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Probabilistic model checking

Quantify temporal logical properties of stochastic systems

➢ Numerical model checking

● precise
● exhaustive exploration of state space
● limited model size

➢ Statistical model checking (SMC)

● statistical model of executions
● results within confidence bounds
● trades off tractability with precision



  

Motivation

Objective :

Given a stochastic system, design a procedure for 
estimating a rare property in a reasonable time with SMC.



  

Command semantics

Model described as a system of commands: (guard, rate, 
action)

● guard: logical predicate over the state

– enables action
– applies to a set of states for which the command 

is enabled
● rate: real valued function over set of enabled states

– rate of exponential dist (CTMC)
– probability of action (DTMC)

● action: update of state

● state: assignment of values to variables



  

PLASMA command language

// Repair model based on Example 1 of (Ridder 2005)

ctmc

const int n=3; // 3 components per type
const double epsilon = 0.1;
const double mu = 1.0;

module type1
state1 : [0..n] init 0;
[] state1 < n -> epsilon*epsilon*(n-state1) : (state1'=state1+1);
[] state1 >= 2 -> mu : (state1'=0);
endmodule

module type2
state2 : [0..n] init 0;
[] state2 < n -> epsilon*(n-state2) : (state2'=state2+1);
[] state2 >= 2 & state1 < 2 -> mu : (state2'=0);
endmodule

...

failure type 1

repair type 1

failure type 2

repair type 2



  

Repair model

Command 1: failure type 1

Command 2: repair type 1

Command 3: failure type 2

Command 4: repair type 2

failure of type 1
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Monte Carlo model checking

 ≝ Ef [Z ] =∫


z  f d

 =
1
N∑i=1

N

z i

property indicator
function z ∈ {0,1} 

Goal: Given a Markovian system and a property φ, 
compute the probability γ that a path ω satisfies φ   
(γ=P[ω ⊨ φ]).

The behavior of the system with respect to the property 
can be modeled by a Bernoulli random variable Z.

sample traces generated 
under f

probability measure
function



  

Monte Carlo estimation

 =
1
N∑i=1

N

z i

Ω

A

A = {∈ : z =1}

AE∝ 1−
N

Absolute error = half the 
size of the confidence 
interval



  

Problems of rare events

● Occur with small probability (e.g. < 10-6)

● appear rarely in stochastic simulations
● need very large number of trials to see single 

example
● without seeing, cannot quantify how low the 

probability 
● The absolute error is not useful

● Bounds (e.g. Chernoff) not useful when γ small
● Unbounded relative error:

RE=Var z
E z

=
−2


≈0

1



± not useful if ≫



  

High variance

Ω

A

RE ∝ 0
1

N 

N very large to bound RE
with Monte Carlo simulation



  

Importance sampling

=∫


z 
f 
f ' 

f ' d

IS=
1
N∑i=1

N

z i
f i

f ' i

likelihood ratio

importance sampling distribution

traces generated under f '

=∫


z  f d

MC=
1
N∑i=1

N

z i

traces generated under f

Monte Carlo



  

‘Tilted’ simulation

=
1
N∑i=1

N

z  ' i
f  ' 

f '  ' i

traces generated under f '
(importance sampling dist.)

Ω



  

Optimal importance sampling

=
1
N∑i=1

N

z  ' i
f  ' 
f '  ' i

f opt
=

z f


f conditioned on the rare event

Ω



  

Summarising...

● IS is a well known technique for reducing the 
variance of an estimator

● It consists of:

– modify the dynamics of the system 
(change of measure)

– simulate under this new measure
– unbias the results with the likelihood ratio

● How to perform a good change of measure?

- Cross-entropy method.



  

Parametrised models

System of parametrised commands:

(guard
i
, λ

i
 rate

i
, action

i
)

● each λ controls an action
– sets of semantically related transitions
– less precise than individual transitions (algorithm 

of Ridder) but more tractable
– parametrisation affects quality of Importance 

Sampling distribution

λ
i
 > 0



  

PLASMA parametrised command

// Repair model based on Example 1 of (Ridder 2005)

ctmc

const int n=3; // 3 components per type
const double epsilon = 0.1;
const double mu = 1.0;

module type1
state1 : [0..n] init 0;
[] state1 < n -> epsilon*epsilon*(n-state1) : (state1'=state1+1);
[] state1 >= 2 -> mu*1 : (state1'=0);
endmodule

module type2
state2 : [0..n] init 0;
[] state2 < n -> epsilon*(n-state2) : (state2'=state2+1);
[] state2 >= 2 & state1 < 2 -> mu*1 : (state2'=0);
endmodule

...

λ=[ε2, μ, ε, μ]

f(x)=[n-x1, 1, n-x2, 1]



  

Parametrised repair model

λ
1

 failure type 1

λ
2

 repair type 1

λ
3

 failure type 2

λ
4

 repair type 2

failure of type 1
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The Cross-entropy Method (1)

● The Kullback-Leibler divergence:

- a measure of “distance” between distributions:

● Goal: system originally parametrised by vector μ,

– find:

– which is equivalent to find:

CE g ,h = Eg [log
g 
h 

] =∫


g  log
g 
h 

d

opt ≝ argmin∈S CE 
z  . f . ,


, f . , 1

opt = argmax∈S E [z  log f  ,] 2



  

The Cross-entropy Method (2)

● Estimating directly (2) is hard

● Rewrite (2) using Importance Sampling (with L the 
likelihood ratio):

● Using (3), iteratively construct an estimator: 

opt = argmax∈S E ' [ z L ; , '  log f  ,] 3

opt =  j1= argmax∈S∑
i=1

N j

z i
 jL ji

 j ; , log f i
 j  , 4



  

Our algorithm (1)

● Ingredients:

● a system of n guarded commands with state-
dependent vector of rate functions:

● and corresponding vector of parameters:
● In any state x, prob of taking command k:

● Prob of taking path ω:

f x =[ f 1 x  , ... , f n x ]

=[1, ... ,n]

k f k x 

〈 , f x 〉

F  ,=∏
k=1

n

k 
U k ∏

s=1

U k f k xs

〈 , f xs〉


number of transitions of type k in ω



  

Our algorithm (2)

● Theorem:  A solution of (5) is almost surely a unique 
maximum, up to a normalising scalar

● finding solution is equivalent to solve the convex CE 
program (4):

With:

● No closed-form solution, however...

dF
dk

= 0 ⇔ ∑
k=1

N

li z i ui k 

k

−∑
s=1

∣i∣ f k
i  xs

〈 , f i
 xs〉
 = 0 5

li=L j i , N  j=N , zi=z i ,ui k =U k i



  

Our algorithm (3)

● Equation (5) leads to the following expression for λ:

● The right side is still dependent on λ. So,

● Equation (7) has a unique fixed point that is λopt

∀ k∈{1, ... ,n }, k=
∑
k=1

N

li zi ui k 

∑
i=1

N

li z i∑
s=1

∣i∣ f k
i x s

〈 , f i
xs〉

6

∀ k∈{1, ... ,n }, k
 j1 =

∑
k=1

N

l i zi ui k 

∑
i=1

N

l i zi∑
s=1

∣i∣ f k
i  xs

〈
 j , f i

x s〉

7



  

Important details

● Initial distribution:

● the algorithm requires an “adequate start”

It means that f(.,λ(0)) must produce at least a few traces 
satisfying the rare property. Several possibilities, e.g., 

● equalisation of initial rates

● random parameters (rare property ≠> rare parameters)

● Smoothing:

● acts to preserve important but as yet unseen parameters

● add a small fraction of the initial or previous parameters 
to every new parameter estimate



  

Cross-entropy convergence of 
parameters

number of cross-entropy iteration

Pa
ra

m
e
te

rs

Example 1 of Ridder (2005)



  

Cross-entropy convergence (2)

● System modeled with 9 
commands

● System modeled with 6 
commands

number of cross-entropy iteration

Pa
ra

m
e
te

rs

Pa
ra

m
e
te

rs



  

Experimental results

● Description of the model: 125 states, 1262 transitions

● Theoretical probability: 1.177* 10-7 

● Model described by 9 parameters

● Probability estimator: 1.170* 10-7 (+/- 1.0* 10-8)
● Model described by 6 parameters

● Probability estimator: 0.981* 10-7 (+/- 2.5* 10-8)
● Roughly, the number of samples required for IS is 

between 1000 and 10000 times less important than 
with MC. => Gain of time 



  

Ongoing work

● Quantifying performance of importance 
sampling:

● Automatise more complex parametrisations 
to improve efficiency

● Implement alarms in case of IS failure
● Real case studies (biology?)

● Continuing the development of PLASMA
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