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Security APIs

Security API

Trusted devices Host machines

Goal : Enforce security of data stored inside the trusted device, even 
when connected to untrusted host machines.
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Applications

• Electronic Ticketing Systems,

• Vehicle-to-vehicle networking.

• Smartphones, 

• Online Banking,  Asynchronous Transfer Mode,

• ...

http://fr.wikipedia.org/wiki/Asynchronous_Transfer_Mode
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How does it work ?

Trusted deviceHost machine

h1

h2
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How does it work ?

{ }

Trusted deviceHost machine

{ } h1

h2

h3

h3

import, , h2

export, h1, h2
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Related Work

Many flaws found on PKCS #11 security tokens. 

M. Bortolozzo, M. Centenaro,  
R. Focardi and G. Steel, CSF’10.
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Related Work

Proposals for key management APIs with security proofs.

C. Cachin, N. Chandran, CSF’09.

J. Courant, J.-F. Monin, WITS’06.

Many flaws found on PKCS #11 security tokens. 

M. Bortolozzo, M. Centenaro,  
R. Focardi and G. Steel, CSF’10.

V. Cortier, G. Steel, ESORICS’09...

Use of long-term keys implying  
unrecoverable loss of devices if keys are lost
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Breaking Keys in a TRD 

There are ways for the attacker to break some keys of a 
Tamper-Resistant Device (TRD):

• Bruteforcing, 

• Side-channel attack, 

• ... 

«Because I’m bad, really really bad !» 
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(More) Related Work

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)
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(More) Related Work

Still use long-term keys !

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)

F. E. Kargl, Sevecom, 2009...

(Two root keys)
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(More) Related Work

Attacked by S. Möderschein & P. Modesti 	


(solution proposed but no security proof)

Still use long-term keys !

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)

F. E. Kargl, Sevecom, 2009...

(Two root keys)
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Ideal Key Revocation API 

Keys must remain confidential:

Information about key should not be 
recovered by the intruder.
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The more sensitive a key is, the more 
an attacker will try to break it.

Keys must remain confidential:

Information about key should not be 
recovered by the intruder.



8

Ideal Key Revocation API 

The device should remain functional:

Any key should be revocable:

The more sensitive a key is, the more 
an attacker will try to break it.

A revocation of a key should not prevent 
the user from using his/her device.

Keys must remain confidential:

Information about key should not be 
recovered by the intruder.
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Our Contributions 

• A formal proof of security ensuring three properties :

• Design of an API satisfying previous properties with :

• update functionality,

• revocation functionality.

• the system is able to recover itself from an attack,

• a revocation immediately secures the device.

• A key remains secret unless it is broken (brute forced),
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Description of the API

TRD

Some assumptions on the tamper-resistant devices:
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Description of the API

TRDA table indexed by handles 
to store keys’ information 

(level, validity date, value, ...)

A clock assumed synchronized with a global clock

Some assumptions on the tamper-resistant devices:
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Description of the API

TRD A blacklist of elements of 
the form   (l,t) d                          

A table indexed by handles 
to store keys’ information 

(level, validity date, value, ...)

A clock assumed synchronized with a global clock

(l, t)

Some assumptions on the tamper-resistant devices:
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We also assume a hierarchy of levels for keys:

Description of the API

• with a (partial) order, 

• with a maximal and a minimal element. 
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l3 l4
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• with a maximal and a minimal element. 
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l
Max
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• with a maximal and a minimal element. 
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(important !) 	
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l
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We also assume a hierarchy of levels for keys:

l1 l2

l3 l4

l5 l6 l7

Description of the API

• with a (partial) order, 

• with a maximal and a minimal element. 

Example:

Long-term 	


(important !) 	



keys 

Session 	


keys 

l
Max
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User’s Commands

We have a set of basic commands.
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User’s Commands

h1

h2 h0
2

h0
3h3

h0
1, l, v,m , l, v,m

We have a set of basic commands.

Alice Bob

Running example:
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User’s Commands

h1

h2 h0
2

h0
3h3

h0
1, l, v,m , l, v,m

We have a set of basic commands.

Alice Bob

Running example:

Alice and Bob share a key and wish to securely exchange a message.
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User’s Commands

h1

h2

h3

, l, v,m

Alice



13

User’s Commands
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User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

h2

generateSecret(l1,m1)

To share the new session key with Bob, Alice needs to « export » the new key.

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(h2, h1)
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User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

h2

generateSecret(l1,m1)

To share the new session key with Bob, Alice needs to « export » the new key.

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(h2, h1)

n

, l1, v1,m1

o

Only works if l1 < l
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User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.
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User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

decrypt(
n

, l1, v1,m1

o
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User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

Only works if tests succeed ! 

decrypt(
n

, l1, v1,m1

o

, h0
1)
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User’s Commands
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User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

, l1, v1,m1

h0
2

Only works if tests succeed ! 

decrypt(
n

, l1, v1,m1

o

, h0
1)
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Alice can now encrypt the message using the session key.

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1
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Alice can now encrypt the message using the session key.

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt( , h2)
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Alice can now encrypt the message using the session key.

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt( , h2)

n

, 0, v0,m0

o
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User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1
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User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob
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decrypt(
n

, 0, v0,m0
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, h0
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User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1Only works if tests succeed ! 

decrypt(
n

, 0, v0,m0

o
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User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1Only works if tests succeed ! 

decrypt(
n

, 0, v0,m0

o

, h0
2)

Information is public,	


no need for handles.
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User’s Commands

A set of basic commands (summary):

Generate a nonce or a key, and store 
under a handle the information.

generatePublic(m)

generateSecret(l,m)

Decrypt      with the key stored under     and 
return a message or a handle.
C hdecrypt(C, h)

encrypt(hX1, . . . , Xni, h) Encrypt the input under the key 
stored in handle    . h



18

Lower Level Keys Management

We also have admin commands:

• Need revocation keys, i.e. keys of level Max. 

• Each device has its own set of admin keys. 

• Allow to administrate lower level keys (i.e. level < Max). 
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Lower Level Keys Management

We also have admin commands:

• Need revocation keys, i.e. keys of level Max. 

• Each device has its own set of admin keys. 

• Allow to administrate lower level keys (i.e. level < Max). 

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

Revocation keys of the device.
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Lower Level Keys Management

We also have admin commands:

• Need revocation keys, i.e. keys of level Max. 

• Each device has its own set of admin keys. 

• Allow to administrate lower level keys (i.e. level < Max). 

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

Revocation keys of the device.

lower level key
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Lower Level Keys Management

update(C, h1, . . . , hn)

Update value and attributes of keys that are 
not admin (level Max) keys.

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn



C =
n

update, , , l0, v0,m0
o
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Lower Level Keys Management

update(C, h1, . . . , hn)

Update value and attributes of keys that are 
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?
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Lower Level Keys Management

1. Tests on keys stored under                    .h1, . . . , hn

update(C, h1, . . . , hn)

Update value and attributes of keys that are 
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are they level Max and valid keys ?
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Lower Level Keys Management

1. Tests on keys stored under                    .

2. Decryption of     .

h1, . . . , hn

C

update(C, h1, . . . , hn)

Update value and attributes of keys that are 
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are they level Max and valid keys ?

> Obtaining old/new value and new attributes.
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Lower Level Keys Management

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

3. Verify that the old key (     ) is in the device.
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Lower Level Keys Management

4. Tests on the new attributes          of new key (     ).l0, v0

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are the new level and validity date correct ?

3. Verify that the old key (     ) is in the device.
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Lower Level Keys Management

4. Tests on the new attributes          of new key (     ).

5. Table update with the new values.

l0, v0

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are the new level and validity date correct ?

3. Verify that the old key (     ) is in the device.
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Lower Level Keys Management

4. Tests on the new attributes          of new key (     ).

5. Table update with the new values.

l0, v0

h1

· · · · · ·

hn

h , l0, v0,m0

,Max, v1

,Max, vn

How does it work ?

> Are the new level and validity date correct ?

3. Verify that the old key (     ) is in the device.
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

h1

h2

h3

,Max, v1

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max

N
Max

= 2
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

h1
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,Max, v1

,Max, v2

,Max, v3
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Max

N
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

h1

h2

h3

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max

N
Max

= 2

,Max, v01
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

h1

h2

h3

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max

N
Max

= 2

,Max, v01
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

h1

h2

h3 ,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

,Max, v02
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

h1

h2

h3 ,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

,Max, v02
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Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

h1

h2

h3

updateMax(C, h1, . . . , hn)

> Require a number            of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

,Max, v02

,Max, v03
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Revocation Keys Management

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o
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Revocation Keys Management

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o
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Revocation Keys Management

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o
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Revocation Keys Management

! The intruder can break  
all the level Max keys !  

(up to the current ones)

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o
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Revocation Keys Management

Hypothesis :

Level Max commands are sent over a secure channel.
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Revocation Keys Management

Hypothesis :

Level Max commands are sent over a secure channel.

This can be achieved by several means :

• The administrator has a physical access to the TRD 
that needs to be updated, 

• The user would connect his/her TRD to a trusted 
machine, on which a secure channel (e.g. via TLS) is 
established with the key administrator. 
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And now, what about Security ?

TRD

API
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And now, what about Security ?

TRD

API
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Abstraction

Messages are represented by terms

Nonces, keys :

Primitives :

Modeling deduction rules :

n,m, . . . , k1, k2, . . .

hn, {m}kin

m k

h , i

{ } ⌘

x y

hx, yi
hx, yi
x

hx, yi
y

x y

{x}y
{x}y y

x

{m}k, hm1,m2i
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)
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P, the set of TRDs in use in the system.
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network. 
(Represents also the knowledge of the intruder.)
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

N

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network. 
(Represents also the knowledge of the intruder.)

, the set of nonces currently in used in the system.
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

N

K

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network. 
(Represents also the knowledge of the intruder.)

, the set of nonces currently in used in the system.

, the set of keys currently in used in the system.
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

N

K

t

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network. 
(Represents also the knowledge of the intruder.)

, the set of nonces currently in used in the system.

, the set of keys currently in used in the system.

, represents the current time.
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

is a function describing the local state of TRD    . a
I : a 7! (⇥a, Ha,Ba, t, Na,Ka)
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

is a function describing the local state of TRD    . a

Ba , the set of blacklisted levels.

I : a 7! (⇥a, Ha,Ba, t, Na,Ka)
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Formal Model

We model the system using global states:

(P, I,M, N,K, t)

is a function describing the local state of TRD    . a

Ba , the set of blacklisted levels.

I : a 7! (⇥a, Ha,Ba, t, Na,Ka)

Handle Value Level Validity Misc.

-

... ... ... ... ...

⇥a , a function representing the memory of the TRD.

h1

h2

l1

l2

v1

v2

m1



28

Formal Model

Semantics

consists in several transitions modifying the global state.
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Formal Model

Semantics

consists in several transitions modifying the global state.

(TIM) (P, I,M, N,K, t) �! (P, I,M, N,K, t0) (t0 > t)

models the time passing...
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Formal Model

Semantics

consists in several transitions modifying the global state.

(TIM) (P, I,M, N,K, t) �! (P, I,M, N,K, t0) (t0 > t)

(M ` m)

models the time passing...

models the deduction abilities of the intruder.

(DED) (P, I,M, N,K, t) �! (P, I,M [ {m}, N,K, t)
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Formal Model

Semantics

consists in several transitions modifying the global state.

(TIM) (P, I,M, N,K, t) �! (P, I,M, N,K, t0) (t0 > t)

(M ` m)

models the time passing...

models the deduction abilities of the intruder.

models changes when an 
update command 	



is performed.

(UPD) (P, I,M, N,K, t) �! (P, I 0,M [ {m}, N 0,K 0, t)

m =
n

update, k, k0, l0, v0,m0
o

k1···kn

(DED) (P, I,M, N,K, t) �! (P, I,M [ {m}, N,K, t)
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Knowledge of the Intruder

Internet

TRD

TRD

TRD

API

API

API

A key in a TRD may be lost and  
known by the intruderHypothesis : 	



At most a total ofNM    AX-1 
different « current » level Max keys 

for one TRD can be lost.

N
Max

� 1

Gotcha !
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What about lost keys ?

l1 l2

l3 l4

l5 l6 l7

l8 l9 l10 l11

l12 l13

The intruder has control over whatever 
is under a level with a lost key.

She may use an encrypt 
command to get a key 
with a lower level in a 
TRD containing a lost key.

}{h , l9, v,mi with           lost and of level      .l5Ex :

TRD

Receive
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Secrecy Result

Even if the intruder may :

• control the network and host machines,

• break some keys (but not too many revocation keys),

We have :

!
Keys remain secret (not deducible) provided :	



!
A valid expiration date     &      not « under a lost »

«I keep my secrets secret !» 

Theorem 1
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Secrecy Result
«I keep my secrets secret !» 

Formally speaking...

!

Theorem 1

8k s.t. Level(k) 6 Lv, M 6` k

Let E = (P, I,M, N,K, t) be a global state, Lv a set

of (broken) levels and k 2 K.
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Secrecy Result
«I keep my secrets secret !» 

Formally speaking...

!

Theorem 1

8k s.t. Level(k) 6 Lv, M 6` k

Let E = (P, I,M, N,K, t) be a global state, Lv a set

of (broken) levels and k 2 K.

Proof (sketch of):

> Find invariant properties of the system.

> Prove them !
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Self Repair Property
«It’s just a flesh wound !» 

Assume that all keys are secret at time    except those under a level   . 

Then at time                 , all keys are secret except those under 	


levels                    such that             .

t

t+�(l)

l

l1, . . . , ln li < l

It assumes that, during time         , 
you do not lose a level higher than 

the one you «try» to repair.

�(l)

Theorem 2 (Stated for one level)

REPAIRED

ALL APIS

AT ONCE

Then, the story went, until the TRD was fully 
repaired and it lived happily ever after...Tamper Resistant  

Device
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blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

«For those who are in a hurry...» 

hblacklist, hl3, tii
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Blacklist Option

l1 l2

l3 l4

l5 l6 l7

TRD

blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

(l3, t3) �!

«For those who are in a hurry...» 

hblacklist, hl3, tii
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Blacklist Option

l1 l2

l4

l7

TRD

blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

(l3, t3) �!

«For those who are in a hurry...» 

hblacklist, hl3, tii
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Blacklist Option
«For those who are in a hurry...» 

Theorem 3 (Stated for one level)

Assume that all keys are secret at time    except those under a level   . 

If we blacklist level    on a TRD ,  then, immediately, all keys are secret. 	



t l

l
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Blacklist Option
«For those who are in a hurry...» 

Theorem 3 (Stated for one level)

Assume that all keys are secret at time    except those under a level   . 

If we blacklist level    on a TRD ,  then, immediately, all keys are secret. 	



t l

l

• It only works for the blacklisted TRD.

• The time of the blacklist should be long enough.

• It prevents the attacker to operate on the TRD.
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Future Work

• Weaken assumptions, especially on hidden level Max 
messages (maybe requiring more cryptographic primitives),

• Extend revocation to asymmetric encryption,

• Adapt the result taking account of possible clock skew, or 
replacing the clock by some sort of nonce based freshness test,

• Implement the API in order to carry out some  
performance tests. [Ongoing work in JavaCard]
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Truth  
(Trusted device)

Speaker 
(Host Machine)

Thank you for your attention !

Security  
API

Can we implement 	


Clock Stew ?

Was that a Nice Talk ?

Command_not_supported

Maybe...


