
Revoke and Let Live
A Secure Key Revocation API for

Cryptographic Devices

Véronique Cortier Graham Steel Cyrille Wiedling

Séminaire Méthodes Formelles et Sécurité

LORIA-CNRS, Nancy (FR)

Rennes, May 24th, 2013

LORIA-CNRS, Nancy (FR) INRIA, Paris (FR)

Funded by

1

2

Security APIs

Security API

Trusted devices Host machines

Goal : Enforce security of data stored inside the trusted device, even
when connected to untrusted host machines.

3

Applications

• Electronic Ticketing Systems,

• Vehicle-to-vehicle networking.

• Smartphones,

• Online Banking, Asynchronous Transfer Mode,

• ...

http://fr.wikipedia.org/wiki/Asynchronous_Transfer_Mode

4

How does it work ?

Trusted deviceHost machine

h1

h2

4

How does it work ?

Trusted deviceHost machine

h1

h2

export, h1, h2

4

How does it work ?

Trusted deviceHost machine

{ } h1

h2

export, h1, h2

4

How does it work ?

{ }

Trusted deviceHost machine

{ } h1

h2

import, , h2

export, h1, h2

4

How does it work ?

{ }

Trusted deviceHost machine

{ } h1

h2

h3
import, , h2

export, h1, h2

4

How does it work ?

{ }

Trusted deviceHost machine

{ } h1

h2

h3

h3

import, , h2

export, h1, h2

5

Related Work

Many flaws found on PKCS #11 security tokens.

M. Bortolozzo, M. Centenaro,  
R. Focardi and G. Steel, CSF’10.

5

Related Work

Proposals for key management APIs with security proofs.

C. Cachin, N. Chandran, CSF’09.

J. Courant, J.-F. Monin, WITS’06.

Many flaws found on PKCS #11 security tokens.

M. Bortolozzo, M. Centenaro,  
R. Focardi and G. Steel, CSF’10.

V. Cortier, G. Steel, ESORICS’09...

5

Related Work

Proposals for key management APIs with security proofs.

C. Cachin, N. Chandran, CSF’09.

J. Courant, J.-F. Monin, WITS’06.

Many flaws found on PKCS #11 security tokens.

M. Bortolozzo, M. Centenaro,  
R. Focardi and G. Steel, CSF’10.

V. Cortier, G. Steel, ESORICS’09...

Use of long-term keys implying  
unrecoverable loss of devices if keys are lost

6

Breaking Keys in a TRD

There are ways for the attacker to break some keys of a
Tamper-Resistant Device (TRD):

• Bruteforcing,

• Side-channel attack,

• ...

«Because I’m bad, really really bad !»

7

(More) Related Work

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)

7

(More) Related Work

Still use long-term keys !

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)

7

(More) Related Work

Still use long-term keys !

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)

F. E. Kargl, Sevecom, 2009...

(Two root keys)

7

(More) Related Work

Attacked by S. Möderschein & P. Modesti 	

(solution proposed but no security proof)

Still use long-term keys !

Proposals for key management APIs with revocation:

X. Z. Yong Wan, B. Ramamurthy, ICC’07.

L. Eschenauer, V. D. Gligor, CCS’02.

(Using a control server)

(Secret sharing scheme)

F. E. Kargl, Sevecom, 2009...

(Two root keys)

8

Ideal Key Revocation API

Keys must remain confidential:

Information about key should not be
recovered by the intruder.

8

Ideal Key Revocation API

Any key should be revocable:

The more sensitive a key is, the more
an attacker will try to break it.

Keys must remain confidential:

Information about key should not be
recovered by the intruder.

8

Ideal Key Revocation API

The device should remain functional:

Any key should be revocable:

The more sensitive a key is, the more
an attacker will try to break it.

A revocation of a key should not prevent
the user from using his/her device.

Keys must remain confidential:

Information about key should not be
recovered by the intruder.

9

Our Contributions

• A formal proof of security ensuring three properties :

• Design of an API satisfying previous properties with :

• update functionality,

• revocation functionality.

• the system is able to recover itself from an attack,

• a revocation immediately secures the device.

• A key remains secret unless it is broken (brute forced),

10

Description of the API

TRD

Some assumptions on the tamper-resistant devices:

10

Description of the API

TRD

A clock assumed synchronized with a global clock

Some assumptions on the tamper-resistant devices:

10

Description of the API

TRDA table indexed by handles
to store keys’ information

(level, validity date, value, ...)

A clock assumed synchronized with a global clock

Some assumptions on the tamper-resistant devices:

10

Description of the API

TRD A blacklist of elements of
the form (l,t) d

A table indexed by handles
to store keys’ information

(level, validity date, value, ...)

A clock assumed synchronized with a global clock

(l, t)

Some assumptions on the tamper-resistant devices:

11

We also assume a hierarchy of levels for keys:

Description of the API

• with a (partial) order,

• with a maximal and a minimal element.

11

We also assume a hierarchy of levels for keys:

l1 l2

l3 l4

l5 l6 l7

Description of the API

• with a (partial) order,

• with a maximal and a minimal element.

Example:

l
Max

11

We also assume a hierarchy of levels for keys:

l1 l2

l3 l4

l5 l6 l7

Description of the API

• with a (partial) order,

• with a maximal and a minimal element.

Example:

Long-term 	

(important !) 	

keys

l
Max

11

We also assume a hierarchy of levels for keys:

l1 l2

l3 l4

l5 l6 l7

Description of the API

• with a (partial) order,

• with a maximal and a minimal element.

Example:

Long-term 	

(important !) 	

keys

Session 	

keys

l
Max

12

User’s Commands

We have a set of basic commands.

12

User’s Commands

h1

h2 h0
2

h0
3h3

h0
1, l, v,m , l, v,m

We have a set of basic commands.

Alice Bob

Running example:

12

User’s Commands

h1

h2 h0
2

h0
3h3

h0
1, l, v,m , l, v,m

We have a set of basic commands.

Alice Bob

Running example:

Alice and Bob share a key and wish to securely exchange a message.

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

generateSecret(l1,m1)

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

generateSecret(l1,m1)

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

h2

generateSecret(l1,m1)

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

h2

generateSecret(l1,m1)

To share the new session key with Bob, Alice needs to « export » the new key.

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(h2, h1)

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

h2

generateSecret(l1,m1)

To share the new session key with Bob, Alice needs to « export » the new key.

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(h2, h1)

Only works if l1 < l

13

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

h2

generateSecret(l1,m1)

To share the new session key with Bob, Alice needs to « export » the new key.

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(h2, h1)

n

, l1, v1,m1

o

Only works if l1 < l

14

User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

14

User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

decrypt(
n

, l1, v1,m1

o

, h0
1)

14

User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

Only works if tests succeed !

decrypt(
n

, l1, v1,m1

o

, h0
1)

14

User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

, l1, v1,m1Only works if tests succeed !

decrypt(
n

, l1, v1,m1

o

, h0
1)

14

User’s Commands

h0
2

h0
3

h0
1 , l, v,m

Bob

Alice sends the new session key to Bob which can « import » it in his TRD.

, l1, v1,m1

h0
2

Only works if tests succeed !

decrypt(
n

, l1, v1,m1

o

, h0
1)

15

Alice can now encrypt the message using the session key.

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

15

Alice can now encrypt the message using the session key.

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(, h2)

15

Alice can now encrypt the message using the session key.

User’s Commands

h1

h2

h3

, l, v,m

Alice

, l1, v1,m1

encrypt(, h2)

n

, 0, v0,m0

o

16

User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1

16

User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1

decrypt(
n

, 0, v0,m0

o

, h0
2)

16

User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1Only works if tests succeed !

decrypt(
n

, 0, v0,m0

o

, h0
2)

16

User’s Commands

And, finally, Alice sends the encrypted message to Bob, which decrypts it.

h0
2

h0
3

h0
1 , l, v,m

Bob

, l1, v1,m1Only works if tests succeed !

decrypt(
n

, 0, v0,m0

o

, h0
2)

Information is public,	

no need for handles.

17

User’s Commands

A set of basic commands (summary):

Generate a nonce or a key, and store
under a handle the information.

generatePublic(m)

generateSecret(l,m)

Decrypt with the key stored under and
return a message or a handle.
C hdecrypt(C, h)

encrypt(hX1, . . . , Xni, h) Encrypt the input under the key
stored in handle . h

18

Lower Level Keys Management

We also have admin commands:

• Need revocation keys, i.e. keys of level Max.

• Each device has its own set of admin keys.

• Allow to administrate lower level keys (i.e. level < Max).

18

Lower Level Keys Management

We also have admin commands:

• Need revocation keys, i.e. keys of level Max.

• Each device has its own set of admin keys.

• Allow to administrate lower level keys (i.e. level < Max).

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

Revocation keys of the device.

18

Lower Level Keys Management

We also have admin commands:

• Need revocation keys, i.e. keys of level Max.

• Each device has its own set of admin keys.

• Allow to administrate lower level keys (i.e. level < Max).

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

Revocation keys of the device.

lower level key

19

Lower Level Keys Management

update(C, h1, . . . , hn)

Update value and attributes of keys that are
not admin (level Max) keys.

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

C =
n

update, , , l0, v0,m0
o

19

Lower Level Keys Management

update(C, h1, . . . , hn)

Update value and attributes of keys that are
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

C =
n

update, , , l0, v0,m0
o

19

Lower Level Keys Management

update(C, h1, . . . , hn)

Update value and attributes of keys that are
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

C =
n

update, , , l0, v0,m0
o

19

Lower Level Keys Management

1. Tests on keys stored under .h1, . . . , hn

update(C, h1, . . . , hn)

Update value and attributes of keys that are
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are they level Max and valid keys ?

C =
n

update, , , l0, v0,m0
o

19

Lower Level Keys Management

1. Tests on keys stored under .

2. Decryption of .

h1, . . . , hn

C

update(C, h1, . . . , hn)

Update value and attributes of keys that are
not admin (level Max) keys.

· · ·

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are they level Max and valid keys ?

> Obtaining old/new value and new attributes.

20

Lower Level Keys Management

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

3. Verify that the old key () is in the device.

20

Lower Level Keys Management

4. Tests on the new attributes of new key ().l0, v0

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are the new level and validity date correct ?

3. Verify that the old key () is in the device.

20

Lower Level Keys Management

4. Tests on the new attributes of new key ().

5. Table update with the new values.

l0, v0

h1

· · · · · ·

hn

h , l, v,m

,Max, v1

,Max, vn

How does it work ?

> Are the new level and validity date correct ?

3. Verify that the old key () is in the device.

20

Lower Level Keys Management

4. Tests on the new attributes of new key ().

5. Table update with the new values.

l0, v0

h1

· · · · · ·

hn

h , l0, v0,m0

,Max, v1

,Max, vn

How does it work ?

> Are the new level and validity date correct ?

3. Verify that the old key () is in the device.

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

h1

h2

h3

,Max, v1

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

h1

h2

h3

,Max, v1

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

h1

h2

h3

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

h1

h2

h3

,Max, v2

,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

h1

h2

h3 ,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

,Max, v02

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

h1

h2

h3 ,Max, v3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

,Max, v02

21

Revocation Keys Management

The same scheme applies for revoking revocation keys.

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

h1

h2

h3

updateMax(C, h1, . . . , hn)

> Require a number of valid revocation keys.N
Max

N
Max

= 2

,Max, v01

,Max, v02

,Max, v03

22

Revocation Keys Management

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

22

Revocation Keys Management

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

22

Revocation Keys Management

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

22

Revocation Keys Management

! The intruder can break  
all the level Max keys !  

(up to the current ones)

What if (old) revocation keys can be lost and if revocation messages are public ?

n

UpdateMax, , , v01

o

n

UpdateMax, , , v02

o

n

UpdateMax, , , v03

o

23

Revocation Keys Management

Hypothesis :

Level Max commands are sent over a secure channel.

23

Revocation Keys Management

Hypothesis :

Level Max commands are sent over a secure channel.

This can be achieved by several means :

• The administrator has a physical access to the TRD
that needs to be updated,

• The user would connect his/her TRD to a trusted
machine, on which a secure channel (e.g. via TLS) is
established with the key administrator.

24

And now, what about Security ?

TRD

API

24

And now, what about Security ?

TRD

API

24

And now, what about Security ?

TRD

API

25

Abstraction

Messages are represented by terms

Nonces, keys :

Primitives :

Modeling deduction rules :

n,m, . . . , k1, k2, . . .

hn, {m}kin

m k

h , i

{ } ⌘

x y

hx, yi
hx, yi
x

hx, yi
y

x y

{x}y
{x}y y

x

{m}k, hm1,m2i

26

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

26

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P, the set of TRDs in use in the system.

26

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network.
(Represents also the knowledge of the intruder.)

26

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

N

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network.
(Represents also the knowledge of the intruder.)

, the set of nonces currently in used in the system.

26

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

N

K

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network.
(Represents also the knowledge of the intruder.)

, the set of nonces currently in used in the system.

, the set of keys currently in used in the system.

26

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

P

M

N

K

t

, the set of TRDs in use in the system.

, the set of messages that have been sent on the network.
(Represents also the knowledge of the intruder.)

, the set of nonces currently in used in the system.

, the set of keys currently in used in the system.

, represents the current time.

27

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

is a function describing the local state of TRD . a
I : a 7! (⇥a, Ha,Ba, t, Na,Ka)

27

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

is a function describing the local state of TRD . a

Ba , the set of blacklisted levels.

I : a 7! (⇥a, Ha,Ba, t, Na,Ka)

27

Formal Model

We model the system using global states:

(P, I,M, N,K, t)

is a function describing the local state of TRD . a

Ba , the set of blacklisted levels.

I : a 7! (⇥a, Ha,Ba, t, Na,Ka)

Handle Value Level Validity Misc.

-

...

⇥a , a function representing the memory of the TRD.

h1

h2

l1

l2

v1

v2

m1

28

Formal Model

Semantics

consists in several transitions modifying the global state.

28

Formal Model

Semantics

consists in several transitions modifying the global state.

(TIM) (P, I,M, N,K, t) �! (P, I,M, N,K, t0) (t0 > t)

models the time passing...

28

Formal Model

Semantics

consists in several transitions modifying the global state.

(TIM) (P, I,M, N,K, t) �! (P, I,M, N,K, t0) (t0 > t)

(M ` m)

models the time passing...

models the deduction abilities of the intruder.

(DED) (P, I,M, N,K, t) �! (P, I,M [{m}, N,K, t)

28

Formal Model

Semantics

consists in several transitions modifying the global state.

(TIM) (P, I,M, N,K, t) �! (P, I,M, N,K, t0) (t0 > t)

(M ` m)

models the time passing...

models the deduction abilities of the intruder.

models changes when an
update command 	

is performed.

(UPD) (P, I,M, N,K, t) �! (P, I 0,M [{m}, N 0,K 0, t)

m =
n

update, k, k0, l0, v0,m0
o

k1···kn

(DED) (P, I,M, N,K, t) �! (P, I,M [{m}, N,K, t)

29

Knowledge of the Intruder

Internet

TRD

TRD

TRD

API

API

API

29

Knowledge of the Intruder

Internet

TRD

TRD

TRD

API

API

API

A key in a TRD may be lost and  
known by the intruder

Gotcha !

29

Knowledge of the Intruder

Internet

TRD

TRD

TRD

API

API

API

A key in a TRD may be lost and  
known by the intruderHypothesis : 	

At most a total ofNM AX-1
different « current » level Max keys

for one TRD can be lost.

N
Max

� 1

Gotcha !

30

What about lost keys ?

l1 l2

l3 l4

l5 l6 l7

l8 l9 l10 l11

l12 l13

TRD

30

What about lost keys ?

l1 l2

l3 l4

l5 l6 l7

l8 l9 l10 l11

l12 l13

TRD

30

What about lost keys ?

l1 l2

l3 l4

l5 l6 l7

l8 l9 l10 l11

l12 l13

The intruder has control over whatever
is under a level with a lost key.

TRD

30

What about lost keys ?

l1 l2

l3 l4

l5 l6 l7

l8 l9 l10 l11

l12 l13

The intruder has control over whatever
is under a level with a lost key.

She may use an encrypt
command to get a key
with a lower level in a
TRD containing a lost key.

}{h , l9, v,mi with lost and of level .l5Ex :

TRD

Receive

31

Secrecy Result

Even if the intruder may :

• control the network and host machines,

• break some keys (but not too many revocation keys),

«I keep my secrets secret !»

31

Secrecy Result

Even if the intruder may :

• control the network and host machines,

• break some keys (but not too many revocation keys),

We have :

!
Keys remain secret (not deducible) provided :	

!
A valid expiration date & not « under a lost »

«I keep my secrets secret !»

Theorem 1

32

Secrecy Result
«I keep my secrets secret !»

Formally speaking...

!

Theorem 1

8k s.t. Level(k) 6 Lv, M 6` k

Let E = (P, I,M, N,K, t) be a global state, Lv a set

of (broken) levels and k 2 K.

32

Secrecy Result
«I keep my secrets secret !»

Formally speaking...

!

Theorem 1

8k s.t. Level(k) 6 Lv, M 6` k

Let E = (P, I,M, N,K, t) be a global state, Lv a set

of (broken) levels and k 2 K.

Proof (sketch of):

> Find invariant properties of the system.

> Prove them !

33

Self Repair Property
«It’s just a flesh wound !»

33

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

33

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

33

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

33

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

33

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

34

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

34

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

34

Self Repair Property
«It’s just a flesh wound !»

l
Max

. . .

. . .

l1

l2

TRD

35

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

35

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

35

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

35

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

Can not be
compromised
using this key

36

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

36

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

36

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

Can not be
compromised

using remaining
corrupted keys.

l3

36

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

Can not be
compromised

using remaining
corrupted keys.

We gain a level !
l3

36

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

Can not be
compromised

using remaining
corrupted keys.

We gain a level !
l3

37

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

l3

37

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

l3

37

l
Max

. . .

. . .

l1

l2

TRD

Self Repair Property
«It’s just a flesh wound !»

l3

38

Self Repair Property
«It’s just a flesh wound !»

Then, the story went, until the TRD was fully
repaired and it lived happily ever after...Tamper Resistant

Device

38

Self Repair Property
«It’s just a flesh wound !»

Assume that all keys are secret at time except those under a level .

Then at time , all keys are secret except those under 	

levels such that .

t

t+�(l)

l

l1, . . . , ln li < l

Theorem 2 (Stated for one level)

Then, the story went, until the TRD was fully
repaired and it lived happily ever after...Tamper Resistant

Device

38

Self Repair Property
«It’s just a flesh wound !»

Assume that all keys are secret at time except those under a level .

Then at time , all keys are secret except those under 	

levels such that .

t

t+�(l)

l

l1, . . . , ln li < l

It assumes that, during time ,
you do not lose a level higher than

the one you «try» to repair.

�(l)

Theorem 2 (Stated for one level)

Then, the story went, until the TRD was fully
repaired and it lived happily ever after...Tamper Resistant

Device

38

Self Repair Property
«It’s just a flesh wound !»

Assume that all keys are secret at time except those under a level .

Then at time , all keys are secret except those under 	

levels such that .

t

t+�(l)

l

l1, . . . , ln li < l

It assumes that, during time ,
you do not lose a level higher than

the one you «try» to repair.

�(l)

Theorem 2 (Stated for one level)

REPAIRED

ALL APIS

AT ONCE

Then, the story went, until the TRD was fully
repaired and it lived happily ever after...Tamper Resistant

Device

39

Blacklist Option

blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

«For those who are in a hurry...»

hblacklist, hl3, tii

39

Blacklist Option

l1 l2

l3 l4

l5 l6 l7

TRD

blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

«For those who are in a hurry...»

hblacklist, hl3, tii

39

Blacklist Option

l1 l2

l3 l4

l5 l6 l7

TRD

blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

(l3, t3) �!

«For those who are in a hurry...»

hblacklist, hl3, tii

39

Blacklist Option

l1 l2

l4

l7

TRD

blacklist(C, h1, . . . , hn)

C ={ }Ex :
· · ·

(l3, t3) �!

«For those who are in a hurry...»

hblacklist, hl3, tii

40

Blacklist Option
«For those who are in a hurry...»

Theorem 3 (Stated for one level)

Assume that all keys are secret at time except those under a level .

If we blacklist level on a TRD , then, immediately, all keys are secret. 	

t l

l

40

Blacklist Option
«For those who are in a hurry...»

Theorem 3 (Stated for one level)

Assume that all keys are secret at time except those under a level .

If we blacklist level on a TRD , then, immediately, all keys are secret. 	

t l

l

• It only works for the blacklisted TRD.

• The time of the blacklist should be long enough.

• It prevents the attacker to operate on the TRD.

41

Future Work

• Weaken assumptions, especially on hidden level Max
messages (maybe requiring more cryptographic primitives),

• Extend revocation to asymmetric encryption,

• Adapt the result taking account of possible clock skew, or
replacing the clock by some sort of nonce based freshness test,

• Implement the API in order to carry out some  
performance tests. [Ongoing work in JavaCard]

42

Truth  
(Trusted device)

Speaker 
(Host Machine)

Thank you for your attention !

Security
API

Can we implement 	

Clock Stew ?

Was that a Nice Talk ?

Command_not_supported

Maybe...

