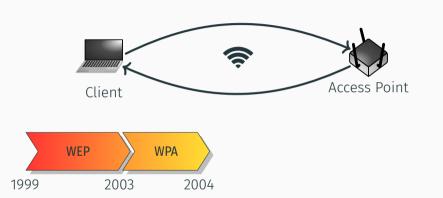
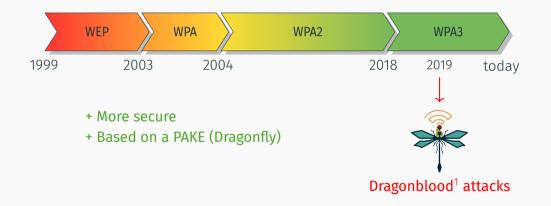
Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild


Daniel De Almeida Braga Pierre-Alain Fouque Mohamed Sabt CORGIS - March, 15th 2021



PAKE: Password Authenticated Key Exchange

- PAKE protocols aim to combine the Key Exchange and authentication parts
- Password is used to:
 - Authenticate the user
 - Derive strong cryptographic material
- No offline dictionary attack

¹ M. Vanhoef et al. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020

```
def processPassword(pwd):
if "a" in pwd:
    res = long_processing(pwd)
else:
    res = short_processing(pwd)
return res
```

```
def processPassword(pwd):
if "a" in pwd:
    res = long_processing(pwd)
else:
    res = short_processing(pwd)
return res
```

Gain information through timing:

10 seconds $\Rightarrow a$

```
def processPassword(pwd):
if "a" in pwd:
    res = long_processing(pwd)
else:
    res = short_processing(pwd)
return res
```

```
def processPassword2(pwd):
if "a" in pwd:
    res = long_processing(pwd)
else:
    res = long_processing2(pwd)
return res
```

Gain information through timing:

0.5 seconds \Rightarrow no a

10 seconds $\Rightarrow a$

```
def processPassword(pwd):
if "a" in pwd:
    res = long_processing(pwd)
else:
    res = short_processing(pwd)
return res
```

```
def processPassword2(pwd):
if "a" in pwd:
    res = long_processing(pwd)
else:
    res = long_processing2(pwd)
return res
```

Gain information through timing:

0.5 seconds \Rightarrow no a

10 seconds $\Rightarrow a$

Gain information execution flow:

- Execute long_processing $\Rightarrow a$
- Else, no *a* in pwd

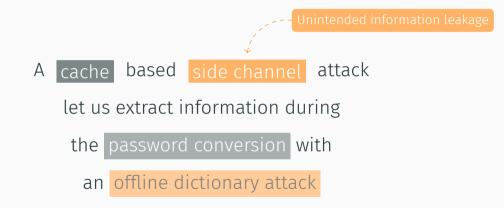
1. Show that current countermeasures are not sufficient for cache-based side-channel

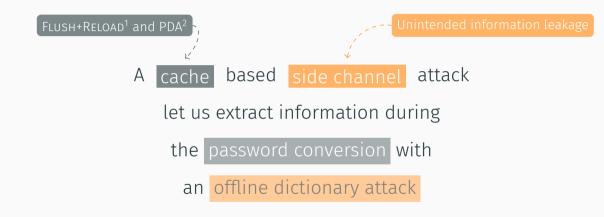
- 1. Show that current countermeasures are not sufficient for cache-based side-channel
- 2. Mount an offline dictionary attack to recover the password

- 1. Show that current countermeasures are not sufficient for cache-based side-channel
- 2. Mount an offline dictionary attack to recover the password
- 3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

- 1. Show that current countermeasures are not sufficient for cache-based side-channel
- 2. Mount an offline dictionary attack to recover the password
- 3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

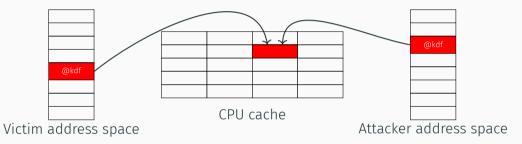
4. Raise awareness on how practical these attacks are

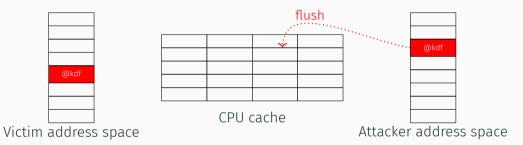

A cache based side channel attack


let us extract information during

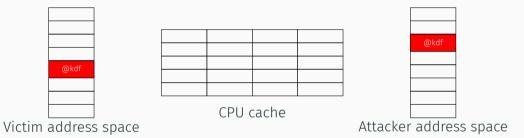
the password conversion with

an offline dictionary attack

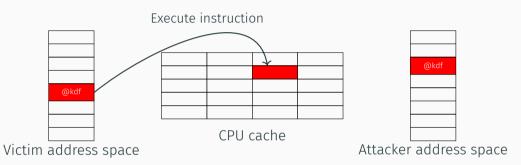

Our main result


¹ Y. Yarom et al. *Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack.* In USENIX Security Symposium. 2014.

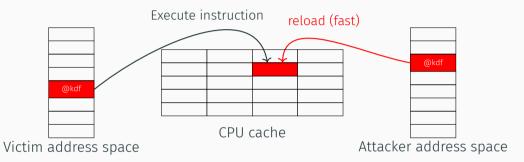
² T. Allan et al. Amplifying side channels through performance degradation. In ACSAC. 2016


1. Maps the victim's address space

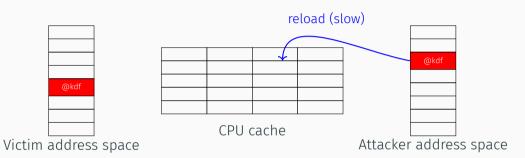
¹ Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.


- 1. Maps the victim's address space
- 2. Flush the instruction we monitor

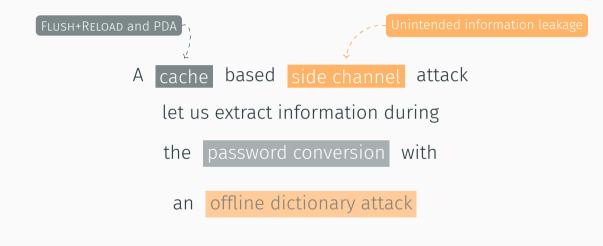
¹ Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

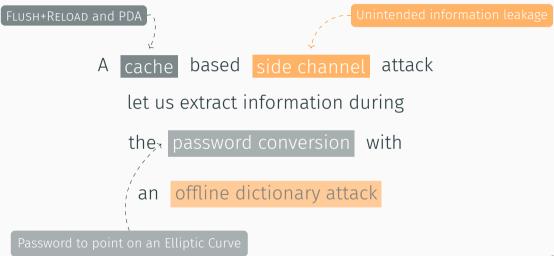

- 1. Maps the victim's address space
- 2. Flush the instruction we monitor
- 3. See how much time it takes to reload

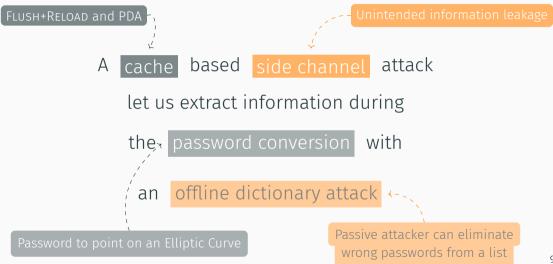
¹ Y. Yarom et al. *Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack.* In USENIX Security Symposium. 2014.


- 1. Maps the victim's address space
- 2. Flush the instruction we monitor
- 3. See how much time it takes to reload

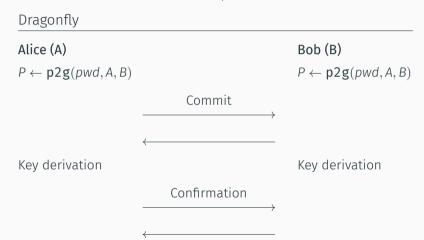
¹ Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

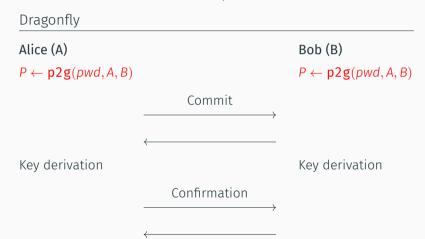

- 1. Maps the victim's address space
- 2. Flush the instruction we monitor
- 3. See how much time it takes to reload


¹ Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.



- 1. Maps the victim's address space
- 2. Flush the instruction we monitor
- 3. See how much time it takes to reload


¹ Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.



A and B agree on a prime order group $E(\mathbb{F}_p)$, of order q

A and B agree on a prime order group $E(\mathbb{F}_p)$, of order q

HuntingAndPecking(pwd, A, B, k = 40)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, seed_x = true, x_{cand} , seed
- 8: pwd = get_random()
- 9: i = i + 1
- 10: $y = set_compressed_point_coordinate(x, seed_x)$
- 11 : **return** (x, y)

HuntingAndPecking(pwd, A, B, k = 40)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, seed_x = true, x_{cand} , seed
- 8: pwd = get_random()
- 9: i = i + 1
- 10: $y = set_compressed_point_coordinate(x, seed_x)$
- 11 : **return** (x, y)

HuntingAndPecking(pwd, A, B, k = 40)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, seed_x = true, x_{cand} , seed
- 8: pwd = get_random()
- 9: i = i + 1
- 10: $y = set_compressed_point_coordinate(x, seed_x)$
- 11 : **return** (x, y)

HuntingAndPecking(pwd, A, B, k = 40)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, seed_x = true, x_{cand} , seed
- 8: pwd = get_random()
- 9: i = i + 1
- 10: $y = set_compressed_point_coordinate(x, seed_x)$
- 11 : **return** (x, y)

\leftarrow 😂 : new iteration

Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, seed_x = true, x_{cand} , seed
- 8: pwd = get_random()
- 9: i = i + 1
- 10: $y = set_compressed_point_coordinate(x, seed_x)$
- 11 : **return** (x, y)

 \leftarrow 😂 : new iteration

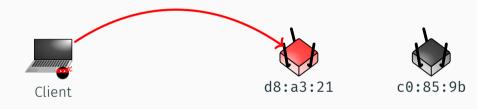
	Iter. required for A, B	Iter. required for A, B'
Leakage	3	
password1		
password2		
password3		
password4		
passwordn		

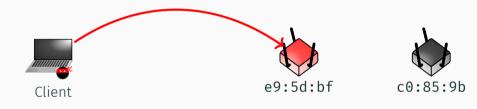
	Iter. required for A, B	lter. required for A, B'
Leakage	3	
password1	1	
password2	3	
password3	3	
password4	4	
passwordn	3	

	Iter. required for A, B	Iter. required for A, B'
Leakage	3	
password1	1	
password2	3	
password3	3	
password4	4	
passwordn	3	

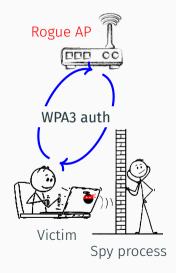
	Iter. required for A, B	Iter. required for A, B'
Leakage	3	2
password1	1	
password2	3	
password3	3	
password4	4	
passwordn	3	

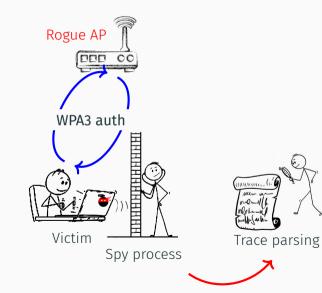
	Iter. required for A, B	lter. required for A, B'
Leakage	3	2
password1	1	Х
password2	3	8
password3	3	2
password4	4	Х
passwordn	3	1

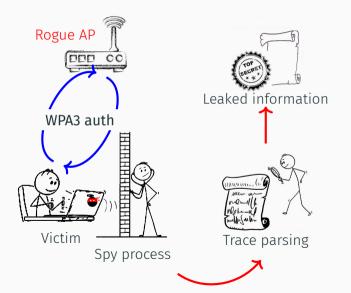

	Iter. required for A, B	Iter. required for A, B'
Leakage	3	2
password1	1	Х
password2	3	8
password3	3	2
password4	4	Х
passwordn	3	1



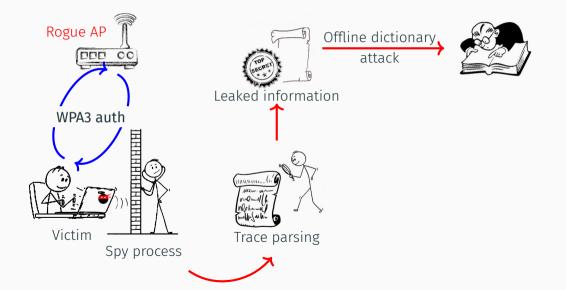
Attacker Model







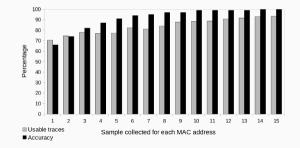
Victim



14

14

14


• Need multiple measurement to achieve high accuracy

- Need multiple measurement to achieve high accuracy
- Very reliable results with only 10 measurements per MAC address

- Need multiple measurement to achieve high accuracy
- Very reliable results with only 10 measurements per MAC address
- More than 1 bit of information for each MAC

- Need multiple measurement to achieve high accuracy
- Very reliable results with only 10 measurements per MAC address
- More than 1 bit of information for each MAC
- Original attack: 20 measurement for exactly one bit of information

- Need multiple measurement to achieve high accuracy
- Very reliable results with only 10 measurements per MAC address
- More than 1 bit of information for each MAC
- Original attack: 20 measurement for exactly one bit of information

	Dict. size	Cost on AWS	Avg traces for full reduction
Rockyou	$1.4 \cdot 10^{7}$	0,00037 €	16
CrackStation	$3.5 \cdot 10^{7}$	0,0011 €	17
HavelBeenPwned	$5.5 \cdot 10^{8}$	0,014 €	20
8 characters	$4.6 \cdot 10^{14}$	11848,2€	32

Number of the Required Traces / Cost to Prune all Wrong Passwords

	Dict. size	Cost on AWS	Avg traces for full reduction
Rockyou	$1.4 \cdot 10^{7}$	0,00037 €	16
CrackStation	3.5 · 10 ⁷	0,0011 €	17
HavelBeenPwned	$5.5 \cdot 10^{8}$	0,014 €	20
8 characters	$4.6 \cdot 10^{14}$	11848,2€	32

Number of the Required Traces / Cost to Prune all Wrong Passwords

	Dict. size	Cost on AWS	Avg traces for full reduction
Rockyou	$1.4 \cdot 10^{7}$	0,00037€	16
CrackStation	$3.5 \cdot 10^{7}$	0,0011€	17
HavelBeenPwned	$5.5 \cdot 10^8$	0,014 €	20
8 characters	$4.6 \cdot 10^{14}$	11848,2€	32

Number of the Required Traces / Cost to Prune all Wrong Passwords

IWD v1.9 🗸

2020-08-03 sae: Fix a side channel leak on the password Daniel DE ALMEIDA BRAGA 2 -40/+135

FreeRadius to be fixed in 3.0.22

merge constant time fixes from "master"

Based on a patch from Daniel De Almeida Braga.

The code is now largely the same between master and v3.0.x, which makes it easier to see that it's correct

Additional vulnerability (found after the paper submission)

HuntingAndPecking(*pwd*, A, B, k)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, save_seed = true, x_{cand} , seed
- 8: i = i + 1
- 9: y = set_compressed_point_coordinate(x, save_seed)
- 10 : **return** (x, y)

Additional vulnerability (found after the paper submission)

HuntingAndPecking(*pwd*, A, B, k)

- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, save_seed = true, x_{cand} , seed
- 8: i = i + 1
- 9: $y = set_compressed_point_coordinate(x, save_seed) \leftarrow \bigotimes$: leaks the seed's parity
- 10 : **return** (x, y)

	seed's parity for A, B	seed's parity for A, B'
Leakage	0	
password1		
password2		
password3		
password4		
passwordn		

	seed's parity for A, B	seed's parity for A, B'
Leakage	0	
password1	1	
password2	0	
password3	0	
password4	1	
passwordn	0	

	seed's parity for A, B	seed's parity for A, B'
Leakage	0	
password1	1	
password2	0	
password3	0	
password4	1	
passwordn	0	

	seed's parity for A, B	seed's parity for A, B'
Leakage	0	1
password1	1	
password2	0	
password3	0	
password4	1	
passwordn	0	

	seed's parity for A, B	seed's parity for A, B'
Leakage	0	1
password1	1	Х
password2	0	0
password3	0	1
password4	1	Х
passwordn	0	0

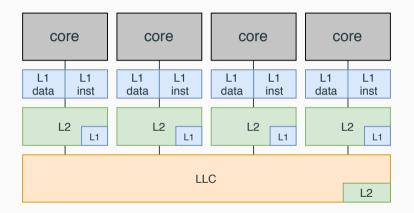
	seed's parity for A, B	seed's parity for A, B'
Leakage	0	1
password1	1	Х
password2	0	0
password3	0	1
password4	1	Х
passwordn	0	0

Additional vulnerability (found after the paper submission)

HuntingAndPecking(*pwd*, A, B, k)

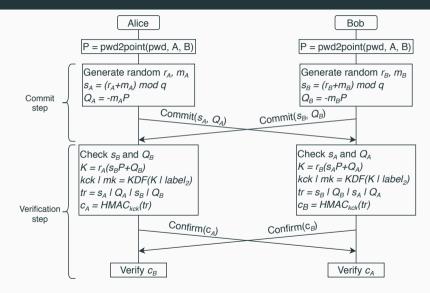
- 1: found, i = false, 1
- 2: while not found or i < k:
- 3: seed = Hash(A, B, pwd, i)
- 4: $x_{cand} = KDF(seed, label)$
- 5: **if** x_{cand} is a point's coordinate :
- 6: **if not** found :
- 7: found, x, seed_x = true, x_{cand} , seed
- 8: i = i + 1
- 9: y = set_compressed_point_coordinate(x, seed_x)
- 10 : **return** (x, y)


-- Underlying crypto library call


 \leftarrow 😂 : leaks the seed's parity

- Find / adapt tools to perform thorough analysis of WPA3
 - Complete/Sound tools do not scale well
 - Scalable tools are (often) not complete
- Analyze various implementations
- Patch remaining vulnerabilities
- Enjoy secure WPA3 implementations

Questions?



Inclusive cache

Dragonfly workflow

Need to check if $x^3 + ax + b$ is a quadratic residue on \mathbb{F}_p

is_x_on_curve(x)

- 1: $y_sqr = x^3 + ax + b$
- 2: return legendre_symbol(y_sqr, p) == 1

Is (x, y) a point on a curve ?

Need to check if $x^3 + ax + b$ is a quadratic residue on \mathbb{F}_p

is_x_on_curve(x, qr, nqr)

- 1: mask = get_random()
- 2: $y_sqr = x^3 + ax + b$
- 3: $blind_sqr = y_sqr \times mask^2$
- 4 : **if** mask is odd :
- 5: $blind_sqr = blind_sqr \times qr$
- 6: return legendre_symbol(blind_sqr) == -1

7 : **else**

- 8: $blind_sqr = blind_sqr \times nqr$
- 9: **return** *legendre_symbol(blind_sqr)* == 1