi_M\|$ implique que M' est fortement normalisant.

Indiquer pour chacun des énoncés suivants s'il est vrai ou faux, en justifiant brièvement:

- a. Si $M \to_{\beta} M'$, alors tout sous-terme de M' est sous-terme de M.
- b. Si $M \to_{\beta} M'$, alors tout redex de M' est redex de M.
- c. Si $M \to_{\beta} M'$, alors tout sous-terme de M' est typable.
- d. Si $((\lambda x. N_1) N_2)$ est un redex de M, alors N_1 et N_2 sont fortement normalisants.

Question 3 En adaptant la preuve de normalisation faible vue en cours, et en s'aidant des deux questions précédentes, montrer que tout terme typable est fortement normalisant.