
Formal Analysis of the FIDO 1.x Protocol

Olivier Pereira, Florentin Rochet, Cyrille Wiedling

UCL Crypto Group, Belgium

Abstract. This paper presents a formal analysis of FIDO, a protocol de-
veloped by the FIDO Alliance project, and which aims to provide either a
passwordless experience or an extra security layer for user authentication
over the Internet. We model the protocol using the applied pi-calculus
and run our analysis using ProVerif. Our analysis shows that ignoring
some optional steps of the standard could lead to the implementation
of a flawed authentication process. On the contrary, we prove that these
steps are sufficient to ensure the expected security properties.

1 Introduction

Authentication is a process arguably insecure under many forms. The most com-
mon one, password, has been criticized for years and many works have tried to
propose a workable replacement [BHVOS12]. It is now widely accepted that
relying on passwords only is insecure for sensitive applications.

The FIDO alliance [All] aims at establishing a standard for passwordless
experience and second factor authentication. FIDO has received support from
many companies around the world and has been integrated by various services
such as banks (e.g. Bank of America), e-mails (e.g. Gmail), social networks (e.g.
Facebook), etc. As those lines are written, the FIDO alliance claims to have
brought FIDO capabilities to more than 3 billions of user accounts worldwide.

The protocol is modular and allows companies to build components in an
inter-operable way. Their goal is to avoid the use of a server-side shared secret,
by leveraging cryptographic capabilities of an hardware token that the user must
own in order to obtain a successful authentication. The protocol works in a two-
phases scenario. In the first phase, the user must register his token on the desired
service. The registration process corresponds to the creation of a private/public
key pair for which the public key is transmitted to the services and all the private
keys are held in the hardware device. This first phase is performed for each of
the services that the user wants to access to, but it must be performed once.
The second phase is the authentication itself: it essentially consists in signing
random challenges generated by the service, after approval by the user.

In this paper, we propose a formal analysis of the authentication method-
ology provided by the specifications of the U2F standard, the “second factor
experience”, in which a FIDO token is used as a complement to a password on
web services. These specifications provide the description of the protocol and
some optional features. We focused our analysis on one of these features and,
using the tool ProVerif [Bla01], we prove that without it, there exists an attack

2 Formal Analysis of the FIDO 1.x Protocol

Fig. 1. Simplified Registration Step. S: Server, C: Client, T: Token, U: User

where a web-server could impersonate a user to a third party service, under the
assumption of the use of weak passwords, which is precisely the issue that the
FIDO U2F protocol is expected to solve. We also provide a local test-bed attack
scenario to illustrate our finding. On the positive side, we prove that, if this
feature is properly implemented, then the expected security properties hold.

Roadmap. Sections 2 and 3 present the U2F protocol and the applied pi-
calculus used for our analysis. In Section 4, we define a model of the protocol
and a definition of the authentication property. In Section 5, we present and
analyze our results. Section 6 gives the related work.

2 The FIDO Protocol

The FIDO protocol aims to authenticate a user to a server, using a token (e.g.
smartcard, USB token, etc.), in such a way that is not possible to impersonate
a user without being in possession of his token, even if the username and the
password of that user have been compromised. The protocol runs between a user,
a Token, a FIDO Client embedded in the user’s web browser, and a server, after
the establishment of a secure TLS between the last two entities. As described
above, it is composed of two main phases: the registration and the authentication.

2.1 Registration Phase

The registration step is used to link a token to the account of a user. Figure 1
offers a high-level view of its behavior. (A full version can be found at [All].) The
first thing that happens when the FIDO Client is installed on a computer is the
generation of a random ASMTok, which is used to provide a link between the key
handle that will be created on the Token and the Client. The Token possesses

Formal Analysis of the FIDO 1.x Protocol 3

Fig. 2. Simplified Authentication Step.

different items: its unique identifier, aaid, a counter cntr, which is incremented
each time it performs a signature for an authentication; and a certificate cert,
which is delivered by the manufacturer of the Token, corresponding to the master
key, which is used to sign the generated key pairs.

The registration then proceeds as follows: for a given User, identified by a
username, userN, the Server generates a challenge and sends it to the Client,
along with the username, and the appID identifying the server (e.g. its url). Then,
the Client computes two values, Tok and fc, the first one links the appID to the
secret token ASMTok, the second one links the appID to the challenge. Those
two values are given to the Token. The latter waits for the User the permission
to perform the registration step (e.g. the Client displays a message asking for
the User to push a button on the Token). Once the User approves, the Token
generates a key pair and stores the private key, with Tok, in a handle h. Using its
identifier aaid and a counter cntr, it creates a message and signs it before sending
it back to the Client, with the identifier of the handle h and the certificate cert.
The Client forwards everything to the Server, which checks the certificate and
the signature before adding the public key to the User’s information.

2.2 Authentication Phase

The authentication step (see Fig. 2) is quite similar to the registration one.
Once the User has provided his username and password, if the Server has a
Token registered to that account, it will generate a challenge and send it to the
Client, along with the handle h it got from the registration step. As during the
registration step, the Client will create Tok and fc, and send it to the Token
before asking to the User to approve the authentication (e.g. by pushing the

4 Formal Analysis of the FIDO 1.x Protocol

Token’s button). Then, the Token checks if it possesses an entry h and whether
its content match the Tok given by the Client. If it is, then the Token generates
a nonce n, increments its counter cntr and uses the secret key stored in the entry
h to sign a message. This message is passed to the Client, along with n, fc and
cntr, which transmits them to the Server. Using the public key it has registered
with the account, the Server will check whether the signature is correct or not,
and provide access in the former case.

3 Applied Pi-Calculus

This section briefly presents the notations of the applied pi-calculus, a process
algebra introduced by M. Abadi et C. Fournet [AF01], often used to model
protocols and security properties.

3.1 Terms

Messages are represented by terms built upon an infinite set of names N (for
communication channels or atomic data), a set of variables X and a signature Σ
consisting of a finite set of function symbols (to represent cryptographic prim-
itives). A function symbol f is assumed to be given with its arity ar(f). Then,
the set of terms T (Σ,X ,N) is formally defined by the following grammar:

t, t1, t2, . . . ::=
x x ∈ X
n n ∈ N
f(t1, . . . , tn) f ∈ Σ, n = ar(f)

In order to represent the properties of the primitives, the signature Σ is equipped
with an equational theory E that is a set of equations which hold on terms built
from the signature. We denote by =E the smallest equivalence relation induced
by E, closed under application of function symbols, substitutions of terms for
variables and bijective renaming of names. We write M =E N when the equation
M = N holds in the theory E.

3.2 Processes

Processes and extended processes are defined in Figure 3. The process 0 repre-
sents the null process that does nothing. P | Q denotes the parallel composition
of P with Q while !P denotes the unbounded replication of P (i.e. the unbounded
parallel composition of P with itself). νn.P creates a fresh name n and then be-
haves like P . The process if φ then P else Q behaves like P if φ holds and like
Q otherwise. u(x).P inputs some message in the variable x on channel u and
then behaves like P while u〈M〉.P outputs M on channel u and then behaves
like P . We write νũ for the (possibly empty) series of pairwise-distinct binders
νu1.νun. The active substitution {M/x} can replace the variable x for the
term M in every process it comes into contact with and this behavior can be
controlled by restriction, in particular, the process νx

(
{M/x} | P

)
corresponds

exactly to let x = M in P .

Formal Analysis of the FIDO 1.x Protocol 5

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Fig. 3. Syntax for processes

As in [CS13], we slightly extend the applied pi-calculus by letting conditional
branches now depend on formulae defined by the following grammar:

φ, ψ ::= M = N |M 6= N | φ ∧ ψ

If M and N are ground, we define JM = NK to be true if M =E N and false
otherwise. The semantics of J K is then extended to formulae as expected.

The scope of names and variables is delimited by binders u(x) and νu.
Sets of bound names, bound variables, free names and free variables are re-
spectively written bn(A), bv(A), fn(A) and fv(A). Occasionally, we write fn(M)
(resp. fv(M)) for the set of names (resp. variables) which appear in term M . An
extended process is closed if all its variables are either bound or defined by an
active substitution. A context C[] is an extended process with a hole instead
of an extended process. We obtain C[A] as the result of filling C[]’s hole with
the extended process A. An evaluation context is a context whose hole is not in
the scope of a replication, a conditional, an input or an output. A context C[]
closes A when C[A] is closed. A frame is an extended process built up from the
null process 0 and active substitutions composed by parallel composition and
restriction. The domain of a frame ϕ, denoted dom(ϕ) is the set of variables for
which ϕ contains an active substitution {M/x} such that x is not under restric-
tion. Every extended process A can be mapped to a frame ϕ(A) by replacing
every plain process in A with 0.

3.3 Operational Semantics

The operational semantics of processes in the applied pi-calculus is defined by
three relations: structural equivalence (≡), internal reduction (→) and labelled

reduction (
α→).

6 Formal Analysis of the FIDO 1.x Protocol

Par− 0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P
New− 0 νn.0 ≡ 0
New-C νu.νw.A ≡ νw.νu.A
New-Par A | νu.B ≡ νu.(A | B) if u 6∈ fv(A) ∪ fn(A)
Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} if M =E N

Fig. 4. Structural equivalence.

Structural equivalence is defined in Figure 4. It is closed by α-conversion of
both bound names and bound variables, and closed under application of eval-
uation contexts. Structural equivalence corresponds to some structural rewrit-
ing that does not change the semantics of a process. The internal reductions
and labelled reductions are defined in Figure 5. They are closed under structural
equivalence and application of evaluation contexts. Internal reductions represent
evaluation of condition and internal communication between processes. Labelled
reductions represent communications with the environment.

4 Modeling FIDO

In this section, we present our model, in applied pi-calculus, of the FIDO pro-
tocol, and the definition of the authentication property it is aimed to achieve.

4.1 Settings

We focus our analysis on the FIDO protocol itself, and as such, our model
starts after the establishment of the TLS channel between the Client and the
Server. Thus, we consider a secure channel between these two. Although this
channel may be out of reach from an attacker in a fully honest setting, we will
consider different corruption scenarios that will grant the attacker access to it
and therefore will not limit our analysis.

We consider the following entities:

– User: represents the person that is willing to connect to the Server through
the Client, using the Token.

– Token: represents the device that stores and uses the different keys used for
authentication to the Server.

– Client: represents the embedded Client in the browser of the User, used to
established the connection to the Server.

– Server: represents the service the User wants to connect to, using the Client.

Let us define notations for the communication channels (see Figure 6):

Formal Analysis of the FIDO 1.x Protocol 7

(Comm) c〈M〉.P | c(x).Q −→ P | Q{M/x}

(Then) if φ then P else Q→ P if JφK = true

(Else) if φ then P else Q→ Q otherwise

(In) c(x).P
c(M)−−−→ P{M/x}

(Out-Atom) c〈u〉.P c〈u〉−−−→ P

(Open-Atom)
A

c〈u〉−−−→ A′ u 6= c

νu.A
νu.c〈u〉−−−−−→ A′

(Scope)
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

(Par)
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

(Struct)
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

where α is a label of the form c(M), c〈u〉, or νu.c〈u〉
such that u is either a channel name or a variable of base type.

Fig. 5. Semantics for processes

– cI is a secure channel between the Client and the Server. It models the TLS-
secured channel between the two entities.

– cT is the secure channel between the Client and the Token. Basically, it
models the USB (or NFC/Bluetooth) connection.

– cE is the channel between the Client and the User, i.e. the screen of the
computer where the Client may display information to the User.

– cF is the channel between the User and the Token. It is just modeling the
possibility, for the User, to push the Token’s button to allow authentication.

4.2 Threat Model

In our model, like in numerous formal analyses, we consider an attacker who
has control over the network. Therefore, he is able to intercept, forge, send mes-
sages. Restrictions are based on the nature of channels. An attacker can listen
to, but not send messages over authenticated channels. Public channels are, by
definition public, and everyone can listen to or send messages over them.

During this analysis, we consider two main scenarios:

– Everyone is honest. It is a classical scenario where the attacker only has
access to the network (and non-secure channels).

8 Formal Analysis of the FIDO 1.x Protocol

Fig. 6. Channels between the different players of the FIDO protocol.

– Either the Server or the Client is dishonest.

Note that we cannot corrupt both the Client and the Server at the same time,
otherwise it would be impossible to guarantee anything. We also do not consider
cases where the User may be corrupted, because the User is just an entity trying
to connect to a service – which is meaningless to corrupt. The Token stores keys
and an attacker may want to try to break it, but if such a Token is corrupted
we can not guarantee any security on the second level authentication since the
attacker would have access to the keys used for authentication.

4.3 Authentication Property

The FIDO protocol aims to provide authentication to the user. Once registered
and linked to an account, the token is designed to be necessary in order to
perform an authentication on the server. The user should provide login and
password, as usual, but the server will also require a signature coming from the
token, which is given if the user pushes a button on the token itself. In our study,
we explore this authentication property, in order to see if there is any possibility
for an attacker to impersonate a user on a server.

Definition 1. Let us consider different predicates:

– LoggedIn(appID , username, pk) is issued by the server, identified by appID,
when he has accepted (by finishing the protocol) a connection with the user,
identified by username, and referenced under the public key pk.

– ExpConnection(appID , username, s) is issued by the user, secretly identified
by s, asserting that he expects a connection to appID, with his username.

– PushButton(s) is issued by the user when he pushes the button on the token.
– TokenSign(sk) is issued by the token when it signs using the secret key sk.

Using these predicates, we define the authentication property:

∀ appID , username, pk,
LoggedIn(appID , username, pk) =⇒ ∃ s, sk

TokenSign(sk) ∧ (pk = pk(sk)) ∧
PushButton(s) ∧
ExpConnection(appID , username, s)

Formal Analysis of the FIDO 1.x Protocol 9

This property reflects that each time a server accepts a connection, then a
user first expected to initiate a connection to this server and pushed on the
button of the token, which generated the expected signature.

4.4 Modeling the Protocol

Since we are focusing on the authentication property, we model the authentica-
tion part of the protocol, assuming that all the needed registrations have been
already performed, with no interference of an attacker.

Server After a registration, the Server knows, for each username registered:
the public key pk, the handle h pointing to the corresponding secret key inside
the Token, and the status of the counter scntr. During the authentication phase,
when the User has provided his username and password, the Server will generate
a new challenge ns and send its AppID, h and n to the Client. Then, it will wait
for a signature s before checking it. He also checks whether the counter sent
by the token is larger than the one stored. If the verifications succeed, then the
Servers accepts the login.

S(appID , username, pk, h, cntr) =
νns;
cI〈(appID , ns, h)〉;
cI((x));
let (x1, x2, x3, x4) = x in
if checksign((x1, x2, x3), x4, pk) = ok ∧ (x3 > cntr) then
LoggedIn(appID , username, pk)

Client The Client waits for the inputs of the Server, then verifies that the appID
matches the one it is expecting (ac). If the condition statement succeeds, then
the Client computes hashes that will be passed to the Token for the signature,
using its secret value tc. The Client then prompts a message to the User, asking
for a confirmation to the Token, and waits for a response from the latter, before
passing the signature to the Server. We also consider another Client model (Cc)
where the IF-condition is missing, since this step is optional in the specification
(see [All16b, Section 5.2.1] and our discussion in Section 5.2).

C(ac, tc) = Cc(tc) =
cI((x)); cI((x));
let (x1, x2, x3) = x in let (x1, x2, x3) = x in
if (x1 = ac) then let KToken = hash((x1, tc)) in
cE〈go?〉; let fc = hash((x1, x2)) in
let KToken = hash((x1, tc)) in cE〈go?〉;
let fc = hash((x1, x2)) in cT 〈(x3,KToken, fc)〉;
cT 〈(x3,KToken, fc)〉; cT (y);
cT (y); cI〈y〉;
cI〈y〉;

10 Formal Analysis of the FIDO 1.x Protocol

User The User does not do much except for sending a go-message to the Token.
We introduce a secret sh, which captures the assumption than the button can
only be pressed by the User: no one can push the button on the Token, except
the User. During authentication, the User waits for the Client’s prompt, and
then, pushes the button of the Token to allow the authentication.

U(ExpAppID , username, sh) =
ExpConnection(appID , username, sh);
cE((x));
cF 〈(go!)〉;
PushButton(sh)

Token During the registration step, the Token stored, under a handle h, the
secret key sk, and a token KToken generated by the Client. The Token itself
is identified by an aaid and updates a counter, cntr, which is used to avoid
replay attacks. During the authentication step, the Token waits for inputs from
the Client and the confirmation of the User (e.g. by pushing a button). It also
checks whether the handle and the token are valid and provides a signature using
the corresponding secret key if everything is in order.

T (aaid , cntr , h,KToken, sk) =
cT ((x));
let (x1, x2, x3) = x in
cF ((x));
if (x1, x2) = (h,KToken) then
νnt;
let st = sign((x3, nt, cntr), sk) in
TokenSign(sk);
cT 〈(x3, nt, cntr , st)〉

FIDO Protocol The authentication part can now be modeled by placing all
processes in parallel, which is writen as follows:

Pa = νñ, ac.! [S(as, pu, pku, h, c) | C(ac, sc) | T (at, c, h, tok, ku) | U(au, pu, su) | Γ] .

where ñ = au, ku, su, pu, as, h, c, sc, at, pku, tok and ac are bound names which
represent the different items created during the registration phase that are used
as arguments for our processes, and Γ = {pk(ku)/pku ,hash((as,sc)) /tok} is a frame
describing the content of tok and pku. In this context, ac and as should have the
same value.

We also model the case where the Client model does not verify the appID :

Pc = νñ.! [S(as, pu, pku, h, c) | Cc(sc) | T (at, c, h, tok, ku) | U(au, pu, su) | Γ] .

Formal Analysis of the FIDO 1.x Protocol 11

5 ProVerif Results

In this section, we present our results, obtained using the ProVerif tool, studying
the authentication property of the FIDO protocol in various scenarios.

5.1 Client Model with AppID Verification

To analyze the FIDO protocol with respect to the authentication property, we
choose to use the ProVerif tool, developed by B. Blanchet [Bla01], which is an
automated verifier that can achieve to prove injection properties (and more), for
protocols. It has been used for various examples (like [KR05],[KT08]) and also
has some limitations (e.g. [CW12]), especially when protocols get too compli-
cated (e.g., involving several cryptographic primitives), but the FIDO protocol
only involves signatures and hashes, and remains within ProVerif’s scope. Our
ProVerif files can be found at [WRP].

Results Our results, obtained using ProVerif, are compiled in Table 1. We
show that even if we corrupt the Server, or the Client (but never both of them),
there is no possible attack. The server-in-the-middle case is more interesting: we
suppose that a user registered to two different servers and does not know that
one of them is corrupted. We also consider that one of them is corrupted and
knows the login and password of the user for the honest one. (e.g., it could be
possible that the user uses the same couple login/password for the two servers.)

5.2 Client Model without AppID Verification

In the model above, we check if the appID provided by the server matches the
origin of the request. The appID verification is correctly implemented in the
Chrome FIDO Client but nothing prevents an other implementation to miss
this important step. Indeed, this is an ambiguous step in the FIDO specifica-
tions, where nothing is requested in the UAF protocol description. In particular,
we found the following recommendation:“The FIDO client should perform the
following steps: - Verify the application identity of the caller.”[All16b]

It is clearly stated as a recommendation but, for reasons that we will detail
later, we believe that this should be an assertion (MUST). The optional character
of this recommendation is indirectly confirmed in other official documents. For
instance, the overview [All] reads: “Say a user has correctly registered a U2F
device with an origin and later, a MITM on a different origin tries to intermediate
the authentication. In this case, the user’s U2F device won’t even respond, since
the MITM’s (different) origin name will not match the Key Handle that the
MITM is relaying from the actual origin.”

The above statement ignores a possible appID verification since if the device
does not respond, then, it must have seen the request despite the different origin.
Therefore, the verification is missing, otherwise the data would not have been
sent to the device. Moreover, since the token is never given the actual origin of
a request, it cannot perform such a verification.

12 Formal Analysis of the FIDO 1.x Protocol

Table 1. ProVerif results on our authentication property.

Corrupted Without AppID With AppID
Players Verification Verification

None X X
Server X X
Client X X

Server + Client Ö Ö

None + Server ITM Ö X

Results As we see in Table 1, ProVerif outputs that the authentication property
does not hold anymore. In practice, it corresponds to the following attack: when
the User authenticates on Server A (Server ITM), the Server initiates an authen-
tication towards Server B and forwards the challenge to the victim. Without the
appID verification, the User provides a valid Server B authentication credential
that Server A can use to impersonate the User on Server B.

In practice, even if the cryptographic primitives are correctly implemented,
forgetting to verify the appID is enough to impersonate a User in a plausible
attack scenario. Moreover, if FIDO is used as a second factor authentication, the
Server ITM might already have access to the User password and login through
its own database, since the victim might use the same password across multiple
services, which is a scenario against which the Token should offer a protection.

As a result, we believe that our attack scenario violates at least the following
security goal stated in the specification [All16a]:

– SG-3 (credential disclosure resilience), in the sense that a loss of creden-
tials is sufficient to run the man-in-the-middle attack described above and
successfully bypass the two levels of authentication.

Corresponding Attack on the Real Token We confirm the ProVerif’s re-
sults in practice by providing a working java web server implementation [Roca]
that can run either as a honest server or as a corrupted server. We tested our
attack with Chrome 40 [Goo] packaged for Debian and with our modified FIDO
Client [Rocb]. We had to modify the FIDO Client provided by Google to re-
move the appID verification that was hopefully correctly integrated. A tutorial
is provided in Appendix A to reproduce the attack.

Lesson learned FIDO is secure if we assume both that the implementer under-
stood the importance of the appID verification despite its optional character in
the specification. Moreover, we have also to assume that there is no possibility
to fool the origin verification in the browser. We recommend the specification
to enforce the appID verification: among other changes, the appID verification
must not be written as a recommendation (using a should) but instead as an
assertion (using a must). Also, these results suggest that current FIDO existing
Clients should be audited to check if the appID verification exists and does not
suffer from any weakness. Very few such clients are freely available, though.

Formal Analysis of the FIDO 1.x Protocol 13

6 Related Work

In 1996, Lowe [Low96] raised the interest in analysing authentication protocol
when he presented a MITM attack against Needham and Schroeder public key
protocol [NS78]. Later, the progress in web technologies drove a consortium of
internet companies to unite and design a user-friendly standard identity man-
agement and an authentication protocol. This initiative was called the Liberty
Alliance Project. A research group, led by Pfitzmann, laid the basis for for-
mal analysis of such web-based identity management protocol [GPS05,PW03].
They did not designed automated formal analysis tools but they discussed for-
mal descriptions of those protocols. Eventually, the Liberty Alliance produced
SAML 2.0, an open-standard data format to exchange information between par-
ties. These specifications lead to SSO protocols (Single-Sign-On) used for cross-
authentication. The SSO protocol implemented by Google got broken with au-
tomated formal analysis [ACC+08], where researcher found how to impersonate
a user when acting as a dishonest service, at another service provider. For years
now, browsers have gained cryptographic capabilities and many authentication
protocols appeared and gained in complexity. The need for mechanical analy-
sis got more evident, since modelling the protocol became the time-consuming
task and proofs were provided by the tool. In this line of work, Bortolozzo et
al.[BCFS10] designed a tool to audit PKCS#11 tokens and found weaknesses on
many of them. Some other tools have been designed to automate the process of
proving security properties, such as the one we use in this paper: ProVerif [Bla01]
but also APTE [Che14] and aKiss [CCK12]. Other hardware tokens, such as
Yubikeys doing one-time passwords, have been analysed with other automated
tools [KS12,KK16]. They are mostly chosen depending on the property we want
to prove. Some are easier to use in some circumstances.

Finally, Lang et al. [LCB+16] present the FIDO protocol, the implementa-
tion details and the lesson learned from two years deployement of FIDO in the
Chrome browser and in Google’s online services.

7 Conclusion

We modeled the authentication phase of the FIDO protocol in Applied Pi Cal-
culus. We considered two different client models, based on the execution or not
of a verification step by the client, step that is left optional in the specification.

Our ProVerif analysis shows that, when the verification is performed, the
expected authentication properties are satisfied. However, when it is ignored, a
man-in-the-middle attack becomes possible, assuming compromised (or reused)
credentials, which definitely falls within the scope of the attacks that the use of
a FIDO token is expected to prevent.

As a result, we recommend making this verification step mandatory, and
that the authors of the 49 certified client implementations listed on the FIDO
Alliance website check whether this step is actually performed.

14 Formal Analysis of the FIDO 1.x Protocol

Acknowledgement

We would like to thanks the anonymous reviewers for their valuable feedback.
This work was partially supported by the Innoviris C-Cure project and the
Region Wallonne TrueDev project.

References

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar,
and Llanos Tobarra. Formal analysis of saml 2.0 web browser single sign-
on: breaking the saml-based single sign-on for google apps. In Proceedings
of the 6th ACM workshop on Formal methods in security engineering, pages
1–10. ACM, 2008.

[AF01] Martin Abadi and Cédric Fournet. Mobile Values, New names, and Secure
Communication. In 28th ACM Symposium on Principles of Programming
Languages (POPL), 2001.

[All] FIDO Alliance. FIDO Documentation.
https://fidoalliance.org/specifications/download/.

[All16a] FIDO Alliance. Fido security reference. https://fidoalliance.

org/specs/fido-u2f-v1.1-id-20160915/fido-security-ref-v1.

1-id-20160915.html, 9 2016.

[All16b] FIDO Alliance. FIDO U2F JavaScript API. https://fidoalliance.org/
specs/fido-u2f-v1.1-id-20160915/fido-u2f-javascript-api-v1.

1-id-20160915.html, 9 2016.

[BCFS10] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham
Steel. Attacking and Fixing PKCS#11 Security Tokens. In ACM Con-
ference on Computer and Communications Security (CCS), 2010.

[BHVOS12] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Sta-
jano. The quest to replace passwords: A framework for comparative eval-
uation of web authentication schemes. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 553–567. IEEE, 2012.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In 14th IEEE Computer Security Foundations Workshop
(CSFW), 2001.

[CCK12] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification
of equivalence properties of cryptographic protocols. In Proceedings of
the 21st European Conference on Programming Languages and Systems,
ESOP’12, pages 108–127. Springer-Verlag, 2012.

[Che14] Vincent Cheval. APTE: An Algorithm for Proving Trace Equivalence. In
20th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), 2014.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An anal-
ysis of ballot secrecy. Journal of Computer Security, 2013.

[CW12] V. Cortier and C. Wiedling. A formal analysis of the Norwegian E-voting
protocol. In First International Conference on Principles of Security and
Trust (POST), 2012.

[Goo] Google. Chrome browser download. http://google-chrome.en.

uptodown.com/ubuntu/old. Accessed: 2016-01-13.

Formal Analysis of the FIDO 1.x Protocol 15

[GPS05] Thomas Groß, Birgit Pfitzmann, and Ahmad-Reza Sadeghi. Browser
model for security analysis of browser-based protocols. In ESORICS, vol-
ume 3679, pages 489–508. Springer, 2005.

[KK16] Steve Kremer and Robert Künnemann. Automated analysis of security
protocols with global state. Journal of Computer Security, 24(5):583–616,
2016.

[KR05] Steve Kremer and Mark Ryan. Analysis of an Electronic Voting Protocol
in the Applied Pi Calculus. In 14th European Symposium on Programming
(ESOP), 2005.

[KS12] Robert Künnemann and Graham Steel. Yubisecure? formal security anal-
ysis results for the yubikey and yubihsm. In International Workshop on
Security and Trust Management, pages 257–272. Springer, 2012.

[KT08] Ralf Küsters and Tomasz Truderung. Reducing Protocol Analysis with
XOR to the XOR-free Case in the Horn Theory Based Approach. CoRR,
2008.

[LCB+16] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath
Srinivas. Security keys: Practical cryptographic second factors for the mod-
ern web. In International Conference on Financial Cryptography and Data
Security, pages 422–440. Springer, 2016.

[Low96] Gavin Lowe. Breaking and fixing the needham-schroeder public-key pro-
tocol using fdr. In International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, pages 147–166. Springer, 1996.

[NS78] Roger M Needham and Michael D Schroeder. Using encryption for au-
thentication in large networks of computers. Communications of the ACM,
21(12):993–999, 1978.

[PW03] Birgit Pfitzmann and Michael Waidner. Federated identity-management
protocols. In Security Protocols Workshop, volume 3364, pages 153–174.
Springer, 2003.

[Roca] Florentin Rochet. Fido compliant library and java web application ex-
ample. https://github.com/frochet/java-u2flib-server. Accessed:
2016-01-13.

[Rocb] Florentin Rochet. Modified fido client as a chrome extension. https:

//github.com/frochet/u2f-ref-code. Accessed: 2016-01-13.
[WRP] Cyrille Wiedling, Florentin Rochet, and Olivier Pereira. Proverif imple-

mentation of the fido protocol. https://git-crypto.elen.ucl.ac.be/

frochet/fido_proverif.

A Attack on a real FIDO authentication

We detail the steps to test the attack from Section 5.2 in a local test-bed.

– Clone repositories [Roca], [Rocb] and download chrome [Goo]
– From chrome tab extensions, activate the developer mode and load the un-

packed u2f-chrome-extension.
– Inside java-u2flib-server, do mvn clean install then cd inside u2f-server-demo

and configure two .yml files, one for the compromised server and one for the
honest server. Use the available model, you just need to provide a different
port number.

16 Formal Analysis of the FIDO 1.x Protocol

– Run:
• java -jar target/u2flib-server-demo.jar server [your consigDishonest file.yml]

localhost [port honest server] https://localhost:[port dishonest server] &
• java -jar target/u2flib-server-demo.jar server [your consigHonest file.yml]

https://localhost:[port honest server] &
– Use chrome and your FIDO-compliant authenticator to register in both ser-

vices then try to authenticate.

