Importance Splitting for Statistical Model Checking Properties

Cyrille Jegourel, Axel Legay, Sean Sedwards

CAV 2013, Saint Petersburg

Probabilistic model checking

Quantify temporal logical properties of stochastic systems
, Numerical model checking

- precise
- exhaustive exploration of state space
- limited model size
, Statistical model checking (SMC)
- statistical model of executions
- results within confidence bounds
- trades off tractability with precision

Motivation

Objective :

- Standard Statistical technique for SMC: Monte Carlo.
- Rare events may cause serious problems and are difficult to simulate.
- Given a stochastic system, design a procedure for estimating a rare property in a reasonable time with SMC.
- Properties specified with time bounded temporal logic:

$$
\phi=\alpha|\phi \vee \phi| \phi \wedge \phi|\neg \phi| \boldsymbol{X} \phi\left|\boldsymbol{F}^{t} \phi\right| \boldsymbol{G}^{t} \phi \mid \phi \boldsymbol{U}^{t} \phi
$$

Monte Carlo model checking

Goal: Given a Markovian system and a property φ, compute the probability γ that a path ω satisfies φ $(\gamma=P[\omega \models \varphi])$.

The behavior of the system with respect to the property can be modeled by a Bernoulli random variable Z.

$$
\begin{aligned}
& \begin{array}{l}
\text { property indicator } \\
\text { function } z \in\{0,1\}
\end{array} \\
& \qquad \gamma \stackrel{\text { def }}{=} \mathrm{E}_{f}[Z]=\int_{\Omega} z(\omega) f(\omega) d \omega \\
& \tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}\right)
\end{aligned}
$$

sample traces generated under f

Monte Carlo estimation

$$
\begin{aligned}
& A=\{\omega \in \Omega: z(\omega)=1\} \\
& \tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}\right)
\end{aligned}
$$

Absolute error $=$ half the size of the confidence interval

$$
\mathrm{AE} \propto \frac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}
$$

Problems of rare events

- Occur with small probability (e.g. $<10^{-6}$)
- appear rarely in stochastic simulations
- need very large number of trials to see single example
- without seeing, cannot quantify how low the probability
- The absolute error is not useful
- Bounds (e.g. Chernoff) not useful when γ small
- Unbounded relative error:

$$
\operatorname{RE}=\frac{\sqrt{\operatorname{Var}(z)}}{E(z)}=\frac{\sqrt{y-\gamma^{2}}}{\gamma} \approx_{\gamma \rightarrow 0} \frac{1}{\sqrt{\gamma}}
$$

High variance

$$
\mathrm{RE} \propto_{\gamma \rightarrow 0} \frac{1}{\sqrt{N \gamma}}
$$

N very large to bound RE with Monte Carlo simulation

Importance sampling

‘Tilted’ simulation

$\tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}^{\prime}\right) \frac{f\left(\omega^{\prime}\right)}{f^{\prime}\left(\omega_{i}^{\prime}\right)}$
traces generated under f^{\prime}
(importance sampling dist.)

Optimal importance sampling

$$
\tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}^{\prime}\right) \frac{f\left(\omega^{\prime}\right)}{f^{\prime}\left(\omega_{i}^{\prime}\right)}
$$

$$
f^{o p t}=\frac{z f}{\gamma}
$$

f conditioned on the rare event

Limitations of Importance Sampling

- Quantifying the performance of apparently "good" distributions is an open problem.
- Problem of accuracy with long simulations: likelihood ratio vanishes and variance of the estimators increases.
$=>$ need of an alternative technique: Importance Splitting.

Basics of Importance Splitting

Let A a rare event and $\left(A_{k}\right)_{0 \leq k \leq n}$ a sequence of nested events:

$$
\begin{gathered}
A_{0} \supset A_{1} \supset \ldots \supset A_{n}=A \\
\gamma \stackrel{\text { def }}{=} P(A)=P\left(A_{0}\right) P\left(A_{1} \mid A_{0}\right) P\left(A_{2} \mid A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}\right)
\end{gathered}
$$

Bayes formula
$\forall k P\left(A_{k} \mid A_{k-1}\right)=\gamma_{k} \geq \gamma$
Less rare

Generation of traces in Importance Splitting

- Assuming a set of increasing levels k, generate traces starting from a distribution of the initial states.
- Simulations are stopped as soon as they reach the next level $\mathrm{k}+1$.
- The final states become the empirical distribution of initial states for the next level (level k+1).
- Failed traces discarded. Successful traces continue from where they stopped.
- Avoid a reduction of simulations by resampling the discarded traces from empirical distribution of level $k+1$.

Illustration 1

Illustration 2

$\mathrm{P}($ reaching Level 3$)=3 / 5 * 2 / 5 * 2 / 5$

Importance Splitting for (Temporal) Logic

Idea: given a rare property ϕ, define a set of levels based on a sequence of temporal properties such that:

$$
\left(\phi_{k}\right)_{0 \leq k \leq n}: \phi_{0} \Leftarrow \phi_{1} \Leftarrow \ldots \Leftarrow \phi_{n}=\phi
$$

Thus,

$$
\gamma=P\left(\omega \vDash \phi_{0}\right) \prod_{k=1}^{n} P\left(\omega \vDash \phi_{k} \mid \omega \vDash \phi_{k-1}\right)
$$

Level-based Score functions

- Goal: Generalise the concept of levels.
- Definition 1:

Let $J_{0} \supset J_{1} \supset \ldots \supset J_{n}$ be a set of nested intervals of \mathbb{R}.
Let $\phi_{0} \supset \phi_{1} \supset \ldots \supset \phi_{n}$ be a set of nested properties.
$S: \Omega \rightarrow \mathbb{R}$ is a level-based score function of property ϕ iff $\forall k$:
$\omega \vDash \phi_{k} \Leftrightarrow S(\omega) \in J_{k}$ and $\forall i, j \in\{0, \ldots,|\omega|\}: i<j \Rightarrow S\left(\omega_{\leq i}\right) \leq S\left(\omega_{\leq j}\right)$

- Example: given a set of nested properties, a simple score function may be defined as follows:

$$
S(\omega)=\sum_{k=1}^{n} 1\left(\omega \vDash \phi_{k}\right)
$$

General score functions

- Definition 2:

Let $J_{0} \supset J_{1} \supset \ldots \supset J_{n}$ be a set of nested intervals of \mathbb{R}.
Let $\Omega=\Omega_{0} \supset \Omega_{1} \supset \ldots \supset \Omega_{n}$ be a set of nested subsets of Ω.
$S: \Omega \rightarrow \mathbb{R}$ is a general score function of property ϕ iff $\forall k$:
(i) $\omega \in \Omega_{k} \Leftrightarrow S(\omega) \in J_{k}$
(ii) $\omega \vDash \phi \Leftrightarrow \omega \in \Omega_{n}$
(iii) $\forall i, j \in\{0, \ldots,|\omega|\}: i<j \Rightarrow S\left(\omega_{\leq i}\right) \leq S\left(\omega_{\leq j}\right)$

Score functions

- Goal: Generalise the concept of levels.
- Level-based score functions: Mapping from logical properties to the real numbers which give information on the number of satisfied sub-formulae.

$$
\text { Example: } S(\omega)=\sum_{k=1}^{n} 1\left(\omega \models \phi_{k}\right)
$$

- General score functions: Mapping from sets of paths to the real numbers s.t. higher scores assigned to paths that satisfy the overall property.

Use of Heuristics

- Level-based score functions correlate logic to score.
- General score functions requires:
- higher scores assigned to paths that satisfy the overall property.
- Score of a path's prefix is non decreasing with increasing prefix length.
- In some case, the shortest paths satisfying a rare property are the most likely.
=> possibility to exploit the length of a path to improve a score function based on coarse logical levels.

Simple decomposition

-When $\phi=\Lambda_{j=1}^{n} \psi_{j}$, a decomposition into nested properties is:

$$
\phi_{i}=\Lambda_{j=1}^{i} \psi_{j}, \quad \forall i \in\{1, \ldots, n\} \text { with } \phi_{0} \equiv \text { True }
$$

- Possibility to choose an arbitrary order of sub-formulae:

Example: Given $\phi=a \wedge b \wedge c$,

$$
\begin{aligned}
& \phi_{3}=a \wedge b \wedge c, \phi_{2}=a \wedge b, \phi_{1}=a \\
& \phi_{3}=a \wedge b \wedge c, \phi_{2}=b \wedge c, \phi_{1}=c
\end{aligned}
$$

Both decompositions are valid.

Natural decomposition

- Many rare events are defined with a natural notion of level, when some quantity of the system reaches a particular value.
- In Computational systems: might refer to a loop counter, a number of software objects, etc...
- In physical systems: might refer to a temperature, a distance, a number of molecules...
- Natural levels defined by nested atomic properties: $\phi_{i}=\left(l>l_{i}\right)$ with l a state variable and $\omega \models \phi_{n} \Leftrightarrow l \geq l_{n}$

Decomposition of temporal operators

(i) $\left(\phi_{n} \Rightarrow \phi_{n-1}\right) \Rightarrow\left(\boldsymbol{S} \phi_{n} \Rightarrow \boldsymbol{S} \phi_{n-1}\right)$ with $\boldsymbol{S} \in\left\{\boldsymbol{F}^{\leq t}, \boldsymbol{G}^{\leq t}, \boldsymbol{X}, \boldsymbol{F}^{\leq t} \boldsymbol{G}^{\leq s}\right\}$
(ii) $\left(\phi_{n} \Rightarrow \phi_{n-1} \wedge \psi_{m} \Rightarrow \psi_{m-1}\right) \Rightarrow\left(\phi_{n} \boldsymbol{U} \psi_{m} \Rightarrow \phi_{n-1} \boldsymbol{U} \psi_{n-1}\right)$
(iii) $\left(\phi_{n} \Rightarrow \phi_{n-1}\right) \Rightarrow\left(\forall \omega \vDash \boldsymbol{G}^{\leq t} \phi_{n}: \exists t^{\prime} \geq t \mid \omega \vDash \boldsymbol{G}^{\leq t^{\prime}} \phi_{n-1}\right)$
(iv) $\left(\phi_{n} \Rightarrow \phi_{n-1}\right) \Rightarrow\left(\forall \omega \vDash \boldsymbol{F}^{\leq t} \phi_{n}: \exists t^{\prime} \leq t \mid \omega \vDash \boldsymbol{F}^{\leq t^{\prime}} \phi_{n-1}\right)$
(v) $\left(t^{\prime} \geq t \wedge s^{\prime} \leq s\right) \Rightarrow\left(\boldsymbol{F}^{\leq t} \boldsymbol{G}^{\leq s} \phi_{n} \Rightarrow \boldsymbol{F}^{\leq t^{\prime}} \boldsymbol{G}^{\leq s^{\prime}} \boldsymbol{\phi}_{n}\right)$
(vi) $\left(\phi_{n} \Rightarrow \phi_{n-1}\right) \Rightarrow\left(\forall \omega \vDash \boldsymbol{F}^{\leq t} G^{\leq s} \phi_{n}: \exists t^{\prime} \leq t \wedge s^{\prime} \geq s \mid \omega \vDash \boldsymbol{F}^{\leq t^{\prime}} \boldsymbol{G}^{\leq s^{\prime}} \phi_{n-1}\right)$

Two algorithms

- Fixed level algorithm:
- Exploits a score function based on "logical" levels
- Adaptive level algorithm:
- Given a score function, finds itself the "best" levels
- Requires a score function refined enough.

Fixed level algorithm

Let $\left(\tau_{k}\right)_{1 \leq k \leq M}$ be the sequence of thresholds
Let stop be a termination condition
for $1 \leq k \leq M$ do
$\forall 1 \leq j \leq N$, using prefix $\tilde{\omega}_{j}^{k}$, generate path ω_{j}^{k} until $S\left(\omega_{j}^{k}\right) \geq \tau_{k} \vee$ stop
$I_{k}=\left\{j: S\left(\omega_{j}^{k}\right) \geq \tau_{k}\right\}$ and $\tilde{\gamma}_{k}=\frac{\left|I_{k}\right|}{N}$
$\forall j \in I_{k}, \tilde{\omega}_{j}^{k+1}=\omega_{j}^{k}$
$\forall j \notin I_{k}$, let $\tilde{\omega}_{j}^{k+1}$ be a copy of ω_{i}^{k} with $i \in I_{k}$ chosen randomly

$$
\tilde{\boldsymbol{\gamma}}=\prod_{k=1}^{M} \tilde{\gamma}_{k}
$$

Fluctuation analysis

- Estimator unbiased
- Confidence interval based on the relative variance:
$\sqrt{N} \frac{\tilde{\gamma}-\gamma}{\gamma} \underset{n \rightarrow \infty}{D} N\left(0, \sigma^{2}\right)$ where N denotes a Gaussian distribution

$$
\text { with } \sigma^{2} \geq \sum_{k=0}^{n-1} \frac{1-\gamma_{k}}{\gamma_{k}}
$$

- Inequality arises because the independence of initial states diminishes with increasing levels.
- Several possibilities minimise this dependence effect.

Idealized version

- relative variance of the estimator: $\sigma^{2}=\sum_{k=0}^{n-1} \frac{1-\gamma_{k}}{\gamma_{k}}$
- For a fixed number of levels, this variance is minimal if all the conditional probabilities are equal:

$$
\underset{p_{0}, \cdots p_{n-1}}{\operatorname{argmin}} \sum_{k=0}^{n-1} \frac{1-\gamma_{k}}{\gamma_{k}} \text { s.t. } \prod_{k=0}^{n-1} \gamma_{k}=p
$$

- It corresponds to the case where the levels are evenly spaced in terms of probability of success.
- Hence, the idea of an adaptive algorithm.

Adaptive level algorithm

Let N_{k} be the predefined number of paths to keep per iteration Let τ_{ϕ} be the minimum score of paths that satisfy ϕ
$k=1 . \forall 1 \leq j \leq N$, generate path ω_{j}^{k}
repeat (until $\tau_{k} \geq \tau_{\phi}$)
Let $T=\left\{S\left(\omega_{j}^{k}\right), \forall j \in\{1, \ldots, N\}\right\}$
Find minimum $\tilde{\tau}_{k}$ s.t. $\left|\left\{\tau \in T: \tau>\tilde{\tau}_{k}\right\}\right| \geq N_{k}$
$I_{k}=\left\{j: S\left(\omega_{j}^{k}\right) \geq \tau_{k}\right\}$ and $\tilde{\gamma}_{k}=\frac{\left|I_{k}^{k}\right|}{N}$
$\forall j \in I_{k}, \omega_{j}^{k+1}=\omega_{j}^{k}$
for $j \notin I_{k}$ do
Choose randomly $l \in I_{k}$
$\tilde{\omega}_{j}^{k+1}=\max \left\{\omega \in \operatorname{pref}\left(\omega_{l}^{k}\right): S(\omega)<\tau_{k}\right\}$
generate path ω_{j}^{k+1} with prefix $\tilde{\omega}_{j}^{k+1}$
$\tilde{\gamma}=\prod_{k=1}^{M} \tilde{\gamma}_{k}$

$$
M, k=k, k+1
$$

Adaptive algorithm illustration $1^{\text {st }}$ step: trace generation

Predefine $\gamma_{0}=1 / 2$
Estimate $\boldsymbol{\tau}_{1}$ s.t. $P\left(\operatorname{Score}(\omega)>\boldsymbol{\tau}_{1}\right)=1 / 2$

Ellipse corresponding to Score $(\omega)=\tau_{1}$

Adaptive algorithm illustration

INVENTEURS DU MONDE NUMÉRIQUE

Fluctuation analysis

- For simplicity, let us write: $\gamma=r \gamma_{0}{ }^{M}$ with γ_{0} the predefined conditionnal probability,
M the number of levels
r the number of traces ω in the last iteration s.t.: $S(\omega) \geq \boldsymbol{\tau}_{\phi}$

$$
\begin{aligned}
& \sqrt{N} \frac{\tilde{\gamma}-\gamma}{\gamma} \underset{n \rightarrow \infty}{D} N\left(0, \sigma^{2}\right) \quad \text { with } \sigma^{2} \geq M \frac{1-\gamma_{0}}{\gamma_{0}}+\frac{1-r}{r} \\
& E[\tilde{\gamma}]-\gamma \sim \frac{\gamma}{N} \frac{M\left(1-\gamma_{0}\right)}{\gamma_{0}}
\end{aligned}
$$

- Positive Bias of order $\mathrm{O}(1 / \mathrm{N})=>$ Good news!

Bias, variance and Confidence interval

- $\quad E[\tilde{\gamma}]=p\left(1+O\left(N^{-1}\right)\right)$
$\operatorname{Var}(\tilde{\gamma})=\frac{p^{2}}{N}\left(M \frac{1-\gamma_{0}}{\gamma_{0}}+\frac{1-r}{r}\right)+o\left(N^{-1}\right)$
- => Hence, the variance is reduced if γ_{0} is chosen large.
- Confidence interval of level (1- α) based on the relative variance:

$$
\left[\tilde{\gamma}\left(\frac{1}{1+z_{\alpha} \sigma N^{-1 / 2}}\right), \tilde{\gamma}\left(\frac{1}{1-z_{\alpha} \sigma N^{-1 / 2}}\right)\right.
$$

Example: Dining philosophers

Model: 150 philosophs
Property of interest:
$\boldsymbol{F}^{\leq K}$ phil $_{i}$ eat
$S_{1}(\omega)=\sum_{k=1}^{n} 1\left(\omega \vDash \phi_{k}\right)$
$S_{2}(\omega)=\max _{1 \leq j \leq K} \Psi\left(\omega_{\leq j}\right)$
where j is prefix's length and Ψ s.t.:
$\Psi\left(\omega_{\leq j}\right)=S_{1}\left(\omega_{\leq j}\right)-\frac{S_{1}\left(\omega_{\leq j}\right)-j}{S_{1}\left(\omega_{\leq j}\right)-K-1}$

Experimental results

- Description of the model: more than 10^{96} states
- MC probability based on 10^{7} samples: $1.4^{*} 10^{-6}$
- With $\mathrm{N}=1000$ samples, score function S_{2} and $\gamma_{0} \approx 1-\frac{1}{N}$
- Probability estimator: $1.581 * 10^{-6}$
- Variance of the estimator: 0.119* 10^{-6}
- Around 100 levels found adaptively.
- Roughly, the number of samples required for IS is between 1000 and 10000 times less important than with MC. => Gain of time

Ongoing work

- Quantifying performance of importance splitting:
- Define more complex score functions to improve efficiency
- Real case studies (biology, robotics?)
- Continuing the development of PLASMA

