Cross entropy optimisation of importance sampling parameters
for statistical model checking

Cyrille Jegourel, Axel Legay, Sean Sedwards

CAV 2012, Berkeley

Probabilistic model checking

Quantify temporal logical properties of stochastic systems
, Numerical model checking

- precise
- exhaustive exploration of state space
- limited model size
, Statistical model checking (SMC)
- statistical model of executions
- results within confidence bounds
- trades off tractability with precision

Motivation

Objective:

Given a stochastic system, design a procedure for estimating a rare property in a reasonable time with SMC.

Command semantics

Model described as a system of commands: (guard, rate, action)

- guard: logical predicate over the state
- enables action
- applies to a set of states for which the command is enabled
- rate: real valued function over set of enabled states
- rate of exponential dist (CTMC)
- probability of action (DTMC)
- action: update of state
- state: assignment of values to variables

PLASMA command language

```
// Repair model based on Example 1 of (Ridder 2005)
ctmc
const int n=3; // 3 components per type
const double epsilon = 0.1;
const double mu = 1.0;
module typel
state1 : [0..n] init 0;
failure type 1
[] statel < n -> epsilon*epsilon*(n-state1) : (statel'=statel+1);
[] statel >= 2 -> mu : (statel'=0);
endmodule repair type 1
module type2
state2 : [0..n] init 0;
                                    failure type 2
[] state2 < n -> epsilon*(n-state2) : (state2'=state2+1);
[] state2 >= 2 & state1 < 2 -> mu : (state2'=0);
endmodule
repair type 2
```


Repair model

Command 1: failure type 1
Command 2: repair type 1
Command 3: failure type 2
Command 4: repair type 2

Monte Carlo model checking

Goal: Given a Markovian system and a property φ, compute the probability γ that a path ω satisfies φ $(\gamma=P[\omega \models \varphi])$.

The behavior of the system with respect to the property can be modeled by a Bernoulli random variable Z.

$$
\begin{aligned}
& \begin{array}{l}
\text { property indicator } \\
\text { function } z \in\{0,1\}
\end{array} \\
& \qquad \gamma \stackrel{\text { def }}{=} \mathrm{E}_{f}[Z]=\int_{\Omega} z(\omega) f(\omega) d \omega \\
& \tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}\right)
\end{aligned}
$$

sample traces generated under f

Monte Carlo estimation

$$
\begin{aligned}
& A=\{\omega \in \Omega: z(\omega)=1\} \\
& \tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}\right)
\end{aligned}
$$

Absolute error $=$ half the size of the confidence interval

$$
\mathrm{AE} \propto \frac{\sqrt{\gamma(1-\gamma)}}{\sqrt{N}}
$$

Problems of rare events

- Occur with small probability (e.g. $<10^{-6}$)
- appear rarely in stochastic simulations
- need very large number of trials to see single example
- without seeing, cannot quantify how low the probability
- The absolute error is not useful $(\gamma \pm \epsilon)$ not useful if $\epsilon \gg \gamma$
- Bounds (e.g. Chernoff) not useful when γ small
- Unbounded relative error:

$$
\operatorname{RE}=\frac{\sqrt{\operatorname{Var}(z)}}{E(z)}=\frac{\sqrt{y-\gamma^{2}}}{\gamma} \approx_{\gamma \rightarrow 0} \frac{1}{\sqrt{\gamma}}
$$

High variance

$$
\mathrm{RE} \propto_{\gamma \rightarrow 0} \frac{1}{\sqrt{N \gamma}}
$$

N very large to bound RE with Monte Carlo simulation

Importance sampling

‘Tilted’ simulation

$\tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}^{\prime}\right) \frac{f\left(\omega^{\prime}\right)}{f^{\prime}\left(\omega_{i}^{\prime}\right)}$
traces generated under f^{\prime}
(importance sampling dist.)

Optimal importance sampling

$$
\tilde{\gamma}=\frac{1}{N} \sum_{i=1}^{N} z\left(\omega_{i}^{\prime}\right) \frac{f\left(\omega^{\prime}\right)}{f^{\prime}\left(\omega_{i}^{\prime}\right)}
$$

$$
f^{o p t}=\frac{z f}{\gamma}
$$

f conditioned on the rare event

Summarising...

- IS is a well known technique for reducing the variance of an estimator
- It consists of:
- modify the dynamics of the system (change of measure)
- simulate under this new measure
- unbias the results with the likelihood ratio
- How to perform a good change of measure?
- Cross-entropy method.

Parametrised models

System of parametrised commands:

$$
\text { (guard } \left._{i}, \lambda_{i} \text { rate }_{i}, \text { action }_{i}\right) \quad \lambda_{i}>0
$$

- each λ controls an action
- sets of semantically related transitions
- less precise than individual transitions (algorithm of Ridder) but more tractable
- parametrisation affects quality of Importance Sampling distribution

PLASMA parametrised command

// Repair model based on Example 1 of (Ridder 2005)
ctmc
const int $\mathrm{n}=3$; // 3 components per type const double epsilon = 0.1;

$$
f(x)=[n-x 1,1, n-x 2,1]
$$

const double mu = 1.0;
module type1
statel : [0..n] init 0;
[] statel < n -> epsilon*epsilon*(n-state1) : (statel'=statel+1);
[] statel >= 2 -> mu*l : (statel'=0);
endmodule
module type2
state2 : [0..n] init 0;
[] state2 < n -> epsilon*(n-state2) : (state2'=state2+1);
[] state2 >= 2 \& state1 < 2 -> mu*1 : (state2'=0); endmodule

Parametrised repair model

λ_{1} failure type 1
λ_{2} repair type 1
λ_{3} failure type 2
λ_{4} repair type 2
type 3 not illustrated

The Cross-entropy Method (1)

- The Kullback-Leibler divergence:
- a measure of "distance" between distributions:

$$
\mathrm{CE}(g, h)=\mathrm{E}_{g}\left[\log \frac{g(\omega)}{h(\omega)}\right]=\int_{\Omega} g(\omega) \log \frac{g(\omega)}{h(\omega)} d \omega
$$

- Goal: system originally parametrised by vector μ,
- find: $\quad \lambda^{\text {opt }} \stackrel{\text { def }}{=} \operatorname{argmin}_{\lambda \in S} \operatorname{CE}\left(\frac{z(.) f(., \mu)}{\gamma}, f(., \lambda)\right)$
- which is equivalent to find:

$$
\begin{equation*}
\lambda^{\text {opt }}=\operatorname{argmax}_{\lambda \in S} \mathrm{E}_{\mu}[z(\omega) \log f(\omega, \lambda)] \tag{2}
\end{equation*}
$$

The Cross-entropy Method (2)

- Estimating directly (2) is hard
- Rewrite (2) using Importance Sampling (with L the likelihood ratio):

$$
\begin{equation*}
\lambda^{\text {opt }}=\operatorname{argmax}_{\lambda \in S} \mathrm{E}_{\lambda^{\prime}}\left[z(\omega) L\left(\omega ; \mu, \lambda^{\prime}\right) \log f(\omega, \lambda)\right] \tag{3}
\end{equation*}
$$

- Using (3), iteratively construct an estimator:

$$
\begin{equation*}
\tilde{\lambda}^{\text {opt }}=\lambda^{(j+1)}=\operatorname{argmax}_{\lambda \in S} \sum_{i=1}^{N_{j}} z\left(\omega_{i}^{(j)}\right) L^{(j)}\left(\omega_{i}^{(j)} ; \mu, \lambda\right) \log f\left(\omega_{i}^{(j)}, \lambda\right) \tag{4}
\end{equation*}
$$

Our algorithm (1)

- Ingredients:
- a system of n guarded commands with statedependent vector of rate functions: $f(x)=\left[f_{1}(x), \ldots, f_{n}(x)\right]$
- and corresponding vector of parameters: $\lambda=\left[\lambda_{1}, \ldots, \lambda_{n}\right]$
- In any state x, prob of taking command $k: \frac{\lambda_{k} f_{k}(x)}{\langle\lambda, f(x)\rangle}$
- Prob of taking path ω :

$$
F(\omega, \lambda)=\prod_{k=1}^{n}\left(\left(\lambda_{k}\right)^{U_{k}(\omega)} \prod_{s=1}^{U_{k}(\omega)} \frac{f_{k}\left(x_{s}\right)}{\left\langle\lambda, f\left(x_{s}\right)\right\rangle}\right)
$$

Our algorithm (2)

- Theorem: A solution of (5) is almost surely a unique maximum, up to a normalising scalar
- finding solution is equivalent to solve the convex CE program (4):

$$
\begin{equation*}
\frac{d F}{d \lambda_{k}}(\lambda)=0 \Leftrightarrow \sum_{k=1}^{N} l_{i} z_{i}\left(\frac{u_{i}(k)}{\lambda_{k}}-\sum_{s=1}^{|\omega|} \frac{f_{k}^{i}\left(x_{s}\right)}{\left\langle\lambda, f^{i}\left(x_{s}\right)\right\rangle}\right)=0 \tag{5}
\end{equation*}
$$

With: $\quad l_{i}=L^{j}\left(\omega_{i}\right), N^{(j)}=N, z_{i}=z\left(\omega_{i}\right), u_{i}(k)=U_{k}\left(\omega_{i}\right)$

- No closed-form solution, however...

Our algorithm (3)

- Equation (5) leads to the following expression for λ :

$$
\begin{equation*}
\forall k \in\{1, \ldots, n\}, \quad \lambda_{k}=\frac{\sum_{k=1}^{N} l_{i} z_{i} u_{i}(k)}{\sum_{i=1}^{N} l_{i} z_{i} \sum_{s=1}^{|\omega|} \mid} \frac{f_{k}^{i}\left(x_{s}\right)}{\left\langle\lambda, f^{i}\left(x_{s}\right)\right\rangle} \tag{6}
\end{equation*}
$$

- The right side is still dependent on λ. So,

$$
\begin{equation*}
\forall k \in\{1, \ldots, n\}, \quad \lambda_{k}^{(j+1)}=\frac{\sum_{k=1}^{N} l_{i} z_{i} u_{i}(k)}{\sum_{i=1}^{N} l_{i} z_{i} \sum_{s=1}^{\left|\omega_{\mid}\right|} \frac{f_{k}^{i}\left(x_{s}\right)}{\left\langle\lambda^{(j)}, f^{i}\left(x_{s}\right)\right\rangle}} \tag{7}
\end{equation*}
$$

- Equation (7) has a unique fixed point that is $\lambda^{\text {opt }}$

Important details

- Initial distribution:
- the algorithm requires an "adequate start"

It means that $f\left(., \lambda^{(0)}\right)$ must produce at least a few traces satisfying the rare property. Several possibilities, e.g.,

- equalisation of initial rates
- random parameters (rare property $\neq>$ rare parameters)
- Smoothing:
- acts to preserve important but as yet unseen parameters
- add a small fraction of the initial or previous parameters to every new parameter estimate

Cross-entropy convergence of parameters

Cross-entropy convergence (2)

- System modeled with 9 commands

- System modeled with 6 commands

number of cross-entropy iteration

Experimental results

- Description of the model: 125 states, 1262 transitions
- Theoretical probability: $1.177 * 10^{-7}$
- Model described by 9 parameters
- Probability estimator: 1.170* $10^{-7}\left(+/-1.0^{*} 10^{-8}\right)$
- Model described by 6 parameters
- Probability estimator: $0.981 * 10^{-7}\left(+/-2.5^{*} 10^{-8}\right)$
- Roughly, the number of samples required for IS is between 1000 and 10000 times less important than with MC. => Gain of time

Ongoing work

- Quantifying performance of importance sampling:
- Automatise more complex parametrisations to improve efficiency
- Implement alarms in case of IS failure
- Real case studies (biology?)
- Continuing the development of PLASMA

