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Abstract. Norway used e-voting in its last political election both in September 2011 and September 2013, with more than
28,000 voters using the e-voting option in 2011, and 70,000 in 2013. While some other countries use a black-box, proprietary
voting solution, Norway has made its system publicly available. The underlying protocol, designed by Scytl, involves several
authorities (a ballot box, a receipt generator, a decryption service, and an auditor). Of course, trusting the correctness and
security of e-voting protocols is crucial in that context. In this paper, we propose a formal analysis of the protocol used in
Norway, w.r.t. ballot secrecy, considering several corruption scenarios. We use a state-of-the-art definition of ballot secrecy,
based on equivalence properties and stated in the applied pi-calculus.
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Used in September 2011 and September 2013 for municipality and county elections in Norway [25],
e-voting was tested in ten municipalities. During this nationwide local elections, more than 28,000 vot-
ers did use internet to cast their vote in 2011 and 70,000 in 2013. While many countries use black-box
proprietary solutions, Norway made the protocol publicly available [23]. One key feature of this system
is that voters can check that their votes have correctly reached the ballot box (“cast-as-intended” prop-
erty) without anyone else knowing their vote. The goal of this paper is to conduct a thorough analysis of
the Norwegian protocol for the ballot secrecy property: does this system guarantee that no one can know
how some voter voted?

Formal methods have been successfully applied to security protocols with the development of several
tools such as ProVerif [10], Avispa [4], or Scyther [20] that can automatically analyse both protocols of
the literature and fully deployed protocols such as TLS [9]. We therefore chose to model and analyse the
Norwegian protocols in a symbolic model named the applied pi-calculus model [1]. A first issue comes
from the fact that the underlying encryption primitive is non standard and rather complex. Indeed, the
decryption key is split in two shares a; and a, with az = a; + a,. Each of these three keys ay, ap, as
is given to one administration authority. As further explained in Section 1, this allows for re-encryption
and is crucial for the “cast-as-intended” property of the protocol.

Contributions. Our first contribution is a detailed symbolic model for this particular encryption prim-
itive. More precisely, we provide a rewriting system that models El Gamal encryption, re-encryption,
blinding function, signatures and zero-knowledge proofs reflecting the primitives used in the protocol.
Then, we model the whole system as a process in the applied pi-calculus model. Our second main con-
tribution is a proof of ballot secrecy for several corruption scenarios. Ballot secrecy is typically modeled
as follows [21]: an attacker should not be able to distinguish the case where Alice is voting a and Bob
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is voting b from the converse scenario where Alice is voting b while Bob is voting a. Such a property is
typically described by an equivalence of the form

Alice(a) | Bob(b) =~ Alice(b) | Bob(a)

where Alice(v) represents voter Alice voting for v. Such indistinguishability properties are formalized
through behavioral equivalence. Here we use observational equivalence ~ as defined in [1]. Combined
with complex equational theories (in particular equational theories with associative and commutative —
AC - operators), no existing tool can check for equivalence. Indeed, dedicated tools such as SPEC [34],
APTE [15], or AkisS [13] can only handle standard primitives, with the exception of AkisS which covers
more primitives but no AC operators. All three tools are moreover limited to a fixed (and small) number
of sessions. Recently, the tool Tamarin has been enhanced to cope with equivalence properties [5] but
for the moment it requires a high level of interactions. Therefore, the only natural candidate for an
automatic analysis of ballot secrecy is the tool ProVerif [10], one of the most generic tools for security
protocols. It can check for equivalence [12] for an unbounded number of sessions. However, ProVerif
cannot handle equational theories with AC operators either. [2] devises a technique that transforms an
equational theory with AC operators into an equational theory without AC operators, that ProVerif can
handle. However, [2] is particular to the re-encryption theory (together with any non AC theory) and it is
unclear whether it can be adapted to the complex equational theory needed for the Norwegian protocol.
Thus we conducted a preliminary analysis of the Norwegian protocol for a simplified — more abstract —
model of the protocol (without AC operators), and finite number of voters.

In order to obtain stronger security guarantees, the full equational theory of the cryptographic primi-
tives should be considered. Therefore, the main contribution of the paper is a proof “by hand” of ballot
secrecy for two main corruption scenarios: when all authorities are honest (but all but two voters are cor-
rupted) and when the ballot box is corrupted (and again all but two voters are corrupted). We believe that
ballot secrecy can be established in a similar way when the receipt generator is corrupted. A preliminary
version of ballot secrecy under the first corruption scenario was presented in [18]. While the encryption
scheme used in the Norwegian system is particular to the protocol, the Norwegian system also make use
of more standard primitives such as signatures or zero-knowledge proofs. When proving ballot secrecy,
we developed generic lemmas that could be re-used in subsequent works (e.g. [3]).

Related Work. Since our initial study of the Norwegian protocol [18], Gjgsteen has proposed a de-
tailed security analysis of the protocol [24] for both ballot secrecy and verifiability, under several trust
assumptions (a first model and security definitions already appeared in [23]). A first main difference
between the two approaches is the security model: we consider a symbolic model while [23,24] rely
on a, more concrete, computational model where the attacker is any polynomial probabilistic Turing
machine. In that respect, the study in [23,24] is less abstract and provides more precise security assump-
tions on the underlying primitives. In contrast, one advantage of symbolic models is that they are more
amendable for automation as demonstrated by our use of ProVerif for a simplified model. Ballot secrecy
is formalized in two different ways in these two approaches: here, we use a definition of ballot secrecy
that is the standard ballot secrecy definition in symbolic models [21]. [23,24] model ballot secrecy (and
verifiability) through an ideal functionality that needs to be adapted to the protocol under consideration.
Another difference between [23,24] and this work lies in the trust assumptions and the properties that are
considered. [23,24] consider both ballot secrecy and verifiability while we focus here on ballot secrecy.
Regarding trust assumptions and as it is often the case in other studies of e-voting protocols, at least
in symbolic models, we assume that the communications between the voter’s computer and the server
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can be eavesdropped by an attacker, although in practice, these communications typically happen under
some secure channel (e.g. TLS). Whenever possible, it is interesting to prove security without relying
on external secure channels since their security is typically not under the control of the authorities, as
recently exemplified in an Australian election [26]. In contrast, [23,24] assume private communications
between the voter and the server and consider all the cases where one of the authorities is corrupted
(while we do not consider the case of a corrupted receipt generator). Interestingly, [23,24] shows that
the Norwegian protocol remains secure when the decryption device is corrupted while we show this is
not the case. This indicates that, when the decryption device is corrupted, ballot secrecy solely relies on
the security of the secure channels used by voters.

Several other e-voting protocols have been studied using formal methods. The FOO [22], Okamoto
[32], and Lee et al. [30] voting protocols have been analysed in [21]. Similarly, Helios has been recently
proved secure both in a formal [17] and a computational [7,8] model. Helios is actually an implementa-
tion of a voting system proposed and analyzed (for the available definitions at that time) by Cramer et al
[19]. All these protocols were significantly simpler to analyse in a symbolic model due to the fact that the
cryptographic primitives were easier to abstract as a term algebra and due to the fact that these protocols
involve less steps. Civitas has been analyzed in [29] in a symbolic model, for a rather rich equational
theory. The analysis of this protocol remains simpler than the case of the Norwegian protocol, due to the
fact that in Civitas, the voting phase does not involve any interaction with the bulletin board. Our study
(together with [23,24]) forms the first security proof of a fully deployed Internet protocol in politically
binding elections. Enlarging the scope to voting systems that may take place in polling stations (that
is not just Internet voting), security analyses include Scantegrity II [14,29,33], Prét-a-voter [27], and
STAR-Vote [6].

Outline of the paper. We provide an informal description of the protocol in Section 1, including
details about the different phases of the voting process. Section 3 presents our formal model of the pro-
tocol in the applied pi-calculus. The protocol makes use of a special encryption function in combination
with signatures, zero-knowledge proofs, blinding functions, and coding functions. We therefore propose
a new equational theory reflecting the unusual behavior of the primitives. The main results and corre-
sponding proofs are presented in Section 4. Section 5 gathers the main lemmas needed for the proofs.
We believe these lemmas to be of independent interest in the sense they can be useful for further formal
studies of different protocols. Most of the proofs are detailed in Sections F and 6 with some additional
lemmas postponed to the appendix. Finally, in Section 7, we present a simplified model of the Norwegian
protocol and the corresponding security analysis using ProVerif.

1. The Norwegian e-voting protocol

The Norwegian protocol features four players that define the electronic poll’s infrastructure: a Ballot
box (B), a Receipt generator (R), a Decryption service (D) and an Auditor (A). Each Voter (V) can
log in using a Computer (P) in order to submit his vote. Channels between computers (voters) and the
Ballot box are considered to be authenticated channels, channels between infrastructure’s player are
untappable, and channels between voters and receipt generator are unidirectional out-of-band channels.
(Example of SMS is given in [23].) The protocol can be divided in three phases: the setting phase, the
submission phase, where voters submit their votes, and the counting phase, where ballots are counted
and the auditor verifies the correctness of the election.
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Fig. 1. Submission of one vote.

1.1. Setting phase

Before the election, a finite cyclic group G of some prime order ¢ and generator by g is selected, three
private keys a;, a», and az (such that a; + a, = ag[q]) are generated and distributed over respectively
D, B, and R, while the corresponding public keys y; = g*', y» = g* and y; = g* are made publicly
available Each voter V is assumed to have a signing key idy, with a corresponding verification key,
vk(idy), which is public. The Ballot box B is provided with a table V > sy that associates each voter
with a blinding factor sy. The Receipt generator R is also assumed to have a signing key idg, with
a corresponding public verification key, vk(idg); and it is given, for each voter V, a pseudo-random
function dy : G — C, where C is the set of receipts. Finally, each voter V is assumed to receive by
surface mail a table that associates to any voting option o (from the set O), a precomputed receipt code
dy (f(0)®) € C, where f : O — G is an injective encoding function.

1.2. Submission phase

The submission phase is summarized in Fig. 1. We detail in this section the expected behavior of each
participant.

Voter (V). Each voter tells his computer what voting option o to submit and allows it to sign the
corresponding ballot on his behalf. Then, he has to wait for an acceptance message coming from the
computer and a receipt  sent by the receipt generator through some out-of-band channel (typically a
SMS message). Using the receipt, he verifies that the correct vote was submitted, that is, he checks that
f = dy(f(0)*) by verifying that the receipt code F indeed appears in the line associated to the voting
option o he has chosen.

This check ensures in particular the “cast-as-intended” property. In case the voter’s computer is cor-
rupted and encrypts another vote (say the computer wishes to cast a vote for the Pirate party) then this
would be eventually discovered by the voter when receiving the receipt.
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Computer (P). Voter’s computer encrypts voter’s ballot with the public key y4 using standard El Gamal
encryption. The resulting ballot is (g, y}f(0)). P also proves that the resulting ciphertext corresponds to a
valid voting option, by computing a standard proof of knowledge pfky. (This proof is formally presented
in Section 3, but a detailed description can be found in [23].) P also signs, on the behalf of the Voter,
the ballot with idy and sends it to the Ballot box. It then waits for a confirmation sig coming from the
latter, which is a hash of the initial encrypted ballot, signed by the Receipt generator. After checking this
signature, the computer notifies the voter that his vote has been taken into account.

Ballot box (B). Upon receiving an encrypted and signed ballot b from a computer, the Ballot box first
checks the correctness of signatures and proofs before re-encrypting the original encrypted ballot with
a, and blinding it with sy. B also generates a proof pfkg, showing that its computation is correct. B then
sends the new modified ballot b’ to the Receipt generator. Once the Ballot box receives a message Sig
from R, it simply checks that the Receipt generator’s signature is valid, and sends it to the computer.

Receipt generator (R). Upon receiving an encrypted ballot b" = (b, X, W, p) from the Ballot box, the
Receipt generator first checks signature and proofs (from the computer and the Ballot box). If the validity
checks are successful, it generates:

— a receipt code T = dy (Wx ) sent by out-of-band channel directly to the Voter. Intuitively, the
Receipt generator decrypts the (blinded) ballot, applying the function dy associated to the voter.
This receipt code gives assurance to the voter that the correct vote was submitted to the Ballot box.

— asignature on a hash of the original encrypted ballot for the Ballot box. Once transmitted by B, it is
checked and passed on to the Voter’s Computer, which checks it once more and informs the Voter
that his vote has been taken into account.

1.3. Counting phase

Once the voting phase is over, the counting phase begins (Fig. 2). The Ballot box selects the encrypted
votes x1, ..., Xy which need to be decrypted (if a voter has voted several times, all the submitted ballots
remain in the memory of the Ballot box but only the last ballot should be sent) and sends them to the
Decryption service. The whole content of the Ballot box by, ..., b, (n > k) is revealed to the Auditor,
including previous votes from re-voting voters. The Receipt generator sends to the Auditor the list of
hashes of ballots it has seen during the submission phase. The Decryption service decrypts the incoming
ciphertexts xi, . .., x; received from the Ballot box and shuffles the decrypted votes before publishing
them. It therefore outputs a message of the form dec(xy (1, @1), ..., dec(xy k), a1) where o denotes the
permutation obtained by shuffling the votes. It also provides the Auditor with a proof pfkp showing that
the input ciphertexts and the outcoming decryption indeed match. Using the Ballot box content and the
list of hashes from the Receipt generator, the Auditor verifies that no ballots have been inserted or lost
and it computes its own list of encrypted ballots which should be counted. He compares this list with the
one received from the Decryption service and checks the proof provided by the latter.

1.4. Security analysis
The rest of the paper is devoted to the modeling and analysis of the protocol. We summarize here

informally our main results and we list our main assumptions and simplifications. We formally prove
ballot secrecy under two threat scenario:
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Fig. 2. Counting phase.

— All but two voters are dishonest and all the authorities (the Ballot box, the Receipt generator, the
Decryption service and the Auditor) are honest.
— All but two voters are dishonest and all the authorities but the Ballot box are honest.

These two results are obtained assuming authenticated but not necessarily secure communication chan-
nels between voters and the Ballot box and Receipt generator, meaning that an attacker may eavesdrop
the communications. For this reason, ballot secrecy does not hold as soon as the Decryption device is
corrupted. Note also that ballot privacy is also broken as soon as the voter’s computer (P) is corrupted
since the voter sends her vote to her computer. We therefore had to assume P to be honest and we chose
to model it together with the voter’s behavior. Authentication between the voter and the Ballot box is
ensured through a login and password mechanism while authentication from the receipt generator to the
voter relies on the out-of-band channel used between them (typically a SMS message).

When modeling the Norwegian protocol in a symbolic model, we had to proceed to some simplifica-
tions. First, and as discussed later in Section 3.1, the cryptographic primitives are abstracted by terms
together with an equational theory, which potentially leaves out some flaws due to some crafty modi-
fications of some messages. Second, we chose not to model revoting, for simplicity but also since it is
explicitly and strongly discouraged in [23], as it may provide to an attacker that control the Ballot box
the opportunity to swap the initial and the resubmitted votes. Third, for simplicity, we only consider
one-option votes (that voters select one option), rather that a vector of options as in [23]. Finally, we also
omit the proof of correct decryption provided by the decryption device since it should not affect ballot
secrecy.

2. Applied pi-calculus

We describe here the applied pi-calculus [1], introduced by M. Abadi and C. Fournet. The applied
pi-calculus is a process algebra that is often used to model protocols, and we briefly recall here the
notations and definitions, providing some examples.

2.1. Terms

Messages are represented by ferms built upon an infinite set of names N (for communication channels
or atomic data), a set of variables X’ and a signature ¥ consisting of a finite set of function symbols (to
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represent cryptographic primitives). A function symbol f is assumed to be given with its arity ar(f).
Then, the set of terms 7' (X, X', N) is formally defined by the following grammar:

t,H,1h,... =
X xeX
n nenN
S, tn) fex, n=ar(f)
We write {M1/ Xps oo M x, for the substitution that replaces the variables x; with the terms M;. No

refers to the result of applying substitution o to the free variables of the term N. A term is called ground
when it does not contain variables.

In order to represent the properties of the primitives, the signature X is equipped with an equational
theory E that is a set of equations which hold on terms built from the signature. We denote by =p the
smallest equivalence relation induced by E, closed under application of function symbols, substitutions
of terms for variables and bijective renaming of names. We write M =g N when the equation M = N
holds in the theory E.

Example 1. A signature for symmetric, asymmetric encryption and signature is
Y. = {checksign, dec, pdec, enc, penc, sign, pk}

where penc and pdec represent resp. asymmetric (randomized) encryption and decryption, enc and dec
stand resp. for symmetric (randomized) encryption and decryption, sign models signature, checksign
represents a function that checks the validity of signature, and pk represents the public key associated
to a secret key. For example, the term penc(m, r, pk(sk,)) represents the asymmetric encryption of the
message m with the public key corresponding to the secret key sk, and random factor r. The properties
of the cryptographic functions are represented by the equational theory Eepc:

dec(enc(m, r, k), k) = m

pdec(penc(m, r, pk(sk)), sk) = m

checksign(sign(m, sk), pk(sk), m) = ok.
The first equation models that symmetric decryption is only successful if the key used for decryption is
the same as the one used for encryption. The second equation reflects that asymmetric decryption only

succeeds when the corresponding secret key is used. Finally, the last equation checks that a signature
corresponds to a given message and a given verification key.

For some cryptographic primitives, such as homomorphic encryption, it is necessary to introduce as-
sociative and commutative symbols. Equational theories including such symbols are called AC-theories.
Therefore we define an equality modulo AC, noted =4¢, which denotes that two terms are syntactically
equal modulo the associative or commutative properties for each AC symbol +.

x+(+a=x+y +z
X+y=y+x
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Example 2. To represent homomorphic encryption, we may use the signature ¥ = {+, %, enc} with
+ and * two associative and commutative (AC) symbols and the corresponding equational theory Eac,
which includes the associative and commutative properties of + and * symbols, and the equation:

enc(m, k) x enc(n, k) = enc(m +n, k).

This equation models that two ciphertexts encrypted with the same key can be combined to create a
ciphertext which corresponding plaintext is the sum of the two previous plaintexts.

2.2. Rewriting system

It might be difficult to work modulo an equational theory. Instead, it is often possible (and more
convenient) to reason with a rewriting system. Formally, a rewriting system R is a set of rewriting rules
of the form [ — r with [ and r two terms. We say that a term s is rewritten in t for rule [ — r, noted
s — t, if there exists a position p in s and a substitution ¢ such that s|, = [0 and t = s[r0],.

Definition 1 (Convergence). A rewriting system R is said convergent if:

— for every ground term U, there exists no infinite sequence U — U; — --- — Uy — ---. (In this
case, we say that R is terminating.)

— for every ground terms U, U}, and U, such that U —* U; and U —* U,, there exists V such that
U, —* V,and U, — V. (In this case, we say that R is confluent.)

For AC-theories, we consider rewriting systems modulo AC. Formally, a term s is rewritten modulo
ACin t, noted s — 4¢ ¢, for arule [ — r if there exist s’ and ¢’ two terms such that s =,¢ s', ¢t =4¢ ¢/
and s’ is rewritten in ¢’ for the rule / — r. Then, it is possible to define the notion of AC-convergence.

Definition 2 (AC-Convergence). A rewriting system R is said AC-convergent if:

— for every ground term U, there is no infinite sequence U — 4¢ U} —ac -+ —>ac Ui - - -. (In this
case, we say that R is AC-terminating.)

— for every ground terms U, Uy, and U, such that U —7 - Uy and U —7 . U, there exists V such
that Uy —7% . V, and U, —,~ V. (In this case, we say that R is AC-confluent.)

2.3. Processes

Processes and extended processes are defined in Fig. 3. The process 0 represents the null process that
does nothing. P | Q denotes the parallel composition of P with Q while !P denotes the unbounded
replication of P (i.e. the unbounded parallel composition of P with itself). vn.P creates a fresh name n
and then behaves like P. The process if ¢ then P else Q behaves like P if ¢ holds and like Q otherwise.
u(x).P inputs some message in the variable x on channel u and then behaves like P while u(M).P
outputs M on channel u and then behaves like P. We write viz for the (possibly empty) series of pairwise-
distinct binders vu;. . ... vu,,. The active substitution {*/,} can replace the variable x for the term M in
every process it comes into contact with and this behaviour can be controlled by restriction, in particular,
the process vx({*/,} | P) corresponds exactly to let x = M in P.
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P,O,R = (plain) processes
0 null process
PO parallel composition
P replication
vn.P name restriction
if ¢ then P else Q conditional
u(x).P message input
u(M).P message output

A, B, C = extended processes
P plain process
A|B parallel composition
vn.A name restriction
Vx.A variable restriction
M/ active substitution

Fig. 3. Syntax for processes.

As in [17], we slightly extend the applied pi-calculus by letting conditional branches now depend on
formulae defined by the following grammar:

Qv =M=N|M#%N|pAY

If M and N are ground, we define [M = N] to be true if M =g N and false otherwise. The semantics
of [ ] is then extended to formulae as expected.

The scope of names and variables is delimited by binders u(x) and vu. Sets of bound names, bound
variables, free names and free variables are respectively written bn(A), bv(A), fn(A) and fv(A). Occa-
sionally, we write fn(M) (resp. fv(M)) for the set of names (resp. variables) which appear in term M. An
extended process is closed if all its variables are either bound or defined by an active substitution.

An context C[_] is an extended process with a hole instead of an extended process. We obtain C[A]
as the result of filling C[_]’s hole with the extended process A. An evaluation context is a context whose
hole is not in the scope of a replication, a conditional, an input or an output. A context C[_] closes A
when C[A] is closed.

A frame is an extended process built up from the null process 0 and active substitutions composed by
parallel composition and restriction. The domain of a frame ¢, denoted dom(g) is the set of variables
for which ¢ contains an active substitution {¥/,} such that x is not under restriction. Every extended
process A can be mapped to a frame ¢(A) by replacing every plain process in A with 0.

We refer the reader to Section 2.6 for a full example.

2.4. Operational semantics

The operational semantics of processes in the applied pi-calculus is defined by three relations: struc-
tural equivalence (=), internal reduction (— ) and labelled reduction (—a>).

Structural equivalence is defined in Fig. 4. It is closed by a-conversion of both bound names and
bound variables, and closed under application of evaluation contexts. Structural equivalence corresponds
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PAR — 0 A=A|0

PAR-A A|(B|C)=(A|B)|C

PAR-C A|B=B|A

REPL \P=P|!P

NEW — 0 vn.0=0

NEW-C vuyw.A =vw.vu.A

NEW-PAR A | vu.B=vu.(A | B) ifu ¢ fv(A) Un(A)
ALIAS vx.{M/.1=0

SUBST {M/x} | A= {M/x} | A{M/x}

REWRITE M/ =N/ if M =g N

Fig. 4. Structural equivalence.

to some structural rewriting that does not change the semantics of a process. The internal reductions and
labelled reductions are defined in Fig. 5. They are closed under structural equivalence and application
of evaluation contexts. Internal reductions represent evaluation of condition and internal communication
between processes. Labelled reductions represent communications with the environment.

2.5. Equivalences

Privacy properties are often stated as equivalence relations [21]. Intuitively, if a protocol preserves
ballot secrecy, an attacker should not be able to distinguish between a scenario where a voter votes 0
from a scenario where the voter votes 1. Static equivalence formally expresses the indistinguishability
of two sequences of terms.

Definition 3 (Static equivalence). Two closed frames ¢ and 1 are statically equivalent, denoted ¢ = ,
if dom(¢) = dom(y) and there exists a set of names 7 and substitutions o, T such that ¢ = vn.oc and
Y = va.t and for all terms M, N such that 7 N (fn(M) Ufn(N)) = @, we have Mo =g No holds if and
only if Mt =g Nt holds.

Two closed extended processes A, B are statically equivalent, written A ~; B, if their frames are
statically equivalent; that is, (A) ~; ¢(B).

Intuitively, two sequences of messages ¢ and v are distinguishable to an attacker (i.e. they are not
statically equivalent) if the attacker can build a public test M = N that holds for ¢ but not for ¥ (or the
converse).

Example 3. Consider the signature and equational theory E.p; defined in Example 1. Let ¢; = vk.o;
and ¢, = vk.oy where o1 = {Perettripk) /- Pk /1 gy = [penclszrapk®) y PkB) /Y and sy, sy, k are
names. We have that ¢; %; ¢,. Indeed, we have penc(sy, 71, x,)o1 =g x107 but penc(sy, 1, X2)02 #Eg
X107.

Intuitively, since the randomness of the encryption is public, an attacker may reconstruct the cipher-
texts and compare. The two messages become indistinguishable as soon as the randomness remain pri-
vate. That is, we have that v(k, r1).01 ~; v(k, r2).05.

Observational equivalence is the active counterpart of static equivalence, where the attacker can ac-
tively interact with the processes. The definition of observational equivalence requires to reason about
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(CoMM) ¢(M).P | c(x).Q0 — P | Q{"/,}
(THEN) if ¢ then P else Q — P if [¢] = true
(ELSE) if ¢ then P else Q — Q otherwise

(IN) ctr).p M py g

(OUT-ATOM) cu).p 2 p

A S g u#c

v A 2 A

(OPEN-ATOM)

AS A u does not occur in o
(SCOPE) =
vu.A = vu. A’
(AR) AS A bv(@)N fviB) = bn(a) Nfn(B) = ¥
AlBS A | B
A=B B3>B B =A
(STRUCT) m
A— A

where « is a label of the form c¢(M), ¢{u), or vu.c{u)
such that u is either a channel name or a variable of base type.

Fig. 5. Semantics for processes.

all contexts (i.e. all adversaries), which renders the proofs difficult. Since observational equivalence has
been shown to coincide [1,31] with labelled bisimilarity, we adopt the latter in the remaining of the

paper.

Definition 4 (Labelled bisimilarity). Labelled bisimilarity (=) is the largest symmetric relation R on
closed extended processes such that AR B implies:

1. A= B;

2. if A — A’,then B —*B’ and A”R B’ for some B’;

3. if A > A’ such that fv(e) € dom(A) and bn(e) N fn(B) = ¢, then B —* = —*B’ and A'RB’
for some B’.

Intuitively, two processes A and B are labelled bisimilar if, anyhow the process A (resp. B) behaves,
the process B (resp. A) may behave with the same visible actions and such that their resulting frames
are statically equivalent, that is, an attacker cannot distinguish between them.

2.6. A detailed example

We provide a detailed example to illustrate the syntax and semantics of the applied pi-calculus. Read-
ers already familiar with this formalism may skip this section. Let us consider a simple protocol proposed
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(for illustration purposes) by B. Blanchet [11].

{sign(k,ska)}pkg

Alice sl Bob
o Uk

In this protocol, Alice sends a newly generated and signed key k to Bob, the whole message encrypted
using his public key pkg. Then, the receiver (Bob) checks that the signature belongs to the intended
sender (Alice). He then encrypts a fresh secret s with k using symmetric encryption and sends it to
Alice.

To model this protocol in applied-pi calculus, we use the equational theory En described in Exam-
ple 1 that models the properties of the different primitives used in the protocol. The behavior of the
sender and receiver are modeled in the applied pi-calculus as follows.

A :=vk.vr, . c{penc(sign(k, sk,), ra, Pks)) . c(x1)
B(s) :=c(xp) . B'(s)
B'(s) := let y = pdec(x,, skp) in

if checksign(y, pka) = ok then B”(s)

B"(s) := vry . ¢(enc(s, rp, k))

In these processes, a and b are secret values that correspond to the private key pairs of Alice and Bob,
respectively. Since Alice should not have a direct access to b, the secret key of Bob, A is given access to
Bob’s public key through a variable pkg and similarly for B. The whole protocol can be easily expressed
using Alice and Bob processes:

P(s) :=v(a,b) .[A| B(s) | I']

where [' = {Pkiska) /,  PKGK) /0 4 As mentioned above, sk, and sk, are protected but since pk(sk,)
and pk(sk,) are public keys, we published them in a frame implying that they are available to anyone
(including the attacker). We first illustrate the semantics of the internal reductions by simulating the
normal execution of the protocol, without any interference.

P(5) < v(sky, sko. k1) [e() | B/(s) | {Predontto o)y ]

(THEN) ) ]
—— V(skq, Skp, k, 75).[c(x1) | B"(s) | {Peneionbskalrapks) /3y | ]

(COMM) ~ ! i . i~
SOV l)’,l'[{enc(s,rb,k)/)c] ’ penc(sngn(k,Aka),ra,pkB)/m} | ]"]’ with n = (sk,, skp, k, 1, 1p).

Alice sends her signed and encrypted message, which is received by Bob.

Actually, this simple protocol is flawed. Indeed, an intruder may impersonate Alice’s identity
from Bob’s point of view. This attack only requires that Alice had, once in the past, spoken to
the intruder using this protocol. This can be showed using our applied-pi calculus model by adding
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penc(sign(k, sk,), r., pkc) to the initial frame, which is a message that Alice would have sent to Char-
lie according to the protocol. Let us define this slightly new process:

P.(s) := v(ska, sk, ske, re, ke) [A| B(s) | T],

where I, = {pene(sion(ke.ska).re.pke) / pk(@) /o pkB) / PK(ske) 1 3 Tet us consider now the following ex-
ecution: Charlie can send a message M = penc(pdec(x, skc), ', pkg) to Bob, where x is the message
previously received from Alice.

Pe(s) — s v(sky, sky, e ke).[A | B | T.]

(THEN) v(sk,, sky, re, kc)[A | B | Fc]

VXo.C{Xe

D (kg Sk Fer kes 1) -[A | (FEOTK) ) Y T].

Let us define the substitution o = {&"°-7s:ka) /M / 4| T In this execution, the test performed by B
succeeds since, according to the equation theory, we have:
Mo = penc(pdec(x, sk(c)), r’, pkg)o
= penc(pdec(penc(sign(k,, sk(a)), r., pk(c)), sk(c)), r’, pk(b))
= e PENC(SiGN(Ke, SK(@)), 1, Pk(D)),

thus,

checksign (pdec(xz, sk(b)), pka)o
=4, Checksign(pdec(penc(sign(k,, sk(a)), ', pk(b)), sk(b)), pk(a))
= e Checksign(sign(k., sk(a)), pk(a))

:Eenc Ok

which implies that the message is accepted by B, who therefore believes that Alice just sent him the key
k. she had, in fact, sent to Charlie in a former session. At the end of this execution, one can see that s is
not secret anymore since Charlie knows k. from his previous exchange and can perform a decryption of
X. to get s.

We can also illustrate Definition 4 using this example. Indeed, we have that for any s; and s,, P(s1) %
P(s;). This is due to the fact that the two processes may evolve in two states that are not statically
equivalent (~):

P(s) S Pi=v(a,b,ry)[A o] and P(s) > Pr=v(a,b,ry).[A] 0]
where o = c(M).vx..c{x.). and o; is defined as o where s is simply replaced by s;. We can show that

Py %, P,, due to the fact that the intruder can observe, using N; = dec(x., k.) and N, = s, that
(N1 =g N2)oy but (N} #g N»)o.



34 V. Cortier and C. Wiedling / A formal analysis of the Norwegian E-voting protocol
3. Modeling the Norwegian protocol

We provide a formal specification of the Norwegian protocol, using the framework of the applied pi-
calculus, defined in the previous section. We first model the cryptographic primitives used in the protocol
(Section 3.1) and then the Norwegian protocol itself (Section 3.2).

3.1. Equational theory
We adopt the following signature to capture the cryptographic primitives used by the protocol.

Ysign = {OK, fst, hash, p, pk, s, snd, vk, blind, d, dec, +, *, o, ©, pair,
renc, sign, unblind, checkpfk,, checkpfk,, checksign, penc, pfk, pfko}

The function ok is a constant; fst, hash, p, pk, s, snd, vk are unary functions; blind, d, dec, +, *, o,
©, pair, renc, sign, unblind are binary functions; checkpfk,, checksign, penc are ternary functions; pfk,
checkpfk, are quaternary functions and pfk; is a quinary function.

The term pk(K) denotes the public key corresponding to the secret key K in asymmetric encryp-
tion. Terms s(/), p(1), and vk(/) are respectively the blinding factor, the parameter and the verification
key associated to a secret id /. The specific coding function used by the receipt generator for a voter
with secret id I, applied to a message M is represented by d(p(/), M). It corresponds to the function
dy (M) explained in Section 1.2. The term blind(M, N) represents the message M blinded by N. Un-
blinding such a blinded term P, using the same blinding factor N is denoted by unblind(P, N). The term
penc(M, N, P) refers to the encryption of plaintext M using randomness N and public key P. The term
M o N denotes the homomorphic combination of ciphertexts and the corresponding operation is written
P ¢ Q on plaintexts and R * S on random factors. The decryption of the ciphertext C using secret key
K is denoted dec(C, K). The term renc(M, K) is the re-encryption of the ciphertext M using a secret
key K. The addition of secret keys is denoted by K + L. The term sign(M, N) refers to the signature of
the message M using secret id N. The term pfk, (M, N, P, Q) models a proof of knowledge, linked to
the public identity M, that proves that Q is a ciphertext of the plaintext P using randomness N. It mod-
els what is provided to convince a prover, and its arguments represents the material needed to construct
the proof itself. The term pfk,(M, N, P, Q, R) represents a proof of knowledge linked to the public
identity M, that R is a blinding of a re-encryption of a term Q using the secret key N and the blinding
factor P. pair(M, N) represents the tuple (M, N). For simplicity, pair(M,, pair(.. ., pair(M,,_1, M,)))
may be abbreviated as (M, ..., M,) and fst(snd(M)'~') as IT; (M) with i € N.

The properties of the primitives are then modeled by equipping the signature with an equational theory
E that asserts that functions +, *, o and ¢ are commutative and associative, and includes the equations
defined in Fig. 6. The first two equations are quite standard and models left and right projections of a
pair of elements. The third equation simply represents usual decryption of a ciphertext using the cor-
responding secret key, while Eq. (E-4) reflects that a blinded ciphertext can be decrypted, yielding the
corresponding blinded plaintext. Equation (E-5) models the homomorphic combination of ciphertexts.
Equation (E-6) represents the re-encryption of a ciphertext. The operation of unblinding is described with
Eq. (E-7). Equations (E-8), (E-9), and (E-10) correspond to the verification of respectively signature and
proofs of knowledge pfk; and pfk,.

The rewriting system corresponding to this equational theory is AC-convergent. This can be proved
showing that the system is both AC-confluent and AC-terminating. The first property is true since there
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fst(pair(x, y)) = x (E-1)

snd(pair(x, y)) = y (E-2)

dec(penc(x, r, pk(k)), k) = x (E-3)
dec(blind(penc(x, r, pk(k)), b), k) = blind(x, b) (E-4)

penc(x, r, k,) openc(y, r2, k,) = penc(x ¢y, ri 12, k) (E-5)
renc(penc(x, r, pk(ky)), k) = penc(x, r, pk(k; + k3)) (E-6)
unblind(blind(x, b), b) = x (E-7)

checksign(x, vk(id), sign(x, id)) = ok (E-8)
checkpfk, (vk(id), ball, ptk, (id, r, x, ball)) = ok (E-9)

where ball = penc(x, r, k,)
checkpfka (Vk(id), x, ball, pfk, (vk(id), k, b, x, ball)) = ok (E-10)
where ball = blind(renc(x, k), b)

Fig. 6. Equations for encryption, blinding, signature and proofs of knowledge.

is no critical pairs. AC-termination can be shown through a special measure for length of terms | - |
defined as follows:

1 if M is a name or a variable,
M| = 2+ M|+ |Ma] + |M3|  if M = penc(M,, Mz, M3),
24+ M|+ | M| if M =renc(M;, M>),
1+ 1M otherwise, i.e. M = f(Mj, ..., My).

Using this measure, it is easy to check that the length of terms is strictly decreasing at each step of the
rewriting, which ensures AC-termination of the rewriting system.

3.2. Norwegian protocol process specification

We present here our model of the Norwegian voting protocol. Each player is modeled as an indepen-
dent subprocess, and will be instantiated as a part of the whole protocol.

3.2.1. Voting process
The process V (Chat, Crecs Cpubs Kpubs dyvor, pid,,., v) represents both the voter and his computer.

V(Cbala Crecs Cpub» kpuba idvot’ Pidreca U) =Vvr.
let e = penc(v, 7, k), p = pfk(idyor, 7, v, €), si = sign({e, p), id,y) in

Coub ((VK(id,01), €, p, i) . % Public information.
Cra{(VKk(id,ot), €, p, SI)) . % Encrypted ballot sent to B.
Crec{OK) . % Synchronization for R.
Crec(X,) . Cpar(xp) . % Wait for inputs from R and B.

if ¢y (idyor, pid,,., v, e, p, Si, Xp, X,) then €., (0K) . Crec(OK)
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with

Pv(idyor, Pid e, v, €, p, si, Xp, %) = (d(p(idyor), bind(v, s(idyo))) = x,)
A (checksign(hash({vk(idyo), e, p, si)), pid,,., x;) = ok).

Parameter v represents voter’s vote and ¢y, Cr denote the authenticated channels shared with, re-
spectively, the ballot box and the receipt generator. k), represents the public key of the election used to
encrypt votes; id,,, is the secret id of the voter and pid,,, is the verification key of the receipt generator.
Note that messages sent over ¢y, and ¢, are also sent on the public channel c,,;,. This simulates the fact
that ¢y, and ¢, are authenticated but not confidential channels. The synchronization step is only here to
simplify the study in the case where B is corrupted. The formula ¢y (id,,,, pid,,., v, e, p, si, xp, x,) mod-
els all the checks performed by the voters: the message received from the ballot box should be properly
signed and the message from the out-of-band channel should correspond to the right receipt code.

3.2.2. Ballot box
We represent the Ballot box, ready to listen to n voters, by the process B, defined as follows.

. 1 . 71 1 - n _
Bn (Crer Cdecs> Cauds Cpub ksem pldrec, Crot Pldw,,, Spotr =+ Ccot’ pldvo;v Sgo;) -

¢l (x1) .BBy.....c" (x,).BB,. % Processes incoming votes.
Coa{Ila(x1)) . ... . Cpa{Ila(xy)) . % Outputs encrypted votes to D.
Cha{X1) . - . CpalXn) % Outputs content to A.

with:

BB,' =
if g (pid,,,,, x;) then % Checks ballot’s validity.
let b; = blind(renc(IT,(x;), k), séot) in % Computes re-encrypted blinded
let pok; = pfk, (pidiw, Ksec, siw, IT>,(x;), b;) in ballot and corresponding proof.
Crec{(Xi, bi, pok;)) . Crec(yi) - % Message sent to R. Wait for R.

if ¢s(pid,,., x;, yi) then Cpup(yi) . (i) % Checks confirmation’s validity and
sends confirmation to the Voter.

and

¢s(M, N, U) = (checksign(hash(N), M, U) = ok),
a(V, W) = (W = (W, Wa, W3, Wa)) A (checkpfks (W, Wa, W3) = ok)
A (Wi = V) A (checksign({Wa, W3), Wy, Wy) = ok)

where (X = (Xy,..., X,)) denotes the formula that holds only when X is a n-tuple. For example,
(X = (X1, X)) denotes the formula X = pair(fst(X), snd(X)).

Intuitively, we assume the ballots to be received from the authenticated channels ¢! , ..., c" . The
Ballot box processes each ballot one after another, exchanging with the Receipt generator through the
secure channel c,.., before sending back a confirmation to the Voter. Once all votes have been casted,
the Ballot box outputs the encrypted votes to the Decryption device using the secure channel cg,.., and

its content to the Auditor through the secure channel c,,y. k. is the secret key known by B, while
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1 n

pid,,,, ..., pid,,
corresponding blinding factors.

are the public identities of the voters (i.e. their verification keys) and s st the

vor’ ** ° 0 Yvot

3.2.3. Receipt generator

R (Chats Cauds Cdees Cpubs ksees irecs €)oo pid?,, ploo o e, pid?,,, p" ) is the Receipt generator’s pro-
cess. It exchanges messages with the Ballot box, the Decryption service (only for an ad-hoc synchroniza-
tion, used to simplify the proof) and the Auditor through secure channels cpy;, Ciec, and cg,q respectively.
It also talks directly to voters through out-of-band channels c! ¢, which are modeled as authen-

vot’ * * 0 Fvot?
ticated channels here. ki, is the secret key received by R during the setup phase, pid.,, ..., pid",, are

the public identities of the voters and the corresponding receipt coding functions are p! ..., p" .
. 1 - 71 1 n - n noy —
Rn (Cbal’ Cauds Cdecs Cpubs ksem ldrec» Crots pldvot, Prots -+ Coors pldwt, ont) =
cl (syncl) . RGy .c! (syncl). % Processes re-encrypted votes into receipts.

C\r/lot(synczl) .RG, . Clr,lm(syl’lcg) .

%((pidim, hbry)) . ... . Caa((pid,,,, hbry,)) . % Outputs content to A.
Caec(OK) % Ad-hoc synchronization for D.
with:
RG,’ =
Cra(xi) . % Waiting input from the Ballot box.
if ¢r(ipid,,,, x;) then % Checks Ballot box’s computations.
let r; = d( pim, dec(I1,(x;), ksec)) In % Computes receipt for the i-th Voter.
let hbr; = hash(I1;(x;)) in
let si; = sign(hbr;, id,.:) in % Computes i-th confirmation for the Ballot box.
Chal{Sii) . Cpun(ri) - chori) % Outputs to intended recipients.
and

(X, Y) = (Y = (Y1, Y2, Y3)) A (Y1 = (Wi, W, Wa, Wa)) A (W) = X)
A (checksign({Wa, W3), Wy, W4) = ok) A (checkptks (W1, Wa, W3) = ok)
A (checkpfko (W1, Wa, Y2, Y3) = ok).

Note that instructions ¢! (sync') and ¢ (sync’) are used to force the Receipt Generator to fully
process each receipt before accepting a new entry from the Ballot box, which eases the security analysis.
Note also that we slightly simplify the behavior of the Receipt Generator. [23] indicates that the Receipt
Generator not only computes ibr; as defined above but also the hash of the voter’s ballot (obtained when
computing IT; (x;)) from which the signature is dropped. We ignore the second hash as it contains less
information.

3.2.4. Decryption service

The Decryption service is represented by the process Dy, (Cpat, Crecs Cauds Cpubs Ksec)- It communicates se-
curely with the Ballot box, the Receipt generator (waiting for synchronization), and the Auditor through
respectively channels cpa;, Crec, and cgq. The result is published on the public channel c,,. In order to
decrypt ballots, it needs to know the secret key k... The parallelism at the end of the process models that
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the votes are shuffled. For simplicity, we omit the proof of correct decryption provided by the Decryption
device as it should not affect privacy.

D, (Cbala Crecs Caud» Cpub» ksec) =

Crec(sync)) . % Waits for R’s signal to begin the tallying phase.
cpa(dr) . ... . cpu(dy) . % Inputs encrypted votes from B.

Cauathash({dy, ..., d,))) . % Outputs hashed tally for A.

Caua(Sync3) . % Waits A approval before processing the outcome.
(Cpun(dec(dy, keee)) | -+ - | Cpun(dec(d,, kyec))) % Publishes the results in a non-deterministic order.

3.2.5. Auditor

Finally, the Auditor is modeled by the process A, (Cpais Crec, Cdec) Which communicates with the other
infrastructure players (Ballot box, Receipt generator, and Decryption device) using secure channels cp,;,
Crecs and Cdec-

An (Cbal’ Crec, Cdec) =
Crec(M1) o oo Cree(hy) . % Inputs from R, D and B.

Caec(ha) - cpar(x1) . ... . Cpar(Xn) -
if pa(hy, by, ..., hy, X1, ..., X,) then Cgc(OK) else O % Checks and sends approval.

with:

oa(H, X1, ..., X, Y1, ..., Y,) = (hash((IT2(Y)), ..., TIa(Y,))) = H)
J\L(Yi = (Wi, Wa, Wa, Wa)) A (Xi = (Z4, Za)) A (W = Z))

i=1

A (hash(Y;) = Z») A (checksign({Wa, W3), Wi, Wy) = ok)].

3.2.6. Norwegian protocol and corruption scenarios

The interaction of all the players is simply modeled by considering all the processes in parallel, with
the correct instantiation and restriction of the parameters. In what follows, the restricted names ay, a,, as
model the private keys used in the protocol and the corresponding public keys pk(a;), pk(az) and pk(as)
are added in the process frame. The restricted names ¢4, C, (resp. cry, and cry,) model authentic channels
between the two honest voters and the Ballot box (resp. the Receipt generator). The restricted names id,
id», idr represent the secret ids of honest voters and of the Receipt generator. The corresponding public
id’s are added to the process frame.

The process corresponding to the situation where all the authorities are honest is P,[_] where n is the
number of voters and the hole is the voter’s place and is defined as follows:

P[] =vi.(letaz=a;+ain).[ _
| Bn (CBR’ CBD> CBA> Cout, &2, idpF{a C1, Idp1 B S(id1)5 <+« Cp, idpn’ S(|dn))
| R, (Cer. Cra» CRD: Couts 83, idR, Cry; , idp1, P(id1), - . ., Cav,. idps, P(idn))

| Dy (CeD, CRD, CDA Couts @1) | An(Caas CRAs Cpa) | F]
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with n = a4, ap, as, idy, idz, 11, r2, idg, C1, C2, Cry,, Cav,, CBA, CRA, CDA, CBR. CBD, Crp the set of restricted
names and the frame I' = {PK@) /| i = 1,...,3} | {(*0W /4 | i = 1,2} | {*0®) /4. ). This frame
represents the initial knowledge of the attacker: it has access to the public keys of the authorities and the
verification keys of the voters. Moreover, since only the two first voters are assumed to be honest, only
their two secret ids are restricted (in 72). The attacker has therefore access to the secret ids of all the other
voters.

The process P, corresponds therefore to a scenario where all the election authorities are honest. To
model the case where the Ballot box is corrupted, we simply provide the attacker with the Ballot box’s
secrets. Formally, we define the process P’ defined as follows.

P[] =viip.(letag =aj +ain).[ _
| R, (CBRa CRA, CRD; Cout> @3, idR, Cav,, idp1, p(idy), ..., Cpy,, idpn, p(idn))

| Dy(CBD, CRD, CpA> Couts 81) | An(Cra, CrA> CDA) | Fb]

with 71, = ay, as, idy, idy, 11, I2, idR, Crv,, Crv,, CRA, CDA, Crp the set of restricted names and I', =
PE@ /i =1,..., 30 | {9 g0, S0 /g 1= 1,2} | {09 /4 ). Compared to P,, we have sim-
ply removed B, from the process (since the Ballot box is now under the control of the attacker) and
the secret key a, and the authenticated channels ¢4, C», Cga, CgRr, Cep are now public (they are not part of
the set of restricted names anymore). Finally, we have added s(id1), s(idz) to the frame representing the
initial knowledge. This models the fact that now, all the secrets of B, are known to the attacker.

4. Formal analysis of ballot secrecy

Our analysis shows that the Norwegian e-voting protocol preserves ballot secrecy, even when the
Ballot box and all but two voters are corrupted, provided that the other components are honest. This of
course implies ballot secrecy if all the authorities are honest and some voters are corrupted. Conversely,
we identified several cases of corruption that are subject to attacks. Though not surprising, these cases
were not explicitly mentioned in the literature.

In this section, we state our main security results, studying the privacy of the Norwegian protocol
under two main corruptions scenarios. Moreover, we summarize existing attack scenarios. The formal
proof of privacy is then detailed in the next three sections.

Ballot secrecy has been formally defined in terms of equivalence by Delaune, Kremer, and Ryan in
[21]. A protocol with process V (v, id) and authority process A preserves ballot secrecy if an attacker
cannot distinguish when votes are swapped, i.e. it cannot distinguish when a voter a; votes v; and a,
votes v, from the case where a; votes v, and a, votes v;. This is formally specified by:

vit.(A | Vv, ay) | V(vz, @) = vit.(A | V(v2,a1) | V(v1, a2))

Proving ballot secrecy of the Norwegian protocol therefore amounts in proving equivalence of the cor-
responding processes we detailed in Section 3.
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4.1. Corrupted ballot box and corrupted voters

Our main result states that the Norwegian protocol specification satisfies ballot secrecy even if the
Ballot box and n — 2 voters are corrupted, provided that the other components are honest.

Theorem 1. Let n be an integer representing the number of voters. Let P’ be the process defined in
Section 3.2.6, that corresponds to the voting process where all the authorities but the Ballot box are
honest. Then,

P’[Vi(a) | Va(b)] & PY[Vi(b) | Va(a)]
with V;(vj) = V(ci, Cry;, Cout, 91, idi, idpg, Vj) which corresponds to the i-th voter voting vi.

In order to prove Theorem 1, we need to “guess” a symmetric relation R on closed processes satisfy-
ing the properties of a labelled bisimilarity. This amounts into describing symbolically all the possible
(co-)evolutions of the two processes, depending on the actions of the adversary. The description of this
relation is given in Section F. The first step of the proof consists in showing R satisfies property (1) of
a bisimilarity relation, that is, we need to show that all pairs of frames obtained in the relation R are in
static equivalence. In fact, all these frames are included in the final frames (modulo a “cleaning” step
performed using Lemma 12 presented in appendix) corresponding to the complete execution of the two
processes. It is therefore sufficient to prove static equivalence of the two final frames.

We consider the following frames:

einit = {Vk(idk)/idpk’ S(idk)/sk | k= 17 ceey n} | {Vk(idR)/idpR} | {Pk(ak)/gk | k= 1’ ey 3}5
By = Ot | {PenC(Vk,rk,gﬂ/ek’ Pfkl(idkstk»Vk,ek)/pk’ Sign(<ek»Pk>vidk)/Sik k=1, 2}’

ign(hash(TT; (M)),id d(p(idk),dec(IT, (M,
Or = 61 | {Slgn( ash(IT; (My)).i R)/srk» (p(idk),dec(IT2( k)yas))/rec’(}’
05 =6, | {dec(Ua(k)»aO/Mk lk=1,..., n}’

where M; and Uy are free terms such that fv(M; ;) € dom(6;) and fv(Ui4+1) € dom(6,). Intuitively, the
M; and Uy, are the recipes sent by the adversary. The restriction on the variables makes sure the adversary
only use terms he has access to, at this step. d is a substitution of [[1, n] intuitively corresponding to the
shuffling of the votes at the end of the election. Then each frame can be interpreted as follows:

— Bnit corresponds to the initial knowledge of the attacker. It contains the public data of the honest
voters and the public keys of the election.

— 6 corresponds to the submission of ballots from the two honest voters. Note that our synchroniza-
tion phase ensures that honest voters vote first. And we can show that the adversary cannot interfere
with these two ballots.

— 6 corresponds to the knowledge of the adversary once the k-th voter has voted. Intuitively,
the adversary will submit any ballot he wishes (M) based on his prior knowledge and in re-
turn, he receives the receipt and the signature from the Receipt generator, that is, he receives
d(p(idg), dec(IT,(My), as)) and sign(hash(I1;(My)), idR).

— Then 65 corresponds to the frame with the final decryption of the votes, after shuffling, that is, the
adversary can see the votes in clear after some permutation §.
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Proposition 1. Let § is a substitution of [1,n] and'§ = 8 o [1 + 2,2 +> 1]. Let 05 be the frame as
defined above. Then we have:

~ o~ . b b
va.Os0L Xy v.0som,  witho = {3/v,,°/w} and or = {°/v,.%/u, }-
This proposition is the main core result to establish Theorem 1.

Proof sketch. The proof is done step by step. First, we show that v@w.0po; =5 v@.6hog, that is, the
frames are in static equivalence once the two honest voters have voted (Lemma 13 detailed in appendix).
We then show that the receipt sent by the receipt generator does not break static equivalence. This
requires to prove in particular that adding the signature of a known term does preserve static equivalence
(Lemma 8, one of our core lemma). Finally, we conclude by showing that the decryption of the (shuffied)
vote only yields already known terms, built using the same recipes, in both frames.

The full proof of Proposition 1 can be found in Section 6. [

It then remains to show that we did not miss any possible execution, that is, show that R is a bisimi-
larity relation, which is ensured by the following proposition.

Proposition 2. Let R be the relation defined in Definition 15 (Section F). Then, R is verifying properties
(2) and (3) of Definition 4.

Proof sketch. Given (P, Q) € R, we consider all possible evolutions of P in P’ and show that there
exists Q' such that (P’, Q) remains in R. In other words, we check that we did not forget any case when
defining R. The detailed proof is not really technical but is rather tedious and is therefore deferred to
Section E.  [J

Theorem 1 then easily follows from Proposition 1 and Proposition 2.
4.2. Honest authorities and corrupted voters

The Norwegian e-Voting Protocol specification a fortiori satisfies ballot secrecy even if n — 2 voters
are corrupted, provided that the other components are honest.

Theorem 2. Let n be an integer, that corresponds to the number of voters. Let P, be the process defined
in Section 3.2.6, that corresponds to the voting process when all authorities are honest. Then,

P,[Vi(a) | Va(b)] ~ Py[Vi(b) | Va(a)]
with V;(v;)) = V(ci, Cry;, Cout» 91, idi, idpR, Vj) which corresponds to the i-th voter voting v;.

Theorem 2 is a corollary of Theorem 1. While this is intuitively obvious, the use of equivalence
adds some technicalities to the proof. The key proposition is that extending the initial knowledge of the
attacker can only help finding attacks.

Lemma 1. Let 1 be a set of names, P, Q, two processes. Then, we have:

vi.(P | {"/.}) =va(Q 1 {Y/:}) = va.P~ Q.
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Proof. We define a symmetric relation R on closed extended processes as follows:

vi, AR VB £S5 v (A {M/)) ~ v (B {M/.)).

Let us show that ‘R verifies the three properties of a bisimilarity relation (c¢f Definition 4).

1. This is straightforward since ¢ (vii.A) € ¢ (vii.(A | {M /).

2. Let A — A’.Thenvii.(A | {M/}) = vii.(A" | {M/,}). Now, since A R B, we have that vii.(A |
M)~ vii.(B | {M/,}) thus there exists B such that vii.(B | {*/,}) —* B and B ~; vii.(A’ |
{M/.}). Since B is a closed process, it can not make use of x thus it must be the case that there
exists B’ such that B —* B’ and B = vii.(B’ | {/,}). Moreover since vii.(A’ | {M/.}) ~ B =
vii.(B" | {M/.}), we conclude that A’ R B’.

3. Let A —> A’. Then vii.(A | {M/.})) — via.(A" | {"/,}). Now, since A R B, we have that
vit.(A | M/} ~; vii.(B | {/,}) thus there exists B such that vii.(B | {*/,}) »>*—>—* B
and B ~; vii.(A' | {M/}). Since A is a closed process, it does not contain x, thus we must
have that the label & does not contain x either. Thus, if vii.(B | {M/}) —*%5 >* B, we must
have that there exists B’ such that B —*—>—* B’ and B = vii.(B' | {M/.}). Moreover since
vit. (A" | {M /) ~ B =vii.(B' | {"/,}), we conclude that A’ R B'.

Now, since = is the largest relation satisfying these three properties, we conclude. [
We are now ready to prove Theorem 2.
Proof of Theorem 2. Let us define A = P’[V|(a) | Va(b)] and B = P’[V;(b) | Va(a)]. According

to Theorem 1, we have that: A =; B. Thus, for all closing evaluation context C[_], we also have:
C[A] =; C[B]. Let us consider the following closing evaluation context:

C[_] = VI’;l[ — | Bn(CBR’ CBD; CBA, Couts A2, idpRa Cy, idp17 S1,...,Cp, idpn, Sn)],

with m = ay, ¢4, Cz, CpR, Cap and B, is defined as the honest one except that we replace arguments s(id,)
and s(ido) by variables sy and s,. Then:

C[A] = vin.[viip.(letag = a; + @z in).(Vi(@) | Va(b) | Ry | Dy | Tp)or | By]

where B,, R, and D, are just short notations of the different processes with their attributes. Since B, is
such that (fv(B,) U fn(B,)) N n, = @, we have that:

C[A] = vin.[viip.(letag = a; + a2 in).(Vi(@) | Va(b) | B, | R, | D, | T)]
= v(m, ip).(letag = as +azin).[Vi(@) | Va(b) | By | Ry | Dy | Tp].

But (m, n,) = n and:

Bn(CBRa CBD’ CBAa Cout, a29 idpRv C17 idp1a S'Ia M ] Cn, idpn, Sn)rb

= Bn (CBRa CBD’ CBAa COUt’ a29 idpRv C1 ’ idp1a S(Id'l)a L] Cn, idpna S(|dn))rb
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So, we get that C[A] = P,[Vi(a) | Va(b)], where ?Z is exactly_the same as P, except that " is replaced
by I'p. Doi_ng the same for C[B], we deduce that C[B] = P,[Vi(b) | Va(a)] and thus P,[Vi(a) |
Va(b)] =; P,[Vi(b) | Va(a)]. According to Lemma 1, this equivalence implies that:

P,[Vi(a) | Va(b)] ~ P,[Vi(b) | Va(a)]. O
4.3. Attacks

We have shown that the Norwegian protocol guarantees ballot privacy provided that the Receipt gen-
erator, the Decryption service, and the Auditor are honest. We review further cases of corruption where
ballot secrecy is no longer guaranteed.

Dishonest decryption service. The Decryption service is a very sensitive component since it has access
to the decryption key a, of the public key used for the election. Therefore, a corrupted Decryption service
can very easily decrypt all encrypted ballots and thus learns the votes as soon as he has access to the
communication between the voters and the Ballot box. Such an attack is not possible in [23,24] since
communications are assumed to be secure (e.g. using TLS channels). It is interesting to note that the
combination of both studies indicates that in case the Decryption service is corrupted then ballot secrecy
solely relies on the security of the communication channels between the voters and the Ballot box.

Dishonest ballot box and receipt generator.  Clearly, if the Ballot box and the Receipt generator collude,
they can compute a; = agz — a, and they can then decrypt all incoming encrypted ballots. More inter-
estingly, a corrupted Receipt generator does not need the full cooperation of the ballot box for breaking
ballot secrecy. Indeed, assume that the Receipt generator has access, for some voter V, to the blinding
factor sy used by the Ballot box to blind the ballot. Recall that the Receipt generator retrieves f(0)*"
when generating the receipt codes (by computing wx—23). Therefore, the Receipt generator can compute
f(0")%v for any possible voting option o’. Comparing with the obtained values with f(0)%" it would easily
deduce the chosen option o. Of course, the more blinding factors the Receipt generator can get, the more
voters it can attack. Therefore, the security of the protocol strongly relies on the security of the blinding
factors which generation and distribution are left unspecified in the documentation (who has access to
the data during the generation? How the data are distributed and how secure the distribution is?). The
Ballot box can also perform a similar attack provided that it has access to the SMS sent by the Receipt
generator and provided it can learn the coding function dy for some voters V (which probably requires
partial corruption of the Receipt generator as well). Note that if the Ballot box and the Receipt generator
collude, verifiability is broken as well, as pointed in [23,24], since votes can be changed without voters
noticing.

Dishonest ballot box and auditor. Even if the Auditor does not hold any secret (besides the access
to the output of both the Ballot box and the Receipt generator), it is still a key component in the voting
process. Indeed, it ensures that the ballots sent to the Decryption service indeed correspond to the ballots
sent by the voters (unless both the Ballot box and the Receipt generator are corrupted). Assume now that
the Ballot box and the Auditor corrupted. Then the Ballot box can send any ballots it wants to the
Decryption service (the — corrupted — Auditor would not complain). This is a clear breach of security in
terms of the correctness of the result: indeed, the results would not correspond to the votes as casted by
the voters (as also pointed in [23,24]). As a consequence, this is also a breach of ballot privacy. Indeed,
the Ballot box may send the same ballot several times (possibly re-randomized) therefore obtaining a
bias of information about the vote casted by the voter under attack.
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5. Lemmas for static equivalence

The proof of our main result requires several intermediate lemmas. We believe that some of them are of
independent of interest. We first state lemmas that are independent of the equational theory (Section 5.1)
and then one of them that relies on it but is still quite general and could be reused for other formal studies
of protocols (Section 5.2).

5.1. Generic lemmas

We use some arguments repetitively on our proofs and we found useful to state them separately. First,
we notice that splitting pairs preserves static equivalence.

Lemma 2. Let ii, m be names, 61,0, substitutions and let us define ¢ = vin.(6; | {VV2/. ) and
¥ =vm.(0, | {VV2) /) two frames with U, U, Vi, Vs, some terms. We have:

¢ o 1// — VI’NL.(Q] | {Ul/xlv Uz/xz}) g UI’IN"I.(QQ ) {Vl/xlv Vz/xz})-

Proof. Let ¢’ = vin.(0; | {V1/,,, Y2/, and ¥/ = vim.(6, U {1/, 2/, D).

Let M, N be terms s.t. (M =g N)¢'. We consider § = [x; > I1;(x), x, — IT,(x)] and we have, for
all term P: (P8)¢p =g P¢' and (PS)Yy =g Py'. Thus M@’ =g N¢' implies (MS§)¢p =g (N§)¢p. Since
¢ ~; ¥ we deduce (M) =g (N8)y, thatis My’ =g N/'. Since ¢ and ¥ play a symmetric role, we
deduce that My’ =g Ny’ implies M¢' =g N¢’ as well. [

Adding a deducible term to the frames preserves static equivalence, provided the condition that the
same recipe is used in the two frames.

Lemma 3. Let i, m be names, 0y, 6, substitutions, and ¢ = vin.0; and v = vm.0, frames. Let U be a
free term, we have:

oy = v | {Y" /i) movm. (0, U {Y /i),
Proof. Let ¢’ = vii.(6; | {Y9/,}) and ¥' = vin.(6, U (V%2 /. }).
<—| Straightforward.
—| Let M, N be terms such that (M =z N)v’'. We consider 8§ : x — U and we have, for all term
P: (P8)¢ =p P¢' and (P8)Y =g Py’'. Thus M¢' =5 N¢' implies (M8)¢p =g (N8)¢. Since ¢ ~ ¥,
we deduce (M8)Y =g (N8, thatis My’ = Ny/'. O

The next lemmas hold for equational theories for which destructors can be identified.

Definition 5. Let E be an equational theory induced by an AC convergent rewriting system R and X a
signature. We say that f € X is a destructor in E if for any rewrite rule/ — r of R

fér and (fé¢lorl=f(,....L,)andVi € [1,n], f ¢1),

i.e. f can only appear in head in / and does not appear in r. Terms of the form f(z,...,,) with f
destructor in E are called destructor terms.
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The next lemma states that destructor terms cannot be introduced by rewriting rules.

Lemma 4. Let E be an equational theory induced by an AC-convergent rewriting system R, ¥ a signa-
ture and f € X a destructor in E. Let C[_] be a context such that f ¢ C and let Ty, ..., T, be terms in
normal form. Then there exists a context C'[_] such that f ¢ C'and C[T, ..., T,] = C'[M,, ..., M,]
where My, ..., M, are subterms of T\, ..., T,.

Proof. Let us consider such context C[_] and such terms 77, ..., T,. For this proof, we also consider
that we flatten AC symbols, i.e. a term ®(x, B(y, z)) will be considered as ®(x, y, z) for any AC
symbol @. Moreover, we can consider w.l.o.g. that each T; does not start with an AC-symbol. If 7; =
@®(Ni, ..., Ny) forone i € [1,n], then we can consider C[_] a new context deduced from C[_] by
adding a @ symbol at each position 7; should be inserted in C[_]. Then, we have:

C[Tlv"~’Tn] =AC E[Th""’]—}fl’Nla'-'aNqaE+l"~'aTn]-

Now, if C[T1, ..., T,] is in normal form, the result is straightforward. If it is not, then we know that
there exists a position s, a rule / — r from R and a substitution 6 such that C[T}, ..., T,]|s =ac 0. Let
x be a variable of / and p, be a position such that /[, = x. We know that p, can’t be the root, otherwise
[ = x and R would contain a rule x — r. Such a rule would allow infinite chains of reduction which is
in contradiction with hypothesis on ‘R. Thus, we can move one step up and call p, the position such that
Dx = ps * j with j € N*and /|, = g € X. We consider two cases:

— g is not an AC-symbol. We consider two subcases:

% p, is a position of C[_]. Then x0 =a¢ Ci[T1, ..., T,] with C,[_] a sub context of C[_] and we
can replace the substitution of x in @ by {Cx[71Tul 7 1.

* p, is not a position of C[_], i.e. there exists p; and p, two positions such that p, = p; * p, with
CIT\, ..., T\lly =ac Ti and T;|,, =ac x60 =ac W with W € St(T;). In that case, we can just
replace the substitution of x in 6 by {" /. }.

— g = @, an AC-symbol. Then, we have /|, =ac x @ I’. We consider again two subcases:

x Either p, is a position of C[_]. Then, [[,0 =ac (x & 10 =sc C[Ti,...,T,]. Thus,
head(C,[T1, ..., T,)) = @ and we can expand it as follows:

my my
CTi.... Tl =sc @PCiT..... TIEPW;
i=1 j=1

with C)"C [_] subcontexts of C[_] and W; being one of Ti, ..., T,. Then, each x6 is linked to a

subset of this sum and we can replace the substitution of x in 6 by {@:’2' CUT1 T B2, Wj /x} with
w; <mp and wy, < my.
% Orl|, 0 =ac W with W € St(T;) forone i € [1, n]. Then, x0 is subterm of W and we conclude.

Finally, for each case, we have that [6 =,¢ [0’ where 6’ contain only substitutions of variables of / by
sub contexts of C[_] and subterms of 71, ..., T,. Thus, we have:

CITi,....T,ly =ac 10 — 10’ =5c C,[Ry, ..., R, ]
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where C,[_] contains r and all subcontexts C,[_], C f [_]. Since f ¢ C and C,[_], Cf [_] are subcontexts
of C[_], we know that f ¢ C, and f ¢ C*. Moreover, since f is a destructorin E, f ¢ r. Thus, f ¢ C,.
Finally, Ry, ..., R,, are subterms of T, ..., T,, then:

CITi,....T,) = CITy, ... LG Ry, ..., R, 1], = C'[My, ... M,]. O
If a destructor term ¢ is non deducible and does not appear as subterm of a frame then ¢ cannot appear
as subterm of any deducible term.

Lemma 5. Let E be an equational theory induced by an AC convergent rewriting system R, ¥ a signa-
ture and f € X is a destructor in E. Let ¢ be a frame and U = f(Uy, ..., U,) a term in normal form
such that U ¢ St(¢) and ¢ ¥ U. Then:

forall term T in normal form such that o =T, U ¢ St(T).

Proof. Let us prove this by induction on the number of steps used to deduce 7.

Base case: T € ¢. Then, since U ¢ St(¢), we have that U ¢ St(T).

Induction case: Now suppose that for any 7" in normal form such that ¢ - T in n steps, then U ¢
St(T). Let T in normal form such that ¢ - T inn + 1 steps. Wehave ¢ = T =4¢ g(T4, ..., T,)] where
g € ¥ and ¢ I T; in n steps with 7; in normal form for i € [1, n].

— If g(Ty, ..., T,) is already in normal form, then we have two subcases:

x If g # f, then according to the induction hypothesis and since U ¢ St(T;), we have U ¢ St(T).
x If g = f, then, if U € St(T) and since U ¢ St(7T;) according to the induction hypothesis, we
must have T = U, which yields to a contradiction since ¢ + T and ¢ ¥ U.

— If g(T1, ..., T,) is not in normal form. If g = f then, we have that f(Ty,...,T,) — r[7~"] for some
rule/ — r. Slnce J isadestructor in E, we know that f ¢ r. Thus, accordlng to Lemma 4, we know
thatr[T] —* C[T;] such that f ¢ C.Inthatcase,if U € St(C[T]) then, we must have U € St(T)
which is a contradiction. If g # f, then, using Lemma 4 w1th C|T, s Tl =ac g(Ty, ..., T,),we
have that EIC’ such that f ¢ C’ and g(Tl, oI =>*C [ ;] with T; subterms of 77, ..., T,. Then

=ac C’ [T] but we know that U ¢ St(T) accordlng to induction hypothesis, thus U §é St(T)

This concludes the induction. [J
A context in normal form applied to a destructor term remains in normal form.

Lemma 6. Let E be an equational theory induced by an AC convergent rewriting system R, X a signa-
ture and f € X is adestructorin E. Let U = f(Uy, ..., U,) a term in normal form and P[X], another
term in normal form. Then P[U], is also in normal form.

Proof. Assume that P[U] is not in normal form. Since P[X] and U are in normal form, it implies that
dp a position of P[_] such that P[U]|, =c 160 with some rule / — r and some substitution 6. But f is
a destructor in E, thus, f must appear at the head of /, which is a contradiction with the position p. [

As a consequence of the previous lemmas, we can state that adding non deducible destructor terms to
the frames preserve static equivalence.
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Lemma 7. Let E be an equational theory, . a signature and f, g € X destructorsin E. Let o1 = v@,.0;
and ¢, = van.0; be frames. Let Uy = f(U;, ..., U,l,) and U, = g(U?, ..., qu) be terms in normal
form such that, Vi € {1, 2}, ¢; ¥ U; and U; ¢ St(¢;). Then:

o1~ = var (01 [ {"/.}) = van (62| {P/i)).

Proof. Let o] = va;.(6; | {Y1/.}) = vay.0! fori € {1,2}.

<—| Straightforward.

=| Let M and N be terms s.t. fv(M, N) € dom(g;) andbn(M, N)Nbn(¢|) = @ with (M =g N)g;.
Then:

My, =g Ng|
(M)l =ac (Ng)l
(Mei161)d =ac (Neid)l

with 8; : x = U\, according to ¢; definition. Since U is in normal form, we apply Lemma 6:

M@ 81 =ac (Nep 6
(M) 81)87" =ac  ((NeD! 81)8;"

with 87" : Uy = x. We know that U, = f(U}, ..., U,) with f destructor in E and U, in normal form
and not subterm of ¢;. Thus, using Lemma 5, for any 7 in normal form s.t. ¢; + T, then U; ¢ St(T).
And, since ¢; - (Mg,)] (resp. (Ng;)J) we have that (Mg)| 8;' = (Mg,)] (resp. (Ng))| 87" =
(N¢1){). Thus:

(M) 8167 =ac (Ng| 6,87
(Mg} =ac (Nonl

Since ¢; & ¢, we have (with 6, : x — U»):

M@)l =ac (Ne)l
(M@)| 82 =ac (N2 82

Using Lemma 6, we deduce (M¢,) | &, =ac (N¢y) |, implying that (M =g N)¢; — (M =g
N)¢5. Repeating the same reasoning, we can also prove that (M =g N)¢), — (M =g N)gj, and
we conclude. [

5.2. A more specific lemma

We show that adding the signature of a deducible term preserves static equivalence, when the same
recipe is used in both frames. We believe that this lemma holds for other primitives provided the equa-
tions are similar to those for the “sign symbol like the case of zero-knowledge proofs.

Lemma 8. Let ¢; = vw,.0; and ¢ = vw,.60, be two frames, x a fresh variable and a, a name such that
a € o Nwy, {9 /igo.} € 61 N0y and 1, 92 ¥ a. Let U = sign(U’, a) in normal form with U’ a free
term and such that (U ¢;)| & St(¢;). Then:

o1~ = vor (0 [ {4 )) & ven. (62 | {1V )).
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Before proving this lemma, we introduce the notion of down-to-top strategy, where a rewrite rule is
applied first as deep as possible. Note that since we consider convergent rewrite systems, we may chose
any rewrite strategy.

l,‘—)}’l‘

Definition 6. Let us consider M, M My — --- — M;--- — M, = My areduction strategy.
This strategy is called down-to-top, noted —> 4, if, for all i € [1, n], M;_i|,, =ac 1;6; — r;0; and for
all position g < p;, M;_1l, is in normal form.

Proof. Let p; = vw,.0; with0; = 6; | {V¥¥/ .} fori e {1,2}.
<—| Straightforward.
=>| We first assume the two following claims that we prove next.

Claim 1. Let M be a term s.t. In(M) N w; = @. Then, for any term T s.t. My; —, T, we have
(Uil ¢ SHT).

Claim 2. Let M be a term s.t. (Ug;)| ¢ St(M) and for all term T s.t. M — 7, T, then (Ug;)| & St(T).
Let o = {\Y%) ).} a substitution. If Mo — 4, T with no rule (8) involved in the reduction path, then
there exists some term T such that M — ), T and T'c =xc T.

We now suppose that ¢; =, ¢, and we consider M and N two terms s.t. fv(M, N) € dom(g;) and
fn(M, N) N w; = @. (Since ¢; =, ¢, we have w; = w, and dom(¢,;) = dom(gp,).) We are going to
prove that (M =g N)y, iff (M =g N)p, by induction on the number of positions p in M and N s.t.
M|, = checksign(M;, M,, M3) and (M|,¢;){=¢ ok fori = 1 ori = 2. We also assume down-to-top
reduction strategies only (noted — ;).

Base case: There is no such position in M and N. Then, we can apply Claim 2 on Mg; and Nyg;.
Indeed, let o; = {Y9)*/.}. For P € {M, N}, then Pp, = (Pg;)o; —4, (P;) |. If there exists
a position p such that (Pg;)|, =ac (Ug;) | then, according to the hypothesis on ¢;, p must be a
position of P (and not at a leaf). This implies that P|,,, = a which would be a contradiction with
the fact that a is restricted. Thus, we have (Ug;) | ¢ St(Pg;). We also have Py; —, (Pg;)| and
s.t. fn(P) N w; = @. Using Claim 1, we deduce that (Ug;)] does not occur in any of the terms in the
reduction Pg; — 7, (Pg;){. Applying Claim 2 leads to (P@,;){=ac (P¢;)| oi. Then:

(Mo), =ac (Ng)| (Mp2)l =ac (No)| (91 =5 ¢2)
(M)l o1 =ac (Ne)){ o1 (Claim 2) M@2)] 00 =ac (N2 02
(M)l =ac (Nep) (Claim 1) (M@y)l =ac (Ngp)| . (Claim2)

Induction step: We suppose that there exists at least one position p in M or N s.t. M|, =
checksign(M, M>, M3) (or N|,) and (M|,9;){ = ok (resp. N|,) fori = 1 ori = 2. Let us consider
w.l.o.g. that this position is in M and that it reduces when @, is applied. (We note that if (M|,¢,)|{ = ok
too then we have (M[ok], =g M)y, fori € {1, 2} and we can conclude using the induction hypothesis
on M[ok], and N.) We consider the deepest position satisfying this in M. Thus, we know that M;, M,
and M3 do not contain such a position.

Since (M|,9,) |=E ok, then, according to E, we have that (M3¢,) |=ac sign((M;¢,){, Q) and
(Myp,)l=ac Vk(Q) for some term Q. According to the hypothesis on position p, we can apply the
same reasoning as used in the base case on M|, M, and M3 separately and therefore we can apply
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Claim 2 on them, which leads to (M;¢ )l =ac (M;p1)} o1 fori € {1, 2, 3}. We have then the following
equalities:

— (Mypi)=ac Ti and Tioy =ac (Mi@).

— (M)l =ac T» and Tr01 =4¢ VK(Q). According to definition of o, which does not contain a term
of this form, we must have 7, =,¢ vk(T3) and T)0, =4¢ Q.

— (M3p1)l=ac Ts and Tz01 =ac sign((M1¢,) |, Q). Using the two previous equalities, we have
T30 =ac sign(Tyoy, T,o,). Then, according to the definition of o}, we consider two subcases:

x T3 =4c sign(Ty, T, ) and then, we have:

(M|,01)d =g checksign((M1p){, (Mag1)d, (Map1)] )}
=g checksign(T1, vk(T5), sign(T1, T5))d

=f ok.

Thus, (M|, =g ok)g; and using ¢; ~; ¢,, we have (M|, =g ok)g, which also implies by
extension (M|, =g ok)p, and we conclude.

% T3 = x. Then, we have Tro1 =,¢ vk(a), i.e. T, =4¢ vk(a), which is (M¢){=4c vk(a). Thus,
we have (M, =g idpa)¢; and, using ¢; =, ¢, that leads us to (M, =g idp,)@,. Moreover,
(M) =ac Tior =ac U'p1)],i.e. Tt =ac (U'¢1)| according to the definition of o, which
implies (M1¢1){=ac (U'¢p1)]. Using ¢; = ¢, again, we have (M} =g U’)@,. Then:

(M|,@,){ =k checksign((Mi@,)!, (Ma@,)l, (x@,) )|
= checksign((U'g2){., (idpag2)d. (Ug2) )}

=pF Ok.

And we conclude.

We now prove that the two claims hold.

Proof of Claim 1 We prove this Claim by induction on the size of M. We suppose w.l.0.g. that M is in
normal form.

Base case: M = y is a variable (or a name). Since ¢; is in normal form, we have that for all T s.t.
Mye; —7, T then Mg; =4c T.If M is a name, result is straightforward. If M is a variable, then
(Ug;) € St(T) implies that (U ;)| € St(p;) which is a contradiction.

Induction Step: We assume that for any term M of size m s.t. fn(M) N w; = @ we have, for all
term T s.t. Mg, —5, T, (Ug;) ¢ St(T). We now consider a term M of size (m + 1), i.e. M =
f(My, ..., M,) with M; of size at most equal to m. Moreover, following a down-to-top reduction strategy,
we have Mo, = (Mg, ..., M,p;) —, {(T, ..., T,) with T; = (M;¢;)| . According to the induction
hypothesis, we now that for all term 7" s.t. M;¢; —, T, then (Ug;)| ¢ St(T). Let us consider now the
down-to-top reduction strategy My; —%, T ={T/,..., T,) —5 {(T1,..., T,). If (Ug;)e ST),
then we have two possibilities. Either (Ug;)| € St(T}) for some k € [1, n] and we have a contradiction
with the induction hypothesis; or f(7}, ..., T,) =ac (Ug;)| and f = sign, n = 2 and T, = a which
implies that a is deducible by ¢;, contradiction. Thus, (U¢;)J does not occur in any of the terms in the
reduction (M¢;){ —7, f(T1, ..., T,). We now consider the reduction of f(71, ..., T,):

— It is in normal form, then, we have two subcases:
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« f# sign. Then, since (Ug;)| ¢ St(T;) for j € [1, n] by the induction hypothesis, we conclude.
* f = sign. Using the induction hypothesis, if (Ug;) | € St(sign(T}, T3)), we must have
sign(T1, T5) =ac (Ug;)] and a would be deducible by ¢; which is a contradiction.

— f(Ty, ..., T,) is not in normal form. Then, we have f # sign since there are no rule in E s.t. sign is
in head. We have (T}, ..., T,) —>4; T and we consider two subcases:

x T € St(T, ..., T,), then T is in normal form and, using the induction hypothesis, we know that
(Ug;i)| ¢ St(T) and we conclude.

x T ¢ St(T1,...,T,), then, according to E, we have used rule (4), (5), (6) or (8), (9), (10). The
three last rules lead to 7 = ok which concludes straightforwardly and the three first rules lead to
T in normal form with the property that if (U ;)] € St(T), then (U ¢;)| € USt(T}), which would
be a contradiction.

Proof of Claim 2 Let us prove this by induction on the number of reduction steps in Mo —7, T.

Base case: If Mo =,¢ T, the result is straightforward. If Mo — 4, T in one step, then, there is a
position p, a substitution 6 and a rule I — r (different from (8)) s.t. (Mo)|, =ac 10 —>4; r6. Since
o is in normal form, p must be a position of M. In particular, if we consider M’ = M|[z],, we have:

Mo =ac (M[z2],0)[l0], =ac (M'0)[10], and Mo —>4 (M'0)[r6],.

We note 6 : (Ug;)|— x. Then, we have (Mc)8 =4¢ ((M'0)[10],)8. Hypothesis on M states that there
is no position g such that M|, =4¢ (Ug;){ . Therefore, there is no position ¢ such that M'|, =4¢ (Ug:)|
and the following equalities hold: (Mo)§ =ac M(08) =ac M and (M'6)8 =ac M'(08) =ac M'.
Moreover, we know that (/0) ¢ St((Ug;)|) otherwise (Ug;)| would not be in normal form. Thus,
M =4¢c M'[(10)6],. Since | — r is different from rule (8), we have (10)8 = [(05) = 16" — r&’, for
0’ = 06, and this implies M — 4, M'[r0'], following a down-to-top reduction strategy since if there
was a lower reduction in M it would also exists in Mo . Now, we can conclude since:

(M[r0],)o =ac (M'0)[(r0')7],
=ac (M'o)[r(0w)],
=ac (M'0)[rb],.

Induction Step: We suppose that, for any term M s.t. for all term 7T s.t. M —, T, then (Ug;)| ¢
St(T), we have: if Mo —'7 T in m steps involving no (8) rule, then M —1 T’ with T'0c =4¢ T.
We consider now M s.t. Mo —>;"t+1 T in (m + 1) steps with no rules (8) in the reduction path. Then
Mo —" M, — 4 T.Using the induction hypothesis, we have that M —'}, M| with Mjo =,c M,
thus M{o — 4 T.But M’ is verifying hypothesis of Claim 2, otherwise we would have a contradiction
with the fact that M is satisfying them. Then, using Base Case, we have M| — 4 T’ with T'o =»¢ T.
Thus, M —7 M| —>4 T'and T'0 =4¢ T, which allows us to conclude. [J

6. Static equivalence of the final frame

This section is devoted to the proof of Proposition 1, that states static equivalence of the final frame
obtained in the relation R. This proof relies on several lemmas. Some of them have been presented in
the previous section, other are stated here and proved in appendix.
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6.1. Definitions and useful lemmas

We first start by introducing some notations that will be useful for the following lemmas. Some of
these definitions may seem artificial but mainly come from the establishment of the relation R, which is
described in the Appendix Section F.

Definition 7. We introduce (or remind) the following definitions:

® = ay, ag, idy, idz, ty, to, idg,

Ot = {4 [ * ¥ s L= 1oonf [ {™® figp } | {P® /g k=1, 3},
90 — 9init | {PenC(Vk,rk,QO/ek’ Pfkl(idkvtk»Vk,ek)/pk’ Sign(<ek»Pk>vidk)/sik | k=1, 2}’

O = 641 | {Sign(hash(l'll(Mk)),idR)/srk’ d(P(idk),deC(Hz(Mk)’as))/r“k }’

05 = 0, | {20/ lk=1,...,n},

oo={/."%0}.  or={"u.%/u}

& = {0, " . i | k=1, n} | {Nk“/xz; lk=1,...,2},

& = (" k=1 if L™/ g Tk=1,..,minG, 20} | {% /g, ™ /i 1 k=1, j}.

where « is a substitution representing the intermediate outputs visible by an adversary controlling the
corrupted Ballot Box (full definition given in Section A), and My, Ny, Uy, W, are free terms satisfying
some conditions defined in Section F. They represent the inputs submitted by the adversary during the
different steps of the protocol.

The first lemma ensures that several secret datas (like encryption/decryption keys, voters’ secret IDs,
etc.) remain secret during the execution of the protocol.

Lemma9. Foric {1,2},je{1,2,3} and any free term U, if M is of one of the following forms: aj+ U,
tix U, id; or p(id), then v.0s ¥ M, i.e. M is not deducible from the frame v@®.6s.

We then prove that the different outputs of the (honest) Receipt Generator, that is, a signature and a
receipt for each submitted ballot, do not bring any relevant information to the adversary that could help
him to make a difference between two different executions of the protocol. This property is expressed
by the fact that we can add these terms to the frame without breaking the static equivalence.

Lemma 10. Fori € [0, n], we have: va~).0,~6i00|_ RS vcb.@,-&ioog.

Finally, we show that we can control the form of what is sent to the Decryption Device, assuming it is
approved by the Auditor.

Lemma 11. Let us consider M, ..., M, free terms s.t. Vi € [1, n], ¢r(idpit1, M,~+1)9,~6*i00|_ = ok with
fV(M;11) € dom(6;) U dom(6)) \ {x}. We suppose that Vi € [1,n], v@.0;,6 0 ~; v@.0,6 0. We also
consider Uy, ..., U, and Wy, ..., W, be free terms such that:
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— fv(Uy+1) € dom(8,) U {dom(0)} U {di, ..., di} and fv(Wy11) € dom(8,) U {dom(6¥)},
— ¢a(hash({(Uy, ..., U,)), hb}, e WD, W, L W)6,601 = ok, with the corresponding notation

hb'. = (idp;, hash(IT;(M,))).

Then, we have, for o € {o,0r}, V1 <i < n:

Ub,60 = 6,60, fori=1,2.

Moreover, there exist free terms U{, U} and free term U}, or U} = pk(ax + U) with free term U :

Ub,60 =g penC(U{, U,, Ué)@n?fo, fori € [3,n].

6.2. Proving Proposition 1

With all these lemmas, we can now prove the final static equivalence, which is stated in Proposition 1.

Proof. We introduce the notation éf =0, | {70/, | k € [1,i]} with decsiy1) = dec(dsit1y, a1)-
We show by induction that:

~ NS A ~ Al§ A
V.0 0oL X vw.0,°0og.

Base case. The base case is ensured by Lemma 10 which guarantees that v.6,6 01 ~; v®.9,6%0%

“, ~ AS A ~ ALS A
thus, by rewriting, we have VC().QSO'O'L R vw.@osaag.

Induction step. Suppose that vab.éf&q R vcb.é;‘sc%an for some i > 0. Let us show that:

~ A8 A ~ Als A
vw.0; 00 X5 va.0,] 00R.

We have that decs11y = dec(Us(+1), 1) in the frame éfH&. We distinguish cases according to the
value of §(i + 1):

— If8(i+1) = 1, then, using Lemma 11 (since we are considering the decryption step of the protocol,

¢4 must have been successful), we know that U;6,60 = e,60 for k € {1,2} and any o €
{oL, o). Thus, we have that res,-+1él.5+16o|_ =g dec(U,, a1)éf+160|_ = vy0L. But, we also have the
following equalities res; léirilc}cm =g dec(U,, a1)éi[il6aﬂ =g Vo0g. According to the definition
of o and ogr, we have vio. =g voor =g a. Then, using the induction hypothesis and Lemma 3
with the free term U = a and we conclude.

If 6(i +1) = 2, we adopt the same argument used in the previous case (replacing 1 by 2 and 2 by 1)
and conclude using the induction hypothesis and Lemma 3 with the free term U = b.

If8(i +1) = j € [3,n], then’8(i + 1) = 8(i + 1) and we have res;;; = dec(U,, a1). According
to Lemma 11, we have that Uj9n6a = penc(N, P, Q)6,60 for free terms N, P, Q and any
o € {o., or}. Thus, resi+1éf+]c}q =p dec(penc(N, P, Q), a1)8,60.. We consider two subcases:

* Q0,60 =g pk(ay). Then, res,+]éf+16oL =z NéfH&UL with free N. And, in that case, we also
have Q@ 00R =g pk(a1) (using the induction hypothesis and the fact that gy = pk(ay)) and
resl+19 +100R =g NO'® _HO’UR too. Thus, we conclude using Lemma 3.
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x 00,601 #g pk(ay). Then, there is no reduction of res;; (in both frames) and we have two
possibilities. If there exists j € [1,i] such that res;0?6o1 = res; 107,601, then we conclude
using Lemma 3. If there is not, then since a; is restricted and not deducible (Lemma 9), we have
that res; | is neither deducible itself, nor a subterm of éf&a._ and éit‘S&oR. Now since dec is a
destructor in E, we use Lemma 7 to conclude.

Finally, we have that vd).é,f&q R, vd).é;f&aﬂ, that is, changing the notations:

U&).Qgé’O’L a2 VC?).Qt(;a'O'R. ]

7. Further corruption cases using ProVerif

In order to study further corruption cases, we have used ProVerif, one of the only tools that can analyse
equivalence properties in the context of security protocols. Since ProVerif does not handle associative
and commutative (AC) symbols, we had to simplify the equational theory, yielding theory E’ defined
by the equations of Fig. 7. The main idea behind E’ is to remove associative and commutative symbols
from E. All equations besides the AC equations are left unchanged except Eqs (E-5) and (E-6). Equation
(E-5) states that two encryptions can be combined, This can no longer be reflected in our ProVerif model.
Equation (E-6) models re-encryption. To get rid of AC symbols, we instantiate it with the keys of the
protocol (a;, a» and a3), preserving the behavior of the protocol, yielding Eq. (E’-5). The fact that
we can consider a simplified equational theory weakens the attacker model: some attacks relying on
crafty combinations of the messages may be missed. But as shown by our study, this allows to analyse
(automatically) more corruption scenario.

Since ProVerif is designed to prove equivalences between processes that differ only by terms, we
also needed to use another tool, ProSwapper [28], to cope with the (non deterministic) shuffle done by
the Decryption service. More precisely, we actually used their algorithm to compute directly a slightly
modified process in our ProVerif specification.

fst(pair(x, y)) = x (E’-1)

snd(pair(x, y)) =y (E’-2)

dec(penc(x, r, pk(k)), k) = x (E’-3)
dec(blind(penc(x, r, pk(k)), b), k) = blind(x, b) (E’-4)
renc(penc(x, r, pk(ay)), as) = penc(x, r, pk(az)) (E’-5)
unblind(blind(x, b), b) = x (E’-6)

checksign(x, vk(id), sign(x, id)) = ok (E-7)
checkpfk, (vk(id), ball, pfk,(id, r, x, ball)) = ok (E’-8)

where ball = penc(x, r, a)
checkpfko (Vk(id), ball, bball, ptk, (vk(id), az, b, ball, bball)) = ok (E’-9)
where ball = penc(x, r, a;) and bball = blind(penc(x, r, as), b)

Fig. 7. Equational theory E’ used in ProVerif.
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Table 1
Results and performances for proving ballot secrecy using ProVerif
Corrupted Voters | 0 1 2 3 4 5
Honest Players ~Is(v)) ~6s(v)) ~40s(v)) ~l6m(v)) ~32h (V) >48h (?)
Corrupted B ~3s(vV) ~28s(v) ~2m(v) ~ldm(v) ~2h (V) >48h (?)
Corrupted R ~2s (V) ~17s(v) ~2m(v) ~I2m(v) ~95m(v)) ~19%h (V)

Corrupted A <lIs(vV)) ~4sv) ~16s(v) ~Im() ~5Sm (V) ~37m (V)
Com.R&Corr. A | <Is(v) ~4s(v) ~17s(v) ~Im(v) ~6m(v) ~36m(v)

The results' are displayed in Table 1 and the ProVerif files corresponding to our experimentation can
be found at [35]. Our case study with ProVerif indicates that ballot secrecy is still preserved even when
the Receipt generator is corrupted (as well as several voters), at least in the simplified theory E’.

8. Conclusion

We have proposed the first formal proof in a symbolic model that the e-voting protocol used in Norway
indeed satisfies ballot secrecy, even when all but two voters are corrupted and even when the voters
communications channels can be eavesdropped and when the Auditor and either the Ballot box or the
Receipt generator are corrupted. As expected, ballot secrecy is no longer guaranteed if both the Ballot
box and the Receipt generator are corrupted. Slightly more surprisingly, the protocol is not secure either
if the Decryption service is corrupted or if the Ballot box and the Auditor are corrupted, as discussed in
Section 4.3. Our results in Table 2. In this table, v" indicates that ballot secrecy is satisfied and x shows
that there is an attack. In particular, all the attacks described in Section 4.3 are displayed in the table.

Instead of doing additional (long and technical) proofs, a further step consists in developing a proce-
dure for automatically checking for equivalences. Of course, this is a difficult problem. A first decision
procedure has been proposed in [16] but is limited to subterm convergent theories. An implementation
has recently been proposed [15] but it does not support such a complex equational theory. An alternative
step would be to develop a sound procedure that over-approximate the relation, losing completeness in
the spirit of ProVerif [10] but tailored to privacy properties.

It is also important to note that the security of the protocol strongly relies on the way initial secrets
are pre-distributed. For example, three private decryption keys a;, a,, az (such that a; 4+ a; = a3) need
to be securely distributed among (respectively) the Ballot box, the Receipt generator and the Decryption
service. Also, atable (V, sy) containing the blinding factor for each voter needs to be securely distributed
to Ballot box and a table (V, dy) containing a permutation for each voter needs to be securely distributed
to the Receipt generator. Moreover, anyone with access with both the codes mailed to the voters and to
the SMS emitted by the Receipt generator would immediately learn the values of all the votes. We did
not find in the documentation how and by who all these secret values were distributed. It should certainly
be clarified as it could be a weak point of the system.

It also remains to study other security properties such as receipt-freeness, coercion-resistance, and
verifiability. Receipt-freeness seems to strongly rely on whether the voter may forge a fake table of
receipts or fake the message received from the receipt generator. One important feature of the Norwegian

ITests made on a MacBook Pro (OSX El Capitan 10.11.6) i5 2,3 GHz with 4Go RAM, using the ProVerif 1.94p11 version.
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Table 2
Results for ballot secrecy
Corrupted Voters H 0 | 5 | n |
Honest Players v" (Theorem 2)
Corrupted B v (Theorem 1)
Corrupted R v' (ProVerif) ?
Corrupted A v' (ProVerif) ?
Corr. D + X (Section 4.3)
Corr. B & Corr. R x  (Section 4.3)
Corr. B & Corr. A X (Section 4.3)
Corr. R & Corr. A v' (ProVerif) ?

Note: » stands for any other corrupted players (B, R, A) or none.

protocol is to ensure verifiability even when the voter’s computer is not trusted. Our formal model could
serve as a basis, splitting further the voter’s behavior from its computer.

Supplementary data

Appendix is available at: http://dx.doi.org/10.3233/JCS-15777.
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