
Type-Based Verification  
of Electronic Voting Protocols

Formal Methods Seminar
22nd May 2015

INRIA, Rennes, France

Véronique Cortier, Fabienne Eigner, Steve Kremer, 
Matteo Maffei and Cyrille Wiedling

Introduction: E-voting evolution

2

Canada : Since 2004 at the Provincial
level. (EVM and (later) Internet voting.)

USA : EVM used for legally
binding vote since 1996. India : legally binding e-voting

with EVM since 2002.
Brazil : legally binding e-vote

with EVM since 2000.

But also :	

Norway 
France,  
Poland,  

...  

Planned in :	

Mexico,  
China,  
Spain,  

...  

Estonia : 2005, first legally
binding vote using Internet.

Introduction: E-voting, in theory

Electronic  
Voting Machines

Internet Voting

• Conveniency

Electronic Voting provides :

• Efficiency

• Reliability

Better accessibility, remote voting…

Computers are tallying faster than humans.

Computers are more accurate than humans.

3

• Trust
Everything is ensured by cryptography.

Privacy

Coercion-Resistance

Introduction: E-voting, in theory

Verifiability

Eligibility

E-voting promises
better security

4

Introduction: E-voting, in practice

5

But…
Things can go wrong.

• Paperless EVM in India. 	

 (A. Halderman, R. Gonggrijp, 2010)

• Diebold Machines in the U.S.  
 (Candice Hoke, 2008)

So, we need proofs !
automated

proofs !

Introduction: Tools can’t make it !

6

Automated proofs often take place in the symbolic approach.

There are numerous tools that can already perform automated proofs.

ProVerif

aKiSs

SPEC

APTE

Scyther

AVISPA

Tamarin E-Voting protocols often include  
too many different  

cryptographic primitives !

Computational Symbolic
More realistic  

model
Attacker modeled by probabilistic
polynomial-time Turing Machine

Strong  
guarantees

Tedious  
proofs

cryptographic primitives as
polynomial algorithms

Abstract  
model

Attacker modeled by 
deduction rules

Weaker  
guarantees

Easier proofs 
often automated

cryptographic primitives  
as function symbols

Introduction: A new tool ?

7

We needed something different !

Something that could handle equivalence-based properties.

	
 	
 Then, the rF* type-checker [Barthe et al. POPL’14] appears.
	
 	
 (with the ability to verify equivalence-based properties)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 We’ll see that in details a bit later…

So we asked the question:

Can type-checkers be used to verify  
(automatically) e-voting protocols

Introduction: Type-Systems

8

But first, what are type-systems ?

• A type is a description that characterizes the expected form of the
result of a computation.

If is an expression, and we consider the following typing : e

e : int

This is a typing judgement asserting that the value of is of type int.e

• NB: It will also checks consistency.

2 + 1 : int true : int 2 + true : int

Introduction: Type-Systems

9

• A type-system is a set of types and constructors used to describe the
expected behavior of a program.

• The goal of the type-checker is to verify the different typing judgements
and see wether they are true or not.

	
 This is done by using rules from which it can derive the assertion.

e : ⌧• Basically, enforcing that means that :

	
 	
 - is well-typed, i.e. correctly derived of type using the rules.e ⌧

	
 	
 - When is evaluated, its value is described by .e ⌧

Introduction: Type-Systems

10

• What kind of rules ?

n : int
e1 : ⌧1 ! ⌧2 e2 : ⌧1

e1e2 : ⌧2

Function mapping to .⌧1 ⌧2

• How does the type-checker to verify: ?2 + 1 : int

+ : int ! int ! int 2 : int

1 : int

+ 2 1 : int

+ 2 : int ! int

Introduction: Type-Systems

11

Of course, we need a type-system (a bit) more elaborated to be able to
express electronic-voting protocols.

But this in not an issue…	
 	

Protocol
Specification

Proof
Obligations

Result

Type-Checker SMT Solver

How does it work ?

Soundness result : If a program type-checks, then it is safe.
	
 	
 	
 	
 	
 	
 (In a presence of an arbitrary attacker.)

Introduction: Type-Systems

12

One interesting point :
	
 	
 SMT Solvers do not have any problem with AC-properties.

Can type-checkers be used to verify  
(automatically) e-voting protocolsSo…

We decided to give it a go:

	
 	
 • Developing a logical theory to guide type-checker in proving
interesting security properties like privacy and verifiability.

	
 	
 • Analyzing an existing e-voting protocol as an applied example.

An Outline of what follows

13

What’s next, Doc ?

1. Helios, our running example.

II. Verifiability

III. Privacy

	
 1. Individual Verifiability

	
 2. Universal Verifiability

	
 3. End-to-end Verifiability

Security  
Property

« Typed 
Translation »

Helios: Running example

14

• Web-based electronic voting system

	
 	
 	
 Try it at https://vote.heliosvoting.org/ !

• Two existing versions : homomorphic encryption VS mixnets.

• Already used for several elections.

	
 	
 	
 (Louvain-la-Neuve University, IACR* Board, …)

*International Association for Cryptologic Research

https://vote.heliosvoting.org/

Helios (Simplified)

15

Alice

Bob

Charlie
Bulletin Board

{vA, rA}pk(E)

{vB , rB}pk(E)

{vC , rC}pk(E)

• : public key. The private one is shared among trustees.pk(E)
	
 (All should collaborate to perform decryption of the tally.)

• The tally is computed using homomorphic encryption (El-Gamal).
	
 (The encrypted result is .){vA + vB + vC , rA + rB + rC}pk(E)
• Only the final result is encrypted, implying vote privacy.

Helios (Simplified)

16

A bit overly simplified…

Alice

Bob

Charlie
Bulletin Board

{vA, rA}pk(E)

{vB , rB}pk(E)

{vC , rC}pk(E)

0/1

0/1

100!

+ zkp(vA = 0 or 1)

+ zkp(vB = 0 or 1)

+ zkp(vC = 0 or 1)

• A zero-knowledge proof is attached to the ciphertext.

	
 (It may also provide a proof to the correctness of the final tally.)

• Using ZKP, Helios satisfies end-to-end verifiability.

Verifiability: Let’s have an intuition of it !

17

There are three different notions of verifiability :

	
 • Individual verifiability :

	
 • Universal verifiability :

	
 • End-to-end verifiability :

	
 	
 Each voter can check that is ballot is on the bulletin board.

	
 	
 Any observer can verify that the announced result corresponds to
	
 	
 the ballots published on the bulletin board.

	
 	
 The result matches with the votes intended by the voters.

Individual Verifiability

18

Voter(id, v) = assume Vote(id, v); send(net, b)
let r = new() in let bb = recv(net) in
let b = enc(pk, v, r) in if b 2 bb then
assume MyBallot(id, v, b); assert VHappy(id, v, bb)

How to prove individual verifiability using a type-system ?

• We introduce three predicates : Vote, MyBallot and VHappy.

• We define when the predicate VHappy should be verified :

assume VHappy(id, v, b) () Vote(id, v) ^ 9 b 2 bb MyBallot(id, v, b)

• We can prove that if such an annotated protocol type-checks…
Then it guarantees individual verifiability !

We used type-checker F* [Swamy and al. ICFP’11]

Universal Verifiability

19

How is made the tally ?

	
 • A step of sanitization where we remove duplicates and invalid
ballots from the bulletin board. ()bb 7! vbb

(Don’t remove the honest votes !)

	
 • A step of counting where all the votes contained in ballots listed
in are counted.vbb

We need some predicates…

GoodCount(vbb, r) GoodSan(bb, vbb)

assume JudgeHappy(bb, r) () 9 vbb (GoodSan(bb, vbb) ^ GoodCount(vbb, r))

Universal Verifiability

20

We now use these predicates to encode a Judge…

Judge(bb, r) = let vbb = recv(net) in
let zkp = recv(net) in
if vbb = remDuplicates(bb) ^ check zkp(zkp, vbb, r) then
assert JudgeHappy(bb, r)

• We can prove that if such an annotated protocol type-checks…
Then it guarantees universal verifiability !

We used type-checker F* [Swamy and al. ICFP’11]

End-To-End Verifiability

21

New predicate :

assume EndToEnd () 9 bb, r, id1, . . . , idn, v1, . . . , vn.

(JudgeHappy(bb, r) ^ VHappy(id1, v1, bb) ^ · · · ^ VHappy(idn, vn, bb))

=) 9 rlist . r = ⇢(rlist) ^ {|v1, . . . , vn|} ✓m rlist

We repeat the same scheme we used for individual or universal verifiability.

However this is difficult to enforce using a type-system.

Nevertheless, does this definition ring any bell ?

Idea: individual + universal = end-to-end

But…

Clash-Attacks [Küsters et al. S&P’12]

22

Alice

Bob

Charlie
Bulletin Board

{vA, rA}pk(E)

{vB , rB}pk(E)

{vC , rC}pk(E)

vA = vB = 0 rA = rB

{1, r}pk(E)

• Machines of Alice and Bob are corrupted by Charlie.

• Alice and Bob will vote the same way.

• One vote can be discarded and replace by another one…

without Alice nor Bob noticing it !

NoClash Property

23

Yes, another predicate !

assume NoClash () 8id1, id2, v1, v2, b .

MyBallot(id1, v1, b) ^MyBallot(id2, v2, b)

=) id1 = id2 ^ v1 = v2

Two distinct honest voters will never consider  
the same ballot to contain their vote.

• We can prove that if such an annotated protocol type-checks…
Then it guarantees that there are no clashs !

We used type-checker F* [Swamy and al. ICFP’11]

• Then, we have an interesting result :

Individual Verif. + Universal Verif. + NoClash = End-to-End Verif.

Verifiability: Conclusion

24

• We defined a way to prove individual and universal verifiability
using type-systems (F*).

• We applied this methodology to Helios and verified that it holds.

• Using the NoClash predicate, we have a way to prove end-to-end
verifiability using type-systems.

• Thanks to previous results, it also holds for Helios.

	
 Idea 2: Should no one see the difference if I change my vote ?

	
 	
 In the case of unanimity, the difference is kinda… obvious.

Privacy: Definition

25

What is privacy in an electronic-voting protocol ?

	
 Idea 1: Should my vote remain secret ?

	
 	
 Well… We need to reveal votes in order to get the result…

P () P ()⇡
8

() ()
indistinguishable from

Privacy: Definition

26

	
 Idea 3: 	

Should no one see the difference if two honest voters swap their votes ?

	
 Definition (S. Delaune, S. Kremer, M. Ryan, 2009)

⇡
P()

P()

8

()
()

Observational
Equivalence

Privacy: Using rF* to prove it

27

• rF* can be used to enforce observational equivalence.

• To do so, it implements relational refinements which allows to reason
about two protocol runs:

x : T{|F |}

• To specify that a value is the same in both runs, we use eq-types:

eq T

�
= x : T{|Lx = Rx|}

Value of x in the first execution.

• All inputs/outputs should be typed with eq types.

Privacy: Typing it ! (with rF*)

28

x : bytes{|Lx = v1 ^Rx = v2|} x : bytes{|Lx = v2 ^Rx = v1|}

• We add a corrupted voter, who also submits a ballot : bC = {vC , rC}pk(E)

• The corrupted voter submits the same thing at each execution, thus :

vC is of type x : eq bytes

• Finally, the result, after decryption, is : vA + vB + vC

left right

⇡

Bob vB =
let bB = create BallotB(vB) in
send(cB , bB)

Alice vA =
let bA = create BallotA(vA) in
send(cA, bA)

Result is an eq bytes,
we can publish it !

v1 + v2 + vC v2 + v1 + vC

Conclusion

29

Finally…

• New definitions for individual, universal, end-to-end verifiability and
privacy that are enforceable by mechanized type-based analysis.

• A theorem proving that end-to-end verifiability is enforced by both
individual and universal verifiability and no-clash property.

• Using F* and rF*, we proved the security properties of Helios.

• Can we apply it to other protocols ?

That’s all folks !

Questions ?

