Importance Splitting for Statistical Model Checking Properties

Cyrille Jegourel, Axel Legay, Sean Sedwards

CAV 2013, Saint Petersburg

Probabilistic model checking

Quantify temporal logical properties of stochastic systems

- Numerical model checking
 - precise
 - exhaustive exploration of state space
 - limited model size
- Statistical model checking (SMC)
 - statistical model of *executions*
 - results within confidence bounds
 - trades off tractability with precision

Motivation

Objective :

- Standard Statistical technique for SMC: Monte Carlo.
- Rare events may cause serious problems and are difficult to simulate.
- Given a stochastic system, design a procedure for estimating a rare property in a reasonable time with SMC.
- Properties specified with time bounded temporal logic:

 $\phi = \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid X \phi \mid F^{t} \phi \mid G^{t} \phi \mid \phi U^{t} \phi$

Monte Carlo model checking

Goal: Given a Markovian system and a property φ , compute the probability γ that a path ω satisfies φ ($\gamma = P[\omega \models \varphi]$).

The behavior of the system with respect to the property can be modeled by a Bernoulli random variable Z.

Monte Carlo estimation

$$A = \{ \omega \in \Omega : z(\omega) = 1 \}$$

$$\tilde{\gamma} = \frac{1}{N} \sum_{i=1}^{N} z(\omega_i)$$

Absolute error = half the size of the confidence interval

$$AE \propto \frac{\sqrt{\gamma (1-\gamma)}}{\sqrt{N}}$$

Problems of rare events

- Occur with small probability (e.g. $< 10^{-6}$)
 - appear rarely in stochastic simulations
 - need very large number of trials to see single example
 - without seeing, cannot quantify how low the probability
- The absolute error is not useful $(\gamma \pm \epsilon)$ not useful if $\epsilon \gg \gamma$
 - Bounds (e.g. Chernoff) not useful when γ small
 - Unbounded *relative* error:

$$RE = \frac{\sqrt{Var(z)}}{E(z)} = \frac{\sqrt{\gamma - \gamma^2}}{\gamma} \approx_{\gamma \to 0} \frac{1}{\sqrt{\gamma}}$$

High variance

$$\operatorname{RE} \propto_{\gamma \to 0} \frac{1}{\sqrt{N \gamma}}$$

N very large to bound RE with Monte Carlo simulation

Importance sampling

'Tilted' simulation

$$\tilde{\gamma} = \frac{1}{N} \sum_{i=1}^{N} z(\omega'_i) \frac{f(\omega')}{f'(\omega'_i)}$$

traces generated under f ' (importance sampling dist.)

Optimal importance sampling

$$\tilde{y} = \frac{1}{N} \sum_{i=1}^{N} z(\omega'_i) \frac{f(\omega')}{f'(\omega'_i)}$$

$$f^{opt} = \frac{zf}{\gamma}$$

f conditioned on the rare event

Limitations of Importance Sampling

- Quantifying the performance of apparently "good" distributions is an open problem.
- Problem of accuracy with long simulations: likelihood ratio vanishes and variance of the estimators increases.

=> need of an alternative technique: Importance Splitting.

Basics of Importance Splitting

Let A a rare event and $(A_k)_{0 \le k \le n}$ a sequence of nested events: $A_0 \supset A_1 \supset ... \supset A_n = A$

 $\gamma \stackrel{\text{def}}{=} P(A) = P(A_0) P(A_1 | A_0) P(A_2 | A_1) \dots P(A_n | A_{n-1})$ Bayes formula $\forall k \ P(A_k | A_{k-1}) = \gamma_k \ge \gamma$ Less rare

Generation of traces in Importance Splitting

- Assuming a set of increasing *levels k*, generate traces starting from a distribution of the initial states.
- Simulations are stopped as soon as they reach the next level k+1.
- The final states become the empirical distribution of initial states for the next level (level k+1).
- Failed traces discarded. Successful traces continue from where they stopped.
- Avoid a reduction of simulations by resampling the discarded traces from empirical distribution of level k+1.

Illustration 2 Level 3 Level 2 Level 1 discarded trace Level 0 Initial state discarded trace

P(reaching Level 3)=3/5*2/5*2/5

Importance Splitting for (Temporal) Logic

Idea: given a rare property ϕ , define a set of levels based on a sequence of temporal properties such that:

$$(\phi_k)_{0 \le k \le n}: \phi_0 \Leftarrow \phi_1 \Leftarrow \dots \Leftarrow \phi_n = \phi$$

Thus,

$$\gamma = P(\omega \models \phi_0) \prod_{k=1}^n P(\omega \models \phi_k \mid \omega \models \phi_{k-1})$$

Level-based Score functions

- Goal: Generalise the concept of levels.
- Definition 1:

Let $J_0 \supset J_1 \supset ... \supset J_n$ be a set of nested intervals of \mathbb{R} . Let $\phi_0 \supset \phi_1 \supset ... \supset \phi_n$ be a set of nested properties. $S: \Omega \rightarrow \mathbb{R}$ is a level-based score function of property ϕ iff $\forall k:$ $\omega \models \phi_k \Leftrightarrow S(\omega) \in J_k$ and $\forall i, j \in \{0, ..., |\omega|\}: i < j \Rightarrow S(\omega_{\leq i}) \leq S(\omega_{\leq j})$

 Example: given a set of nested properties, a simple score function may be defined as follows:

$$S(\omega) = \sum_{k=1}^{n} \mathbf{1}(\omega \models \phi_k)$$

General score functions

• Definition 2:

Let $J_0 \supset J_1 \supset ... \supset J_n$ be a set of nested intervals of \mathbb{R} . Let $\Omega = \Omega_0 \supset \Omega_1 \supset ... \supset \Omega_n$ be a set of nested subsets of Ω . $S: \Omega \rightarrow \mathbb{R}$ is a general score function of property ϕ iff $\forall k$:

(i) $\omega \in \Omega_k \Leftrightarrow S(\omega) \in J_k$

$$(ii) \quad \omega \vDash \phi \Leftrightarrow \omega \in \Omega_n$$

(iii) $\forall i, j \in \{0, \dots, |\omega|\}: i < j \Rightarrow S(\omega_{\leq i}) \le S(\omega_{\leq j})$

Score functions

- Goal: Generalise the concept of levels.
- Level-based score functions: Mapping from logical properties to the real numbers which give information on the number of satisfied sub-formulae.

Example:
$$S(\omega) = \sum_{k=1}^{n} \mathbf{1}(\omega \models \phi_k)$$

 General score functions: Mapping from sets of paths to the real numbers s.t. higher scores assigned to paths that satisfy the overall property.

Use of Heuristics

- Level-based score functions correlate logic to score.
- General score functions requires:
 - higher scores assigned to paths that satisfy the overall property.
 - Score of a path's prefix is non decreasing with increasing prefix length.
- In some case, the shortest paths satisfying a rare property are the most likely.

=> possibility to exploit the length of a path to improve a score function based on coarse logical levels.

Simple decomposition

• When $\phi = \Lambda_{j=1}^{n} \psi_{j}$, a decomposition into nested properties is: $\phi_{i} = \Lambda_{j=1}^{i} \psi_{j}, \quad \forall i \in \{1, ..., n\} \text{ with } \phi_{0} \equiv True$

Possibility to choose an arbitrary order of sub-formulae:

Example: Given $\phi = a \wedge b \wedge c$, $\phi_3 = a \wedge b \wedge c$, $\phi_2 = a \wedge b$, $\phi_1 = a$ $\phi_3 = a \wedge b \wedge c$, $\phi_2 = b \wedge c$, $\phi_1 = c$ Both decompositions are valid.

Natural decomposition

- Many rare events are defined with a natural notion of level, when some quantity of the system reaches a particular value.
- In Computational systems: might refer to a loop counter, a number of software objects, etc...
- In physical systems: might refer to a temperature, a distance, a number of molecules...
- Natural levels defined by nested atomic properties: $\phi_i = (l > l_i)$ with l a state variable and $\omega \vDash \phi_n \Leftrightarrow l \ge l_n$

Decomposition of temporal operators

(i) $(\phi_n \Rightarrow \phi_{n-1}) \Rightarrow (\mathbf{S} \phi_n \Rightarrow \mathbf{S} \phi_{n-1})$ with $\mathbf{S} \in \{\mathbf{F}^{\leq t}, \mathbf{G}^{\leq t}, \mathbf{X}, \mathbf{F}^{\leq t} \mathbf{G}^{\leq s}\}$ (ii) $(\phi_n \Rightarrow \phi_{n-1} \land \psi_m \Rightarrow \psi_{m-1}) \Rightarrow (\phi_n \mathbf{U} \psi_m \Rightarrow \phi_{n-1} \mathbf{U} \psi_{n-1})$ (iii) $(\phi_n \Rightarrow \phi_{n-1}) \Rightarrow (\forall \omega \vDash \mathbf{G}^{\leq t} \phi_n : \exists t' \geq t \mid \omega \vDash \mathbf{G}^{\leq t'} \phi_{n-1})$ (iv) $(\phi_n \Rightarrow \phi_{n-1}) \Rightarrow (\forall \omega \vDash \mathbf{F}^{\leq t} \phi_n : \exists t' \leq t \mid \omega \vDash \mathbf{F}^{\leq t'} \phi_{n-1})$ (v) $(t' \geq t \land s' \leq s) \Rightarrow (\mathbf{F}^{\leq t} \mathbf{G}^{\leq s} \phi_n \Rightarrow \mathbf{F}^{\leq t'} \mathbf{G}^{\leq s'} \phi_n)$ (vi) $(\phi_n \Rightarrow \phi_{n-1}) \Rightarrow (\forall \omega \vDash \mathbf{F}^{\leq t} \mathbf{G}^{\leq s} \phi_n : \exists t' \leq t \land s' \geq s \mid \omega \vDash \mathbf{F}^{\leq t'} \mathbf{G}^{\leq s'} \phi_{n-1})$

Two algorithms

- Fixed level algorithm:
 - Exploits a score function based on "logical" levels
- Adaptive level algorithm:
 - Given a score function, finds itself the "best" levels
 - Requires a score function refined enough.

Fixed level algorithm

Let $(\tau_k)_{1 \le k \le M}$ be the sequence of thresholds Let **stop** be a termination condition

for $1 \le k \le M$ do

$$\forall 1 \leq j \leq N \text{, using prefix } \tilde{\omega}_{j}^{k} \text{, generate path } \omega_{j}^{k} \text{ until } S(\omega_{j}^{k}) \geq \tau_{k} \lor \text{stop}$$

$$I_{k} = \{ j: S(\omega_{j}^{k}) \geq \tau_{k} \} \text{ and } \tilde{\gamma}_{k} = \frac{|I_{k}|}{N}$$

$$\forall j \in I_{k}, \tilde{\omega}_{j}^{k+1} = \omega_{j}^{k}$$

$$\forall j \notin I_{k}, \text{ let } \tilde{\omega}_{j}^{k+1} \text{ be a copy of } \omega_{i}^{k} \text{ with } i \in I_{k} \text{ chosen randomly}$$

$$\tilde{\boldsymbol{\gamma}} = \prod_{k=1}^{M} \tilde{\boldsymbol{\gamma}}_{k}$$

Fluctuation analysis

- Estimator unbiased
- Confidence interval based on the relative variance:

 $\sqrt{N} \frac{\tilde{\gamma} - \gamma}{\gamma} \stackrel{D}{\xrightarrow[n \to \infty]{\to}} N(0, \sigma^2)$ where *N* denotes a Gaussian distribution

with
$$\sigma^2 \ge \sum_{k=0}^{n-1} \frac{1-\gamma_k}{\gamma_k}$$

- Inequality arises because the independence of initial states diminishes with increasing levels.
- Several possibilities minimise this dependence effect.

Idealized version

- relative variance of the estimator: $\sigma^2 = \sum_{k=0}^{n-1} \frac{1 \gamma_k}{\gamma_k}$
- For a fixed number of levels, this variance is minimal if all the conditional probabilities are equal:

$$\underset{p_{0,\cdots},p_{n-1}}{\operatorname{argmin}} \sum_{k=0}^{n-1} \frac{1-\gamma_{k}}{\gamma_{k}} \quad \text{s.t.} \quad \prod_{k=0}^{n-1} \gamma_{k} = p$$

- It corresponds to the case where the levels are evenly spaced in terms of probability of success.
- Hence, the idea of an adaptive algorithm.

Adaptive level algorithm

Let N_k be the predefined number of paths to keep per iteration Let τ_{ϕ} be the minimum score of paths that satisfy ϕ k=1. $\forall 1 \le j \le N$, generate path ω_i^k **repeat (until** $\tau_k \geq \tau_{\phi}$) Let $T = \{ S(\omega_i^k), \forall j \in \{1, ..., N\} \}$ Find minimum $\tilde{\tau}_k$ s.t. $|\{\tau \in T : \tau > \tilde{\tau}_k\}| \ge N_k$ $I_k = \{ j: S(\omega_j^k) \ge \tau_k \} \text{ and } \tilde{\gamma}_k = \frac{|I_k^n|}{N^T}$ $\forall j \in I_k, \omega_i^{k+1} = \omega_i^k$ for $j \notin I_k$ do Choose randomly $l \in I_k$ $\tilde{\omega}_{i}^{k+1} = max \{ \omega \in pref(\omega_{i}^{k}) : S(\omega) < \tau_{k} \}$ generate path ω_i^{k+1} with prefix $\tilde{\omega}_i^{k+1}$ M, k = k, k+1 $\tilde{\gamma} = \prod^{M} \tilde{\gamma}_{\nu}$

Adaptive algorithm illustration 1st step: trace generation

Adaptive algorithm illustration

Fluctuation analysis

- For simplicity, let us write: $\gamma = r \gamma_0^M$ with γ_0 the predefined conditionnal probability, *M* the number of levels
 - *r* the number of traces ω in the last iteration s.t.: $S(\omega) \ge \tau_{\phi}$

$$\begin{split} &\sqrt{N} \frac{\tilde{\gamma} - \gamma}{\gamma} \stackrel{D}{\underset{n \to \infty}{\longrightarrow}} N(0, \sigma^2) \quad \text{with } \sigma^2 \geq M \frac{1 - \gamma_0}{\gamma_0} + \frac{1 - r}{r} \\ &E[\tilde{\gamma}] - \gamma \sim \frac{\gamma}{N} \frac{M(1 - \gamma_0)}{\gamma_0} \end{split}$$

Positive Bias of order O(1/N) => Good news!

Bias, variance and Confidence interval

• $E[\tilde{\gamma}] = p(1+O(N^{-1}))$

•
$$Var(\tilde{y}) = \frac{p^2}{N} (M \frac{1 - \gamma_0}{\gamma_0} + \frac{1 - r}{r}) + o(N^{-1})$$

- => Hence, the variance is reduced if γ_0 is chosen large.
- Confidence interval of level (1- α) based on the relative variance: $\int \tilde{v}(-\frac{1}{1}) \tilde{v}(-\frac{1}{1}) = \tilde{v}(-\frac{1}{1})$

$$[\tilde{\gamma}(\frac{1}{1+z_{\alpha}\sigma N^{-1/2}}), \tilde{\gamma}(\frac{1}{1-z_{\alpha}\sigma N^{-1/2}})$$

Example: Dining philosophers

Experimental results

- Description of the model: more than 10⁹⁶ states
- MC probability based on 10⁷ samples: 1.4* 10⁻⁶
- With N=1000 samples, score function S_2 and $\gamma_0 \approx 1 \frac{1}{N}$
 - Probability estimator: 1.581* 10⁻⁶
 - Variance of the estimator: 0.119* 10⁻⁶
 - Around 100 levels found adaptively.
- Roughly, the number of samples required for IS is between 1000 and 10000 times less important than with MC. => Gain of time

Ongoing work

- Quantifying performance of importance splitting:
 - Define more complex score functions to improve efficiency
 - Real case studies (biology, robotics?)
- Continuing the development of PLASMA

