Rare Event Simulation with Importance Splitting for Statistical Model Checking

Cyrille Jegourel

Inria Rennes - Bretagne Atlantique

Vienna, 2013

C. Jegourel Rave Event Simulation with Importance Splitting for Statistical Mo

御下 (日下)(日

Input:

- A stochastic model S,
- An event or a property φ expressed in some logic (here, BLTL).

Requirements: Execute the system from (any) state and monitor finite traces.

Goal: Provide by simulation an estimator $\hat{\gamma}_N$ of $\gamma = P(S \models \varphi)$ within acceptable confidence bounds.

◆ @ ▶ ◆ ⊇ ▶ ◆ ⊇ ♪

Properties specified with time bounded temporal logic:

- $\phi = \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \mathbf{X}\phi \mid \mathbf{F}^{\mathsf{t}}\phi \mid \mathbf{G}^{\mathsf{t}}\phi \mid \phi \mathbf{U}^{\mathsf{t}}\phi$
 - X is the next operator,
 - Ft is the bounded eventually operator,
 - G^t, is the bounded globally operator
 - Ut is the bounded until operator.

◆ @ ▶ ◆ ⊇ ▶ ◆ ⊇ ♪

Monte Carlo Model Checking

- Standard Statistical technique for SMC: Monte Carlo.
- The behavior of the system with respect to the property can be modeled by a Bernoulli random variable Z.

< 回 > < 回 > < 回

Monte Carlo estimation

$$\boldsymbol{A} = \{ \boldsymbol{\omega} \in \boldsymbol{\Omega} : \boldsymbol{z}(\boldsymbol{\omega}) = \boldsymbol{1} \} \quad (\boldsymbol{1})$$

$$\hat{\gamma}_N = \frac{1}{N} \sum_{i=1}^N z(\omega_i)$$
 (2)

Absolute error = half the size of the confidence interval

$$AE \propto rac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}$$
 (3)

Main Problems with Rare Events

- Occur with small probability (e.g. $< 10^{-6}$)
 - appear rarely in stochastic simulations
 - need very large number of trials to see single example
 - without seeing, cannot quantify how low the probability
- The absolute error is not useful: $(\gamma \pm \epsilon)$ is "large" if $\epsilon \gg \gamma$
 - Bounds (e.g. Chernoff) not useful when γ small
- Need of an alternative technique and a relative confidence interval such that: $P\left(\frac{|\hat{\gamma_N}-\gamma|}{\gamma} \le \epsilon\right) \ge 1 \alpha$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *A* be a rare event and $(A_k)_{0 \le k \le n}$ be a sequence of nested events:

$$A_0 \supset A_1 \supset ... \supset A_n = A \tag{4}$$

By Bayes formula,

$$\gamma \stackrel{\text{def}}{=} P(A) = P(A_0)P(A_1 \mid A_0)P(A_2 \mid A_1)...P(A_n \mid A_{n-1})$$
(5)

implying that every conditionnal probability is less rare:

$$\forall k, P(A_k \mid A_{k-1}) = \gamma_k \ge \gamma \tag{6}$$

1

(雪) (ヨ) (ヨ)

Example: Reaching Level 3 in finite time

C. Jegourel Rave Event Simulation with Importance Splitting for Statistical Mo

프 🖌 🖌 프

Example: Reaching Level 3 in finite time

P(reaching Level 3)=3/5*2/5*2/5

< 注) < 注

Idea: given a rare property φ , define a set of levels based on a sequence of temporal properties such that:

$$(\varphi_k)_{0 \le k \le n} : \varphi_0 \Leftarrow \varphi_1 \Leftarrow \dots \Leftarrow \varphi_n = \varphi$$
(7)

Thus,

$$\gamma = P(\omega \models \varphi_0) \prod_{k=1}^n P(\omega \models \varphi_k \mid \omega \models \varphi_{k-1})$$
(8)

伺 とく ヨ とく ヨ と

Simple Decomposition

- When φ = Λⁿ_{j=1} ψ_j, a decomposition into nested properties
 is: φ_i = Λ^j_{i=1} ψ_j, ∀i ∈ {1,...,n} with φ₀ = ⊤
- Possibility to choose an arbitrary order of sub-formulae:

• Ex: Given
$$\varphi = a \wedge b \wedge c$$
,

•
$$\varphi_3 = a \wedge b \wedge c, \ \varphi_2 = a \wedge b, \ \varphi_1 = a$$

•
$$\varphi_3 = a \wedge b \wedge c, \ \varphi_2 = b \wedge c, \ \varphi_1 = c$$

Both decompositions are valid.

(四) (日) (日)

- Many rare events are defined with a natural notion of level, when some quantity of the system reaches a particular value.
- In Computational systems: might refer to a loop counter, a number of software objects, etc...
- In physical systems: might refer to a temperature, a distance, a number of molecules...
- Natural levels defined by nested atomic properties:
 φ_i = (x > x_i) with x a state variable and ω ⊨ φ_n ⇔ x ≥ x_n.

・ 回 ト ・ ヨ ト ・ ヨ ト

Decomposition of Temporal Operators

- Repair model
- $\varphi = \text{init} \land \mathbf{X} (\neg \text{init} \mathbf{U}^{\mathsf{t}} \text{ fail}) \text{ with}$ init $\Leftrightarrow (x = 0) \text{ and fail} \Leftrightarrow (x = n).$
- Decomposition: $\forall k \in \{1, ..., n\}, \varphi_k =$ init $\land \mathbf{X} (\neg init \mathbf{U}^t (x \ge k))$

→ E → < E →</p>

- (1α) Confidence Interval based on the relative variance σ : $\left[\tilde{\gamma}\left(\frac{1}{1 + \frac{z_{\alpha}\sigma}{\sqrt{N}}}\right); \tilde{\gamma}\left(\frac{1}{1 \frac{z_{\alpha}\sigma}{\sqrt{N}}}\right)\right]$ with $\sigma^2 \ge \sum_{k=1}^{m} \frac{1 \gamma_k}{\gamma_k}$
- Inequality arises because the independence of initial states diminishes with increasing levels.
- Several possibilities minimise this dependence effect.

伺き くきき くきき

- Relative variance of the estimator: $\sigma^2 = \sum_{k=1}^{m} \frac{1-\gamma_k}{\gamma_k}$
- For a fixed number of levels, this variance is minimal if all the conditional probabilities are equal (∃ρ ∈]0; 1[s.t.∀k, γ_k = ρ)
- Problem: levels might be too coarse.

・ 回 ト ・ ヨ ト ・ ヨ ト

- Score function goal: increase the resolution of levels.
- Level-based score functions: Mapping from logical properties to ℝ which give information on the number of satisfied sub-formulae.

$$S(\omega) = \max_{k} \{k \mid \omega \models \varphi_k\}$$
(9)

 General score functions: Mapping from sets of paths to ℝ s.t. higher scores assigned to paths that satisfy the overall property.

$$S(\omega) = \max_{\omega \le j} P\left(\varphi \mid \omega \le j\right) \tag{10}$$

伺き くほき くほ

- Level-based score functions correlate logic to score.
- General score functions requires:
 - higher scores assigned to paths that satisfy the overall property.
 - $P(\phi \mid \omega') \ge P(\phi \mid \omega) \Rightarrow S(\omega') \ge S(\omega)$
- In some case, the shortest paths satisfying a rare property are the most likely => possibility to exploit the length of a path to improve a score function based on coarse logical levels.

◆ @ ▶ ◆ ⊇ ▶ ◆ ⊇ ♪

Dining Philosophers Problem

Figure: Automata modelling a philosopher

- 150 philosophers
- more than 2¹⁴⁴ states
- property of interest: $\omega = \mathbf{F}^{30}$ (Phil i eat)

> < E > < E >

Experimental Results given by an adaptive algorithm

- based on A. Guyader, F. Cérou, T. Furon, Del Moral work (2007)
- predefined $\gamma_k \approx 0.85$,
- The algorithm finds adaptively around 96 iterations,
- gain of time: between 800 and 5000 times faster than Monte Carlo

伺 とく ヨ とく ヨ と

Experimental Results given by an adaptive algorithm

	Importance Splitting					MC
number of experiments	100	100	100	100	1	1
nb of paths	50	100	200	500	1000	10 million
time (seconds)	0,66	1,73	4,08	11,64	24,17	>5 hours
estimate (average)	1,42	1,52	1,59	1,58	1,53	1,2
standard deviation	1,63	1,02	0,87	0,5	-	0,35
Relative Error (average)	0,72	0,45	0,31	0,19	0,13	0,29
95%-CI lower bound	0,82	1,04	1,22	1,33	1,35	0,52
95%-CI upper bound	5,08	2,76	2,29	1,95	1,76	1,88

Results are times 10^6 *6% wrong

通りくほりくほう

- Rare events are often critical.
- Importance splitting is a rare event technique that admits a confidence bound and is applicable to many systems.
- We have defined how importance splitting may be combined with temporal logic to apply SMC to rare events.
- Score functions generalise the notion of levels required by importance splitting
- Heuristics may be used to increase the granularity of score functions to improve performance.

伺き くきき くきき

- Improved confidence bounds
- Integration in Statistical Model Checker PLASMA
- Case studies: false alarm of derailment, collision of particles?

伺 とく ヨ とく ヨ と