TD9 8 mai 2023

Logique

Maxime Bridoux

Exercice 1 (Théorie insatisfiable)

Soit une signature $S = (\mathcal{F}, \mathcal{P})$.

- 1. Montrer que l'ensemble des \mathcal{F}, \mathcal{P} -formules du 1er ordre est une \mathcal{F}, \mathcal{P} -théorie.
- 2. Montrer que c'est la seule \mathcal{F}, \mathcal{P} -théorie insatisafiable.

Exercice 2 (Réciproque)

Le but est de montrer qu'une théorie récursivement énumérable est axiomatisable.

1. Soit une théorie \mathcal{T} récursivement énumérable. Soit un énumérateur de formules pour \mathcal{T} produisant $(\varphi_i)_{i\in\mathbb{N}}$. Pour une formule ϕ , on pose ϕ^m la formule :

$$\underbrace{\phi \wedge \cdots \wedge \phi}_{m \text{ fois}}$$

Montrer que $Th(\{\varphi_i^i \mid i \in \mathbb{N}\}) = \mathcal{T}$.

2. Montrer que l'ensemble $\{\varphi_i^i \mid i \in \mathbb{N}\}$ est récursif.

Exercice 3 (Structures ordonnées)

On dit que deux structures sont élémentairement équivalentes si elles satisfont les mêmes formules closes du premier ordre. On pose $\mathcal{P}=\{\geq\}$ et $\mathcal{F}=\emptyset$, et on considère les \mathcal{F},\mathcal{P} -structures $\mathbb{Z},\mathbb{Q},\mathbb{R}$ où \geq est interprété de façon canonique.

- 1. Montrer que \mathbb{Z} et \mathbb{Q} ne sont pas élémentairement équivalents.
- 2. On va montrer que \mathbb{Q} et \mathbb{R} sont élémentairement équivalents. Si σ est une substitution à valeurs dans $\mathcal{S} \in {\mathbb{Q}, \mathbb{R}}$ on note \geq_{σ} la relation d'ordre sur \mathcal{X} définie par $x \geq_{\sigma} y$ ssi $\sigma(x) \geq_{\mathcal{S}} \sigma(y)$.

Montrer que, pour toute formule ϕ et toutes assignations $\sigma: \mathcal{X} \to \mathbb{Q}$ et $\sigma': \mathcal{X} \to \mathbb{R}$ telles que \geq_{σ} et $\geq_{\sigma'}$ coïncident, on a $\mathbb{Q}, \sigma \vDash \phi$ ssi $\mathbb{R}, \sigma' \vDash \phi$.

Exercice 4 (Théorie des corps)

On se place sur la signature $S = (\{0[0], 1[0], +[2], \times [2]\}, \{=[2]\}).$

1. Proposer un ensemble d'axiomes tels que les modèles de la théorie engendrée par ces axiomes soient exactement les corps.

On définit la théorie ACF des corps algébriquement clos 1 en ajoutant à la théorie des corps :

pour tout
$$n \in \mathbb{N}$$
 l'énoncé $\forall y_1 \dots \forall y_n \exists x. (x^n + y_1 x^{n-1} + \dots + y_n = 0)$.

- 2. On admet que ACF admet l'élimination des quantificateurs. ACF est-elle complète? La théorie des corps est-elle complète?
- 3. Montrer que si K est un corps algébriquement clos, alors tout système fini $\phi(x_1, \ldots, x_n)$ d'équations et d'inéquations à coefficients dans K qui a une solution dans une extension de corps L/K a déjà une solution dans K lui-même.
- 4. Soit une formule close ϕ . Montrer que ϕ est vraie dans tout corps algébriquement clos de caractéristique 2 nulle si et seulement si ϕ est vraie dans tout corps algébriquement clos de caractéristique p>0, pour tout p premier sauf un nombre fini.

 $^{1.\ \,}$ Tout polynôme de degré non nul à coefficients dans ce corps admet (au moins) une racine dans ce corps.

^{2.} La caractéristique d'un corps est le nombre minimum de fois où il faut additionner 1 pour obtenir 0; elle est nulle s'il n'existe pas de tel entier.