
Secrecy by typing in the computational model
Stéphanie Delaune

Univ. Rennes, CNRS, IRISA, France
Clément Hérouard

Univ. Rennes, CNRS, IRISA, France
Joseph Lallemand

Univ. Rennes, CNRS, IRISA, France

Abstract—In this paper, we propose a way to automate proofs
of cryptographic protocols in the computational setting. We focus
on weak secrecy and we aim to use type systems. Techniques
based on typing have been used in symbolic models, and we show
how these techniques can be adapted to the CCSA framework
to obtain computational guarantees.

We only consider for now a limited set of primitives: symmetric
encryption and decryption, and pairing (i.e. concatenation).
However, our approach has the usual benefit of type systems
of being modular, and could be extended to other primitives
without excessive difficulties. We aim to integrate it into the
SQUIRREL proof assistant so that users may show some weak
secrecy properties by typing and use them as part of larger
SQUIRREL developments. This is still ongoing work.

Index Terms—Security protocols, automated reasoning, typing,
computational model, CCSA

I. INTRODUCTION

Cryptographic protocols are distributed programs that rely on
cryptographic primitives to provide security guarantees. Their
design is well-known to be error-prone, which can lead to
flaws with dramatic consequences as they are used in many
critical applications today.

Over the past few decades, the need to ground security
analysis of protocols on rigorous mathematical foundations has
emerged with two distinct approaches: the computational one
and the symbolic one. The symbolic approach [1] makes strong
assumptions about cryptographic primitives (they are assumed
to be perfect), and models messages using first-order terms.
This approach benefits from automation and many procedures
and tools exist [2]. In contrast, the computational approach
represents messages using bit-strings [3], and agents (as well as
the attacker) as probabilistic polynomial time Turing machines.
The security assumptions on the primitives are expressed as
cryptographic games (e.g. IND-CPA, INT-CTXT) that an attacker
has a low probability of winning. This provides stronger
guarantees, but makes automated reasoning much more difficult.

In order to bring these two approaches closer together,
the Computationally Complete Symbolic Attacker (CCSA)
logic has been proposed [4]. In this logic, messages are
represented by terms, and security properties by first-order
formulas. However, the semantics is a computational one, and
the axioms and proof rules express computational assumptions.
This approach has been implemented in the SQUIRREL proof
assistant [5]–[7] and allows the user to write security proofs at a
rather abstract level while obtaining computational guarantees.

This work received funding from the France 2030 program managed by
the French National Research Agency under grant agreement No. ANR-22-
PECY-0006

The CCSA logic focuses mainly on indistinguishability
properties such as strong secrecy which expresses that a secret
message must be indistinguishable from a randomly sampled
value. In some cases, however, we need to consider the notion
of weak secrecy, whereby an attacker cannot know the exact
value of a message (except with negligible probability). For
instance, a security proof may rely on an intermediate lemma
stating that, at a certain point in the execution, when an agent
computes k = kdf(x) for some message x, the same key k
cannot have been derived earlier. To show that, one would have
to prove that x is weakly secret. Note that the message x could
have been a tag paired with a fresh nonce, and strong secrecy
would not hold in this case. In contrast with indistinguishability
proofs, proofs of weak secrecy tend to be rather tedious to
write in SQUIRREL. In practice, one often has to instead prove
strong secrecy, and deduce weak secrecy from it, which is
inconvenient, and actually not always possible.

Example 1. We consider a simple version of the Wide-Mouth
Frog (WMF) protocol [8] where a server S who shares a
symmetric key kAS (resp. kBS) with A (resp. B) acts as an
intermediate to transmit a nonce n from A to B.

A→ S : {n}kAS

S → B : {n}kBS

To establish weak secrecy of n in SQUIRREL, we first prove
strong secrecy of n. It takes about 80 LoC, and requires several
intermediate lemmas (even for a very simple scenario).

In this paper, we propose a way to automate such proofs by
using type systems. Techniques based on typing have already
been successfully used in symbolic models to prove weak
secrecy or authentication properties [9], [10]. We show how they
can be adapted to the CCSA framework to obtain computational
guarantees1. In short, as it is usual for such techniques, we
consider types that express the level of confidentiality of the
messages. We show that our typing rules ensure that from
well-typed public messages, a computational attacker cannot
deduce a message whose type specifies it should be secret.
This allows a user to easily derive weak secrecy properties in
the computational setting, by providing light type annotations
and performing type-checking. We only consider for now a
limited set of primitives: symmetric encryption, and pairing.

II. TYPE SYSTEM

We give here a brief overview of our type system and its
associated soundness result. Many details are omitted.

1A recent work has independently explored a similar line of research [11].



Γ ` t : T Γ(k) = SK[T]

Γ, r : Rand ` {m}rk : L

Γ ` c : L Γ(k) = SK[T]

Γ ` sdec(c, k) : T + Fail

Fig. 1: Typing for symmetric encryption and decryption

A. Model

As in the CCSA logic, messages are modelled using
terms. We consider the symbols {·}··, sdec(·, ·), and att(·) for
symmetric encryption, decryption, and attacker computations.
Terms are built using the symbols above, on top of names
and variables. Each term is interpreted as a Turing machine
(TM). Encryption is randomised explicitly: {m}rk denotes
the encryption of m with key k and random r. Moreover,
we assume that the encryption and decryption functions are
interpreted by algorithms satisfying the usual IND-CPA and
INT-CTXT assumptions.

Example 2. Going back to the WMF protocol, the first message
sent by A is modelled as {n}r1kAS

, whereas the one received
by S is att({n}r1kAS

) since the attacker may attempt to modify
it on its way. Then, if decryption by kAS succeeds, the response
sent by S will be {sdec(att({n}r1kAS

), kAS)}r2kBS
.

B. Types and typing rules

We consider some base types: L (“Low secrecy level”)
for public terms, H (“High secrecy level”) for secret terms,
SK[T] for keys encrypting messages of type T, and Rand for
randomness used in encryptions. We only allow keys to be
used in key positions in terms. Our system also uses more
complex types, constructed over base types (e.g. product and
sum types), which we mostly omit here.

The type system uses an environment Γ, mapping names
and variables to types. We define a judgement Γ ` t : T, which
reads “t is of type T in environment Γ”, by a set of typing
rules. In Fig. 1, we give the rules corresponding to encryption.
To encrypt a term, we check that the type of the plaintext
matches that of the key, and remove the random used from
the environment in order to ensure it will not be used again.
Regarding the decryption rule, the type T + Fail indicates that
decryption either fails or gives a message of the type T as
indicated by the type of the key.

Example 3. Using Γ := {n : H; kAS , kBS : SK[H]; r1, r2 :
Rand}, messages exchanged during the protocol execution
(see Example 2) type L. Derivations are written in Appendix.

C. Soundness

To express the soundness of our system, we first give each
type a computational interpretation, i.e., intuitively, a set of
terms whose TM interpretation can (or cannot, depending
on the type) be computed from public data by a polynomial
attacker. We write Γ |= t : T to denote that a term t belongs to
the interpretation of type T in environment Γ. Regarding the
interpretation of H, we consider an attacker who has access to
an oracle that provides him with the TM interpreting any public
message, i.e. any term of type L. We say that Γ |= t : H if such

an attacker cannot compute the output of the TM interpreting t
(except with negligible probability).

Our main result is the following soundness theorem.

Theorem 1. For any term t, environment Γ, and type T, if
Γ ` t : T then Γ |= t : T.

Proof (sketch). The main difficulty is to establish that for any
term s and m such that Γ ` s : H and Γ ` m : L, the
interpretation of m does not help the attacker to compute s.

In order to use the IND-CPA assumption on the encryption
primitive, we first have to get rid of the decryption symbols,
since the IND-CPA game does not allow the attacker to decrypt
messages. We proceed in two steps.

1) We show that, if Γ ` m : L, then there exists another
term m′, whose TM interpretation is the same as m
(with overwhelming probability), and which can be typed
with type L in a restricted fragment of the type system
that excludes in particular the decryption rule. This step
relies on the INT-CTXT assumption which states that any
ciphertext that successfully decrypts has been produced
by the oracle, meaning that the resulting plaintext is equal
to a message encrypted in a public term.

2) We establish a soundness result for the restricted fragment
using the assumptions on the cryptographic primitives.
In the case of encryption, consider the case where m′

contains a ciphertext typed by the rule shown in Fig. 1. We
construct an attacker against IND-CPA, whose advantage
is at least the probability to compute s from m′.

This concludes the proof for symmetric encryption.

As a corollary of Theorem 1, we deduce that if the messages
exchanged during the protocol execution are typed L, then this
is also the case for any computation performed by the attacker
using these messages, and therefore the result can not be equal
to a term s having type H: we have that s is weakly secret.

Example 4. We saw in Example 3 that messages exchanged
during the protocol execution are typed L in environment Γ
where n : H. By Theorem 1, we have Γ |= n : H. So n is weakly
secret, i.e. the attacker can only compute its interpretation with
negligible probability from the messages it observed.

III. WORK IN PROGRESS

We are currently working on generalising our typing-based
approach in several ways. First, applying our result currently
requires to show that any message that can be output by the
protocol is indeed of type L. SQUIRREL nicely represents the
possible executions of protocols, including input and output
messages, as well as mutable states, using so-called macros.
These are, roughly, recursively defined functions in the CCSA
logic [12]. To be able to incorporate our type system into
SQUIRREL, we need to adapt it to handle these macros. The
idea is to build an inductive typing proof, in which we may type
messages assuming inputs are public, because the attacker must
have computed them using previous outputs, which were typed
as public. Recursive functions in CCSA provide a framework
for a well-funded order to build such inductive proofs. Second,



we are also working on adding other standard cryptographic
primitives. While the work described here focuses on symmetric
encryption, we plan to add support for IND-CCA asymmetric
encryption and PRF keyed hash functions. In addition, our end
goal is to implement a type-checker for our type system into
the SQUIRREL prover, so that users may show weak secrecy
properties by typing, and use them as part of larger SQUIRREL
developments.

REFERENCES

[1] D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE
Trans. Information Theory, vol. 29, no. 2, pp. 198–207, 1983.

[2] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,
and B. Parno, “SoK: Computer-aided cryptography,” in 2021 2021 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2021, pp. 777–795. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00008

[3] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput.
Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984. [Online]. Available:
https://doi.org/10.1016/0022-0000(84)90070-9

[4] G. Bana and H. Comon-Lundh, “A computationally complete symbolic
attacker for equivalence properties,” in CCS. ACM, 2014, pp. 609–620.

[5] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and S. Moreau, “An
interactive prover for protocol verification in the computational model,”
in IEEE Symposium on Security and Privacy. IEEE, 2021, pp. 537–554.

[6] D. Baelde, S. Delaune, A. Koutsos, and S. Moreau, “Cracking the stateful
nut: Computational proofs of stateful security protocols using the squirrel
proof assistant,” in CSF. IEEE, 2022, pp. 289–304.

[7] The Squirrel Prover repository. https://github.com/squirrel-prover/
squirrel-prover/.

[8] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”
ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990. [Online].
Available: https://doi.org/10.1145/77648.77649

[9] M. Bugliesi, R. Focardi, and M. Maffei, “Authenticity by tagging
and typing,” in 2004 ACM Workshop on Formal Methods in Security
Engineering, ser. FMSE ’04. New York, NY, USA: ACM, 2004, pp.
1–12.

[10] R. Focardi and M. Maffei, “Types for security protocols,” in Formal
Models and Techniques for Analyzing Security Protocols, ser. Cryptology
and Information Security Series. IOS Press, 2011, vol. 5, ch. 7, pp.
143–181.

[11] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and B. Parno, “Owl:
Compositional verification of security protocols via an information-flow
type system,” in IEEE Symposium on Security and Privacy. IEEE,
2023.

[12] D. Baelde, A. Koutsos, and J. Lallemand, “A higher-order indistinguisha-
bility logic for cryptographic reasoning,” in 38th Symposium on Logic
in Computer Science (LICS), 2023.

APPENDIX

To represent formally the messages from the WMF protocol,
we expand our signature with:
• a function of arity 3 expressing conditional branching

"if · then · else ·",
• a constant fail representing the value returned when the

decryption algorithm fails,
• and a constant empty representing an empty message.
The first message sent by A is m1 = {n}r1kAS

. Then, we
denote by t the result of the decryption performed by the server
S: i.e. t = sdec(att(m1), kAS). Lastly, the message sent by S
and denoted m2 is:

m2 = if t 6= fail then {t}r2kBS
else empty.

In order to type m1 and m2, we need to introduce two
other types: Bool for boolean terms and Fail for the term fail.

When we derive typing judgements, we have to make sure
that the randomness used for encryption are used only once in
order to ensure the soundness of our typing rules. Formally, an
environment Γ is well-formed, denoted Γ ` �, if each variable
is bound at most once, and we write Γ→ (Γ1, ...,Γn) when

{r | r : Rand ∈ Γ} =
{r | r : Rand ∈ Γ1}

] . . .
] {r | r : Rand ∈ Γn}.

Here ] represents disjoint union.

In addition to the two rules (SDEC/SENC) given in Figure 1,
we present some extra rules in Figure 3. These rules are the
most important ones, and allow us to present the derivations
for the WMF protocol.

We will use these rules to type messages m1 and m2 learned
by the attacker during the execution of the WMF protocol. We
consider the environment

Γ := {n : H; kAS : SK[H]; kBS : SK[H]}.

The typing derivation for m1 is given in Figure 2. It uses the
SENC rule and removes the random r1 from the environment.

Γ ` � (ENV)
Γ ` n : H Γ(kAS) = SK[H]

(SENC)
Γ; r1 : Rand ` {n}r1kAS

: L

Fig. 2: Typing derivation D1 for message m1

The typing derivation for m2, shown in Figure 4, illustrates
the use of the rule ASSIGN. The random r1 appears twice
in m2. As we must use it only once in our derivation, we will
introduce a variable x to store this encryption. We define m′2
as the message m2 in which we replaced both occurrences of t
by the variable x. This way, the random r1 does not appear in
m′2, and m′2[x 7→ t] = m2. The term m′2 will be typed in two
different ways depending on whether the decryption succeeds
(type H) or fails (type Fail). We rely on the rule BREAKSUM
on the variable x to handle these two cases.

The derivation in Figure 4 reuses D1 written in Figure 2,
and refers to derivations D2 and D3 shown in Figures 5 and 6.
We omit in D2 the straightforward derivation that x 6= fail has
type Bool.

The two cases derived by the rule BREAKSUM illustrate
two different ways to handle conditions. When x is of type H
(Figure 5), both branches of the conditional can be typed with
the rule IF. However, when x is of type Fail (Figure 6), the
term {x}r2kBS

cannot be typed. Indeed, the type of x does not
match the type expected for a key having type SK[H]. So, we
use the rule IFFAIL to ignore this branch. The typing ensures
that this conditional is indeed always false.

In the end, we have shown that m1 and m2 have a public
type (L) in environment Γ, r1 : Rand, r2 : Rand.

https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00008
https://doi.org/10.1016/0022-0000(84)90070-9
https://github.com/squirrel-prover/squirrel-prover/
https://github.com/squirrel-prover/squirrel-prover/
https://doi.org/10.1145/77648.77649


Γ ` � (ENV)
Γ ` n : Γ(n)

Γ ` � (EMPTY)
Γ ` empty : L

Γ ` t : L (ATT)
Γ ` att(t) : L

Γ1, x : T′ ` t : T Γ2 ` t′ : T′ Γ→ (Γ1,Γ2)
(ASSIGN)

Γ ` t[x 7→ t′] : T

Γ, x : T1 ` t : T Γ, x : T2 ` t : T
(BREAKSUM)

Γ, x : T1 + T2 ` t : T

Γ1 ` t1 : Bool Γ2 ` t2 : T Γ3 ` t3 : T Γ→ (Γ1,Γ2,Γ3)
(IF)

Γ ` if t1 then t2 else t3 : T

Γ1 ` t1 : Fail Γ3 ` t3 : T Γ→ (Γ1,Γ3)
(IFFAIL)

Γ ` if t1 6= fail then t2 else t3 : T

Fig. 3: Typing rules

D2

Γ, r2 : Rand, x : H ` m′2 : L

D3

Γ, r2 : Rand, x : Fail ` m′2 : L
(BREAKSUM)

Γ, r2 : Rand, x : H + Fail ` m′2 : L

D1

Γ, r1 : Rand ` m1 : L
(ATT)

Γ, r1 : Rand ` att(m1) : L Γ(kAS) = SK[H]

Γ, r1 : Rand ` t : H + Fail
(ASSIGN)

Γ, r1 : Rand, r2 : Rand ` m2 : L

Fig. 4: Typing derivation for message m2

...
Γ, x : H ` x 6= fail : Bool

Γ, x : H ` �
(ENV)

Γ, x : H ` x : H Γ(kBS) = SK[H]
(SENC)

Γ, r2 : Rand, x : H ` {x}r2kBS
: L

Γ, x : H ` �
(EMPTY)

Γ, x : H ` empty : L
(IF)

Γ, r2 : Rand, x : H ` if x 6= fail then {x}r2kBS
else empty : L

Fig. 5: Typing derivation D2 - case x of type H

Γ, r2 : Rand, x : Fail ` �
(ENV)

Γ, r2 : Rand, x : Fail ` x : Fail

Γ, r2 : Rand, x : Fail ` �
(EMPTY)

Γ, r2 : Rand, x : Fail ` empty : L
(IFFAIL)

Γ, r2 : Rand, x : Fail ` if x 6= fail then {x}r2kBS
else empty : L

Fig. 6: Typing derivation D3 - case x of type Fail


	Introduction
	Type system
	Model
	Types and typing rules
	Soundness

	Work in progress
	References
	Appendix

