

Integration

Programming IPv6 Applications

IPv6 Courses

 $\bigcirc \mathsf{G6}$ Association

January 21, 2014

© G6 Association January 21, 2014 1 / 75

istic Table of Contents

Integration

Programming IPv6 Applications

- Integration
- Programming IPv6 Applications

© G6 Association January 21, 2014 2 / 75

Integration Why IPv6 Integration?

istic IPv6 Integration: Why?

Integration

Why IPv6 Integration ?

6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

IPv4 address space depletion

- IANA pool already depleted (Feb. 2011)
- Projection on RIR pool depletion: 2011-2012 (per RIR basis)
- LIRs' pools will be depleted later...
- New companies will not be able to get IPv4 address space
- Existing companies will not be able to extend theirs

Complexity increasing in the IPv4 world (networks & services):

- Lack/absence of routable IPv4 addresses
- NAT violates the "end-to-end" principle, multiple-level NATs coming (NAT444)!
- Even private space (RFC 1918) is not enough for some networks (example: Comcast would need 100 M + @ to address their subscribers' set-top boxes)
- NAT Traversal development cost is getting unbearable

© G6 Association January 21, 2014 4 / 75

istic Why Integration?

Integration

Why IPv6 Integration ?

6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- IPv4 and IPv6 are incompatible
 - Different packet format
 - Prefixes are different
- No backward compatibility, but management is very similar.
- IETF planned to deploy IPv6 then make IPv4 disappeared
 - but Metcalf's law was on IPv4 side.
 - Content on IPv4, so few actors moved.
 - Not a complete chain so access is difficult.
- Some Integration mechanisms are dangerous

CC BY-SA

©G6 Association

January 21, 2014

5 / 75

istic Easy integration? Not completely true

Integration

Why IPv6 Integration ?

6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- OSes have integrated IPv6
 - Window 7, iOS, Linux,...
- Some applications are compatible with IPv6
 - $\bullet \quad \mathbf{See} \ \ \mathbf{\mathring{W}} \ \mathbf{http://en.wikipedia.org/wiki/Comparison_of_IPv6_application_support} \\$
- Routers have integrated IPv6
 - Cisco, Juniper, ALU,...
- but the chain is not complete, so IPv6 is not fully available
- An address is not only used to forward packet
 - Allocation procedures
 - Management (size is different)
 - . . .
- IPv6 is new. Test products before production!

Integration6 generic scenarios

istic Communications Model

Integration
Why IPv6
Integration?
6 generic
scenarios

Tools overview
Scenarios
Backbone
operator
Internet Access
Provider
3G/LTE
Enterprise
Home network
and SOHO

Programming IPv6 Applications

Who initiates communication towards whom (6 possibilities)?

- An IPv4 system connects to an IPv4 system through an IPv4 network
- ② An IPv6 system connects to an IPv6 system through an IPv6 network
- An IPv4 system connects to an IPv4 system through an IPv6 network
- 4 An IPv6 system connects to an IPv6 system through an IPv4 network
- 6 An IPv4 system connects to an IPv6 system
- On IPv6 system connects to an IPv4 system

Complexity

- 1) & 2) : Quite obvious
- 3) & 4) : Less easy but no real problem
- 5) & 6): Quite complex. There is no global solution today (different partial solutions following different approaches)

© G6 Association January 21, 2014 8 / 75

An IPv4 system connects to an IPv4 system through an IPv4 network

Integration

Why IPv6 Integration ?

6 generic

Tools overview Scenarios Backbone operator Internet Access

Provider
3G/LTE
Enterprise

Home network and SOHO

Programming IPv6 Applications

(CC) BY-SA

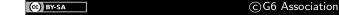
©G6 Association

January 21, 2014

9 / 75

An IPv6 system connects to an IPv6 system through an IPv6 network

Integration


Why IPv6 Integration ?

6 generic scenarios

Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

January 21, 2014

10 / 75

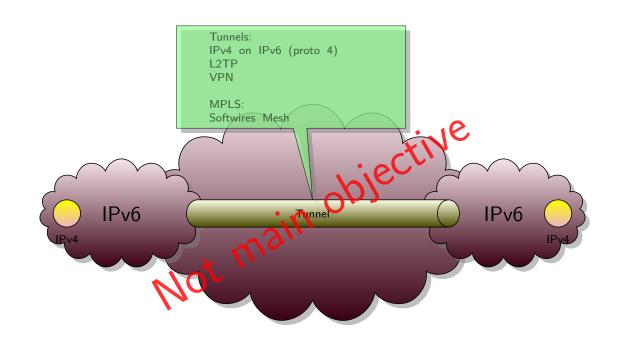
An IPv4 system connects to an IPv4 system through an IPv6 network

Integration

Why IPv6 Integration ?

6 generic

operator


Tools overview Scenarios Backbone

Internet Access Provider 3G/LTE

Enterprise

Home network and SOHO

Programming IPv6 Applications

CC BY-SA

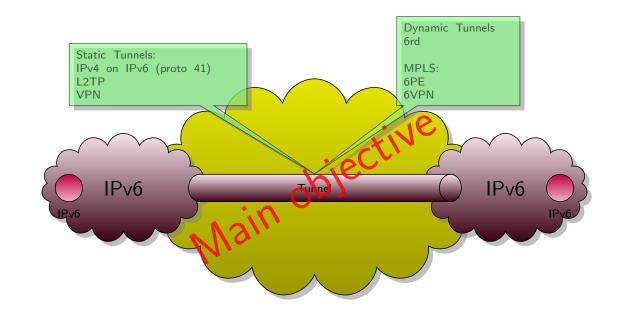
©G6 Association

January 21, 2014

11 / 75

An IPv6 system connects to an IPv6 system through an IPv4 network

Integration


Why IPv6 Integration ?

6 generic

Tools overview Scenarios Backbone operator Internet Access Provider

3G/LTE Enterprise Home network and SOHO

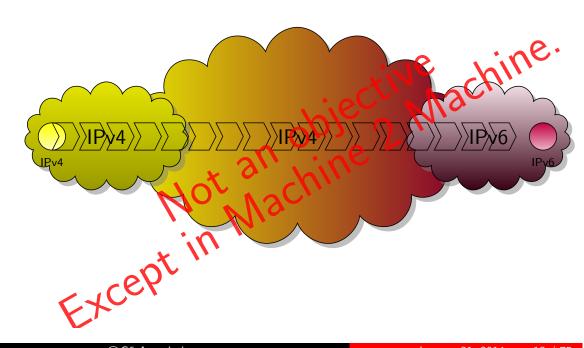
Programming IPv6 Applications

© G6 Association January 21, 2014 12 / 75

istic An IPv4 system connects to an IPv6 system

Integration

Why IPv6 Integration ?


6 generic

Tools overview Scenarios Backbone operator Internet Access

Provider
3G/LTE
Enterprise

Home network and SOHO

Programming IPv6 Applications

(CC) BY-SA

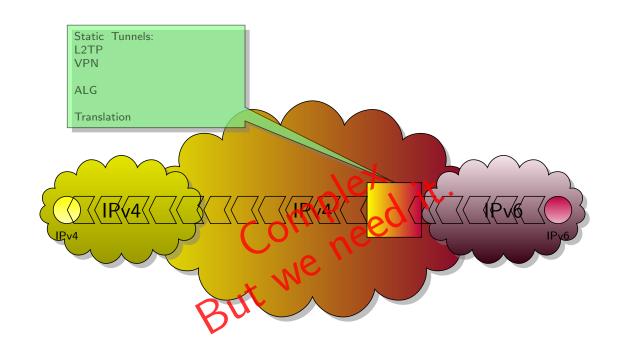
©G6 Association

January 21, 2014

13 / 75

istic An IPv6 system connects to an IPv4 system

Integration


Why IPv6 Integration ?

6 generic scenarios Tools overview

Scenarios Backbone operator Internet Access

Provider
3G/LTE
Enterprise
Home network
and SOHO

Programming IPv6 Applications

Integration Tools overview

Rough Classification of Transition/Integration Mechanisms

Integration

Why IPv6 Integration?

Tools overview

Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

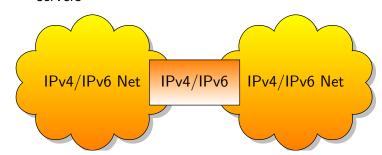
Programming IPv6 Applications

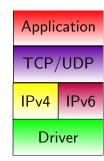
- v6-v6 or v4-v4 Communication
 - Dual-Stack: v4 and v6 are fully available end-to-end
- Tunneling
 - v4 communication through a v6 network or vice versa
 - automatic vs configured (manual) tunnels
- v4-v6 co-existence/cross-communication
 - Translation
 - Header / protocol / port (v6 \rightarrow v4 and v4 \rightarrow v6)
 - Stateless vs Stateful
 - Relays / Application Level Gateways (ALG)

© G6 Association January 21, 2014 16 / 75

istic Dual-Stack Approach (RFC 4213)

Integration


Why IPv6 Integration ? 6 generic scenarios


Tools overview

Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- IPv4 and IPv6 running on the same box
- Especially useful for "Legacy" (existing) networks
 - V6-fied (legacy) IPv4 servers can provide the same service over IPv6 transport for new IPv6-only clients (web, mail, ftp, ssh...)
 - V6-fied (legacy) IPv4 clients can query new IPv6-only servers

- But...
 - At least one IPv4 address is required for every node
 - ⇒ Alone, this approach does not fix the issue of IPv4 space exhaustion!
 - ullet \Rightarrow Need to manage both protocols

(cc) BY-SA

©G6 Association

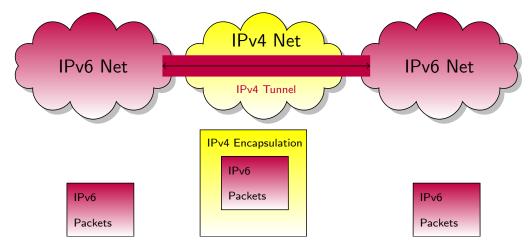
January 21, 2014

17 / 75

istic Generic Approach for "Tunneling"

Integration

Why IPv6 Integration ? 6 generic


Tools overview

Scenarios
Backbone
operator
Internet Access
Provider
3G/LTE
Enterprise
Home network
and SOHO

Programming IPv6 Applications

2 types of tunnels:

- Automatic Tunnels
 - Examples: 6to4, Teredo, ISATAP, 6PE/MPLS...
- Configured Tunnels
 - Manual, "Tunnel Broker"
- IP on IP cannot be NATed

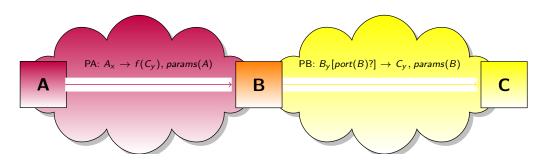
(CC) BY-SA

©G6 Association

January 21, 2014

18 / 75

istic Generic Approach for "Translation"


Integration

Why IPv6 Integration ? 6 generic scenarios

Tools overview

Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- $(x,y) \in \{(6,4),(4,6)\}$
- A is IPv_x -only, C is IPv_y -only
- A sends a packet PA to C
 - Source address: A_x
 - Destination address: $C_x = f(C_y)$ (an IP v_x mapped to C_y)
- Packet PA is intercepted by B, the translation box supporting both IPv_x and IPv_y
- Packet PA is translated into packet PB, later sent to C
 - Source address: B_y from the "shared pool", potentially with a new port(B)
 - Destination address: C_y

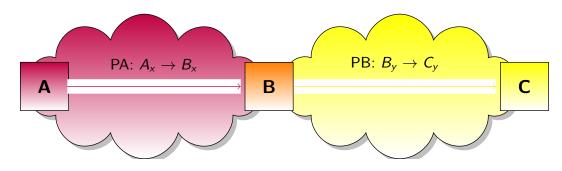
(cc) BY-SA

©G6 Association

January 21, 2014

19 / 75

istic Generic Approach for ALGs ("proxy")


Integration

Why IPv6 Integration ? 6 generic

Tools overview

Scenarios
Backbone
operator
Internet Access
Provider
3G/LTE
Enterprise
Home network
and SOHO

Programming IPv6 Applications

- $(x,y) \in \{(6,4),(4,6)\}$
- A is an IP v_x -only client; C is IP v_v -only server
- A sends to B a packet PA containing a request targeting C
 - Source address: A_x
 - Destination address: B_x
- B is a proxy supporting both IPv_x and IPv_y
- B sends to C a **new packet** PB, proxying A?s request
 - Source address: B_v
 - Destination address: C_v
- Examples: proxy web/ftp/DNS/mail...

(CC) BY-SA

©G6 Association

January 21, 2014

20 / 75

Integration Scenarios

istic Where to act, what to do exactly?

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview

Scenarios

Backbone operator Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- For ISPs/Operators
 - Backbone routers, Border routers (peering, transit)
 - Performances, Management
 - Access equipment (wired or wireless)
 - Prefix Allocation
- For users (individuals, enterprise, campus...):
 - LAN (routers if any)
 - Firewalls
 - Connectivity (CPE, PE)
 - Getting through their v4 ISP or bypassing it
- For everybody:
 - OS (local and distant)
 - Network applications or applications invoking the network even transiently

IPv6 is not mandatory everywhere to start Integration

Integration Backbone operator

istic Backbone operators

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios

Backbone operator

Internet Access Provider 3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- Forward IPv6 as fast as IPv4
- Some old routers forward IPv6 in the supervision card
 - bad performances
- Tunnel is not a good solution
 - bad performances due to encapsulation
- MPLS is your friend.
 - L2VPN
 - 6PE
 - 6VPN
- Few have the opposite problem:
 - How to carry IPv4 traffic on an IPv6 backbone
 - Softwires mesh

© G6 Association January 21, 2014 24 / 75

Integration Internet Access Provider

istic ISP

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

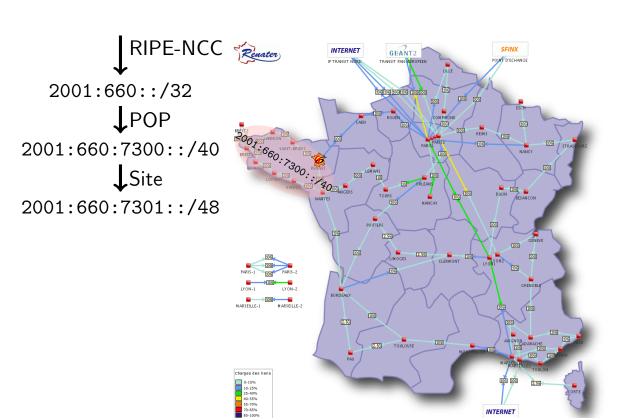
3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- Performances in forwarding (not so strict)
 - may use tunnels
- Allocate IPv6 prefixes
 - Lawfull IP address identification.
- May suffer from IPv4 shortage
- Different strategies exist

© G6 Association January 21, 2014 26 / 75

istic Define an addressing plan (Renater case study)


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

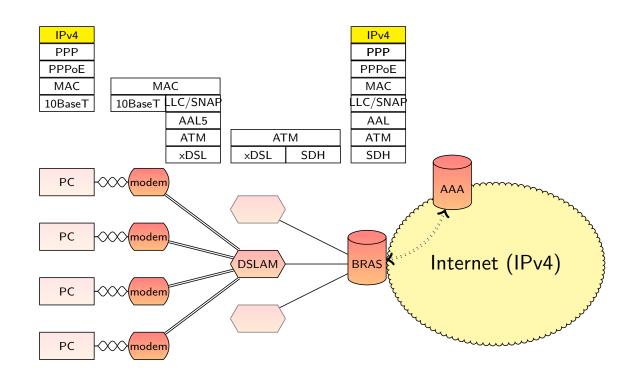
CC BY-SA

©G6 Association

January 21, 2014

27 / 75

istic ADSL Architecture


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

©G6 Association

January 21, 2014

28 / 75

istic ADSL Architecture

Integration


Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone

Internet Access Provider

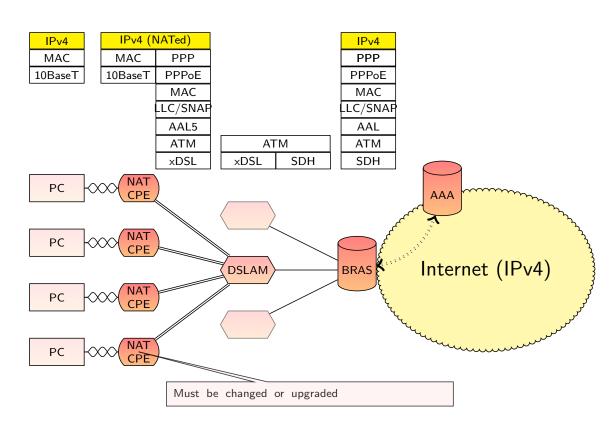
operator

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© BY-SA C G6 Association January 21, 2014 28 / 75

istic ADSL Architecture (Box or CPE)


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

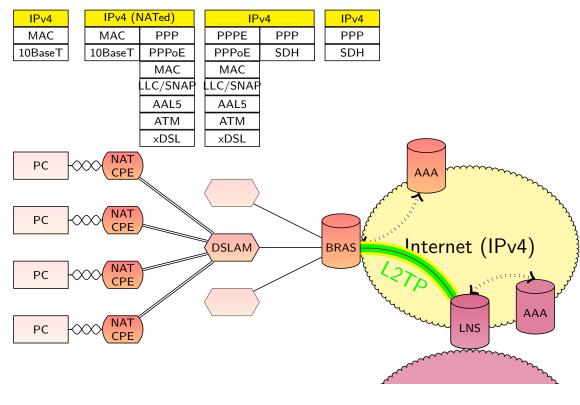
3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 29 / 75

istic ADSL Architecture (3rd Generation DSLAM)

Integration


Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone

Internet Access Provider

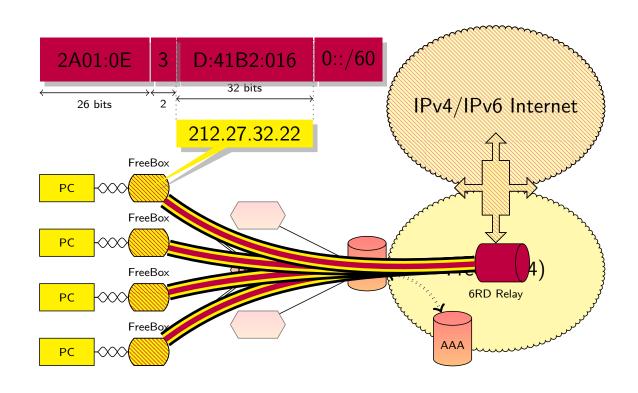
operator

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 30 / 75

istic Free - 6rd (RFC 5969)


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

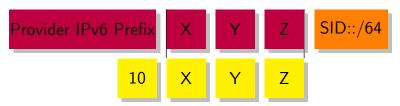
3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 31 / 75

istic 6rd

Integration


Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

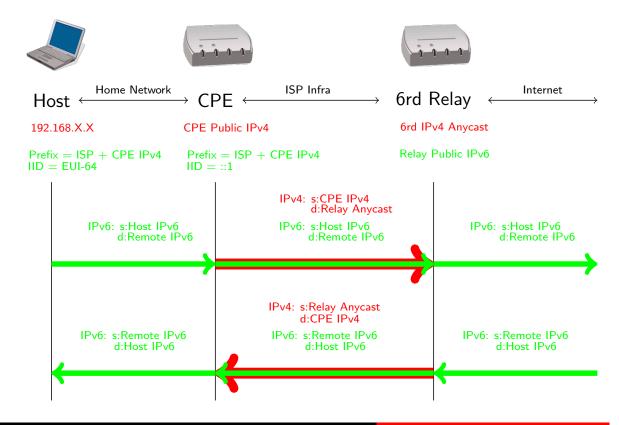
3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

- Core network or DSLAM are not changed:
 - only some 6RD relays and CPE modification.
- IPv6 prefixes are stable if IPv4 addresses are stable
- No need to manage/log IPv6 prefixes since IPv4 prefix is embedded
- 6RD relay is not used for internal traffic
- Deployed in Free Network in 2007 in 5 weeks.
- DHCPv4 option to setup 6RD relays (6RD Relays, and prefix lengths)
- Can work with IPv4 private addresses.

© G6 Association January 21, 2014 32 / 75

istic 6rd: Mechanism


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

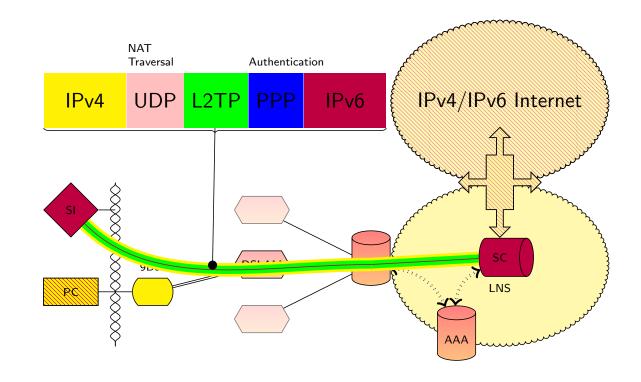
3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 33 / 75

istic SFR: Softwires: H&S Architecture RFC 5571

Integration


Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone

Internet Access Provider

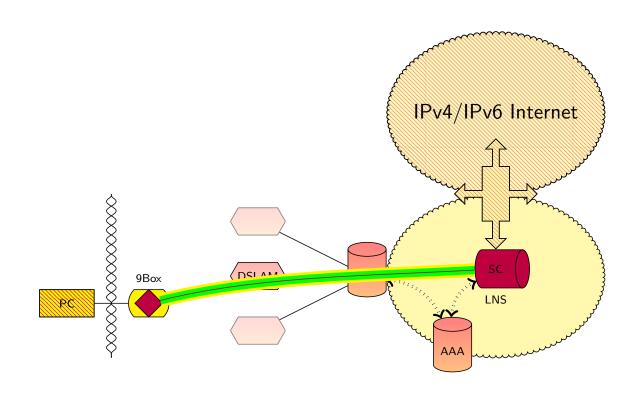
operator

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 34 / 75

istic SFR: Softwires: H&S Architecture RFC 5571


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

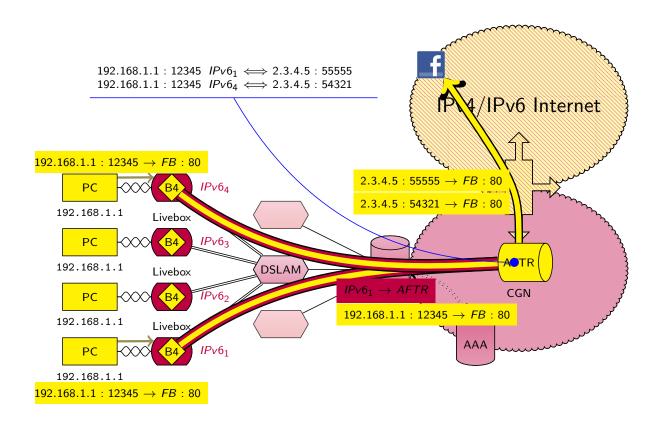
Internet Access Provider

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 34 / 75

istic France Telecom/Orange: Native + CGN


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

(cc) BY-SA

©G6 Association

January 21, 2014

35 / 75

istic France Telecom/Orange: Native + CGN

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

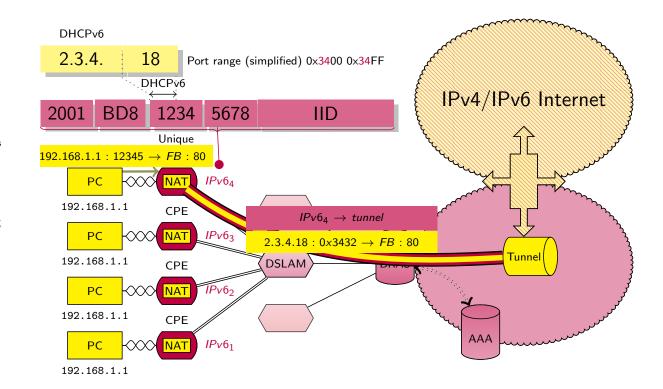
- Carrier Grade NAT deals with IPv4 address exhaustion:
 - No IPv4 address for the infrastructure
 - An IPv4 address is shared among several users
 - A user consumes about 300 port numbers
 - Less is needed (2 or 3 users per address)
- Less scalable than user NAT
 - More traffic from different users
 - for incoming traffic must map a port number to an IPv6 address
- Must take into account:
 - UPnP: Send UPnP traffic to CGN (see Port Control Protocol)
 - Static Mapping: Web page on AFTER
- Legal identification is complex:
 - Log per flow
 - Need IPv4 address, port number and time.

©G6 Association

January 21, 2014

36 / 75

istic 4rd (main idea)


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator

Internet Access Provider

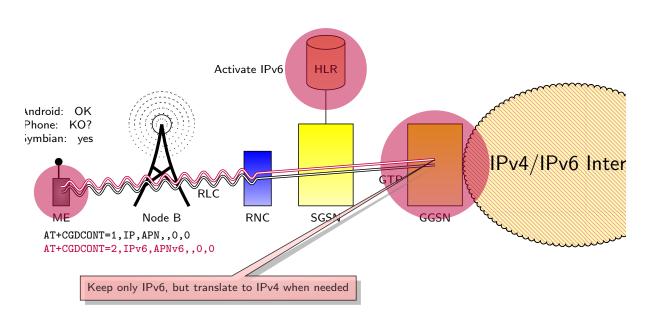
3G/LTE Enterprise Home network and SOHO

Programming IPv6 Applications

© BY-SA C G6 Association January 21, 2014 37 / 75

Integration 3G/LTE

istic 3G data


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access

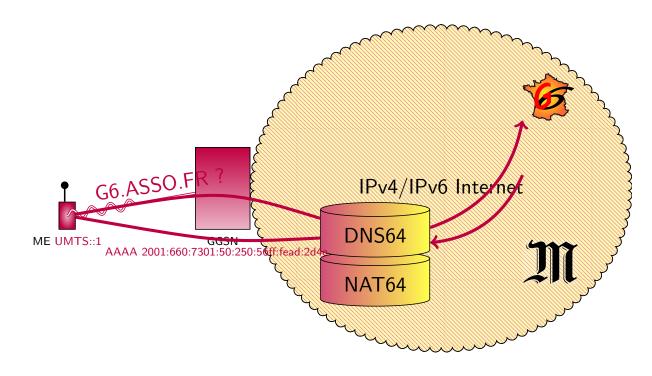
Provider 3G/LTE

Enterprise Home network and SOHO

Programming IPv6 Applications

ME: Mobile Equipment, RNC: Radio Network Controller, SGSN: Serving GPRS Support Node, GGSN: Gateway GPRS Support Node, HLR: Home Location Register, GTP: GPRS Tunnelling Protocol RLC: Radio Link Control

© G6 Association January 21, 2014 39 / 75


istic 3G data + NAT64/DNS64

Integration

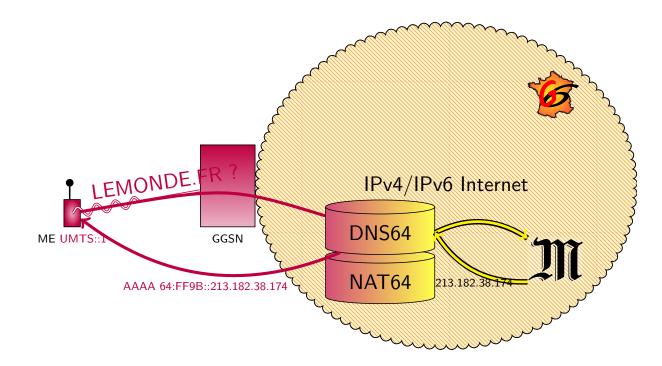
Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise

Enterprise
Home network
and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 40 / 75

istic 3G data + NAT64/DNS64


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider

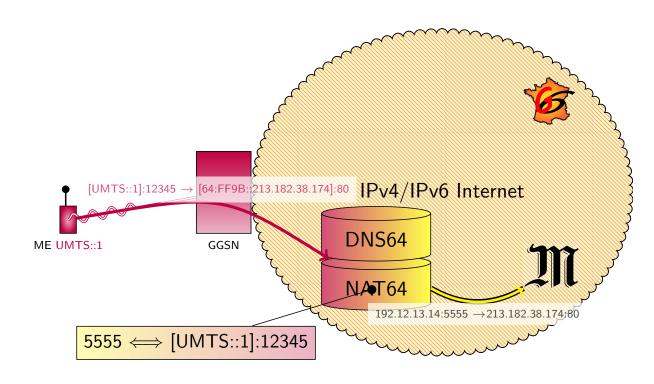
3G/LTE

Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 40 / 75

istic 3G data + NAT64/DNS64


Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider

3G/LTE

Enterprise Home network and SOHO

Programming IPv6 Applications

© G6 Association January 21, 2014 40 / 75

Integration Enterprise

istic Entreprise Network

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE

${\sf Enterprise}$

Home network and SOHO

Programming IPv6 Applications

- Anticipate: include IPv6 in calls for tenders.
 - RIPE 501 is your friend (Whttp://www.ripe.net/ripe/docs/ripe-501)
- Define your goal:
 - Test: learn about IPv6 or develop products
 - Get temporary connectivity (Tunnel Brokers)
 - V6fy Extranet or/and Intranet
 - Get permanent connectivity and prefix
 - Define addressing plan
 - Define security rules

© G6 Association January 21, 2014 42 / 75

istic Tunnel Broker (RFC 3053)

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE

Enterprise

Home network and SOHO

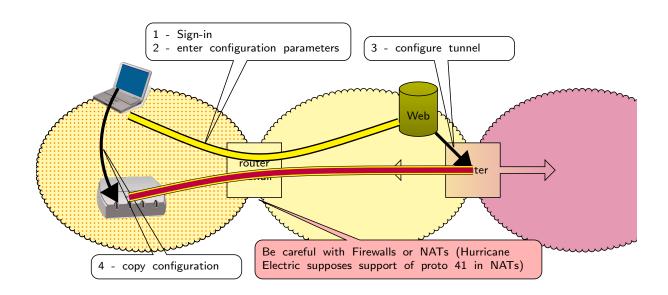
Programming IPv6 Applications

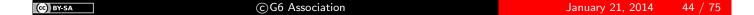
- Hurricane Electric (Wtunnelbroker.com)
 - Standard and BGP tunnels
 - Point of Presence in Asia, North America and Europe
- Sixxs (Whttp://www.sixxs.net/main/)
 - Worldwide
- gogo6 (Whttp://gogonet.gogo6.com/page/freenet6-tunnelbroker)
 - Few Point of Presence
 - in Canada
 - NAT Traversal

© G6 Association January 21, 2014 43 / 75

istic Tunnel Brokers

Integration


Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone


operator Internet Access Provider 3G/LTE

Enterprise

Home network and SOHO

Programming IPv6 Applications

istic Application Level Gateway

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider

3G/LTE Enterprise

Home network and SOHO

Programming IPv6 Applications

How to enable IPv6 access to a production Web site

www A 192.0.2.1 AAAA 2001:db8:1:1::1:1

DNS Server

(cc) BY-SA

©G6 Association

January 21, 2014

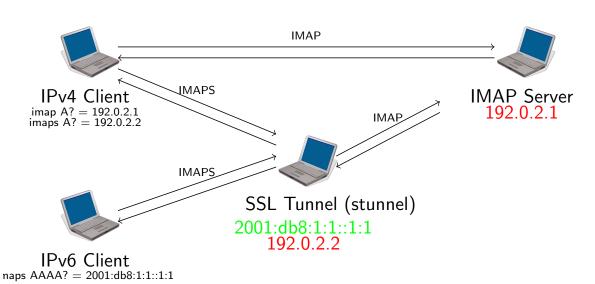
45 / 75

istic SSL Tunnel

Integration Why IPv6

Integration ?
6 generic scenarios
Tools overview
Scenarios
Backbone operator
Internet Access
Provider

$\begin{array}{c} {\rm 3G/LTE} \\ {\rm Enterprise} \end{array}$


Home network and SOHO

Programming IPv6 Applications How to enable IPv6 access to a production Mail server

imaps A 192.0.2.1 imaps A 192.0.2.2

AAAA 2001:db8:1:1::1:1

(CC) BY-SA

©G6 Association

January 21, 2014

46 / 75

istic Monitor IPv6 usage

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE

Enterprise

Home network and SOHO

Programming IPv6 Applications

Monitoring IPv6 is important for

- See impact of IPv6 deployement
- Ensure same Quality of Service in IPv4 an IPv6

Tools

- Traffic: MRTG/Cacti, Netflow v9...
- Services: Nagios, Zabbix...

Dual-Stack requires dual check!

Need to check service reachability BOTH in IPv4 AND in IPv6

© G6 Association January 21, 2014 47 / 75

Integration
Home network and SOHO

istic Home Network

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise

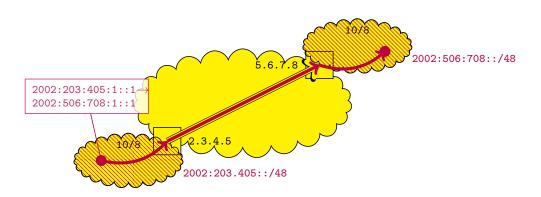
Home network and SOHO

Programming IPv6 Applications

- Must (should) be transparent for the end-users
- Last Mile is not currently v6fied
- Wait or used Tunnel Brokers
 - DO NOT USE TEREDO OR 6to4
- homenet IETF working group specifies home network behavior for IPv6
 - Today: star topology around single CPE
 - Tomorrow: Mesh network and multi-homing
 - Internet of things
 - smart grid
 -

© G6 Association January 21, 2014 49 / 75

istic 6to4


Integration Why IPv6

Integration ?
6 generic scenarios
Tools overview
Scenarios
Backbone operator
Internet Access
Provider
3G/LTE
Enterprise

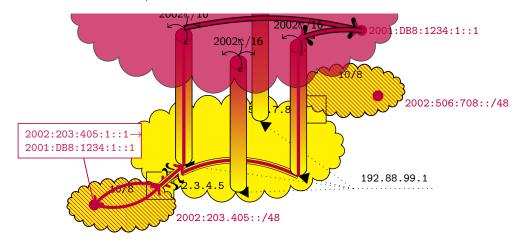
Home network and SOHO

Programming IPv6 Applications

- based on the magic formula 16+32=48
 - \bullet 2002::/16 + IPv4 address

- Cannot cross NAT (need to know public address)
- Bad performances.

istic 6to4


Integration Why IPv6

Integration ?
6 generic scenarios
Tools overview
Scenarios
Backbone operator
Internet Access
Provider
3G/LTE

Enterprise Home network and SOHO

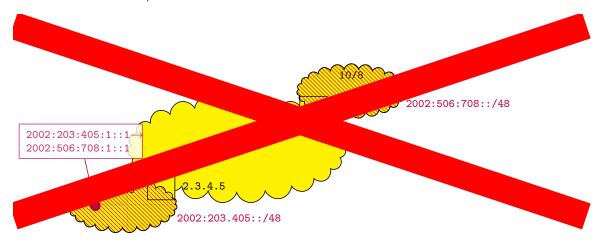
Programming IPv6 Applications

- based on the magic formula 16+32=48
 - 2002::/16 + IPv4 address

- Cannot cross NAT (need to know public address)
- Bad performances.

© G6 Association January 21, 2014 50 / 75

istic 6to4


Integration Why IPv6

Integration ?
6 generic scenarios
Tools overview
Scenarios
Backbone operator
Internet Access
Provider
3G/LTE
Enterprise

Home network and SOHO

Programming IPv6 Applications

- based on the magic formula 16+32=48
 - \bullet 2002::/16 + IPv4 address

- Cannot cross NAT (need to know public address)
- Bad performances.

istic TEREDO

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise

Home network and SOHO

Programming IPv6 Applications

Based on NAT Traversal protocol

• 2001::/32 allocated to this mechanism.

© G6 Association January 21, 2014 51 / 75

istic Performances?

Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise

Home network and SOHO

Programming IPv6 Applications

- If performances with 6to4 and TEREDO are worst than with IPv4
- What happens if a site decides to activate dual stack on its servers?
 - Customers will run away
- if IPv6 is dead
 - client starts will IPv6 and then after a long timeout tries
 IPv4
 - bad performances
- Happy Eyes Ball: try IPv4 and IPv6 simultaneously
- Test the same day IPv6 on main sites
 - Customer will not run away

©G6 Association January 21, 2014 52 / 75

istic Performances?

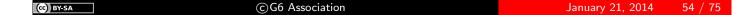
Integration

Why IPv6 Integration ? 6 generic scenarios Tools overview Scenarios Backbone operator Internet Access Provider 3G/LTE Enterprise

Home network and SOHO

Programming IPv6 Applications

- the 6/8/11: v6Day
 - Good news: nobody notice it
 - 0.3% of IPv6 traffic
- Conclusion: Activating IPv6 do not create troubles
- 6/6/12: IPv6 activated on main sites (google, yahoo, facebook, akamai,...)
 - Potentially 50% of Internet traffic
 - in reality less since access network is missing


© G6 Association January 21, 2014 53 / 75

istic

Integration

Programming IPv6
Applications
CC++ API
JAVA API

IPv6 socket API in C, C++

istic Socket API

Integration

Programming IPv6 Applications CC++ API JAVA API

- Socket Unix API has been extended to IPv6
- New protocol and address family PF_INET6 and AF_INET6
- New structures :
 - in6_addr
 - sockaddr_in6
 - sockaddr_storage
- New functions for names to addresses conversion

```
Reference
RFC 2553 & Posix 1003.1g
```

© G6 Association January 21, 2014 55 / 75

istic Structure for sockets

Integration

Programming IPv6
Applications
CC++ API
JAVA API

```
Structure in C, C++
```

```
struct sockaddr_in6 {
                                   /* structure length
  uint8_t
                   sin6_len;
  sa_family_t
                   sin6_family;
                                   /* AF_INET6
                                   /* transport layer port
  in_port_t
                   sin6_port;
                   sin6_flowinfo;
                                   /* IPv6 traffic class & flow info
  uint32_t
                                   /* IPv6 address
  struct in6_addr
                   sin6_addr;
  uint32_t
                                   /* set of interfaces for a scope
                   sin6_scope_id;
};
```

- Similar to sockaddr_in for IPv4
- New fields for scope and flow label

sizeof(sockaddr_in6) > sizeof(sosckaddr_in)

- sockaddr_in6 can not be stored in struct sockaddr
- Programs have to be modified to be AF-independent!

© G6 Association January 21, 2014 56 / 75

Integration

Programming IPv6
Applications
CC++ API
JAVA API

Managing Sockets in C, C++

(CC) BY-SA

©G6 Association

January 21, 2014

57 / 75

istic Managing sockets

Integration

Programming IPv6
Applications
CC++ API
JAVA API

- Creation : Same as in IPv4
 - int s = socket(PF_INET6, SOCK_STREAM, 0);
- Other functions are not modified
 - bind, connect, listen, accept, send*, recv*, getpeername, getsockname
- New functions to manage options
 - getsockopt, setsockopt

© G6 Association January 21, 2014 58 / 75

istic Sockets and address families

Integration

Programming IPv6 Applications CC++ API JAVA API 2 options for applications:

- Only use PF_INET6 socket
 - On a IPv4 networks, use IPv4-mapped IPv6 addresses
 - Problem: when IPv6 stack is not available ...
- Use one PF_INET socket and one PF_INET6 socket
 - Client knows which socket to open with getaddrinfo
 - Server should wait for packets on both sockets

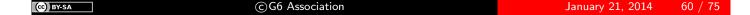
```
Examples found with netstat -taun (MacOSX)
```

```
Proto Rec Send Local Foreign State tcp46 0 0 *.80 *.* LISTEN \leftarrow Apache server uses first option ... tcp4 0 0 *.22 *.* LISTEN \leftarrow SSH server uses second option tcp6 0 0 *.22 *.* LISTEN \leftarrow
```

(cc) BY-SA

© G6 Association

January 21, 2014


59 / 75

istic Example : Client connection

Integration

Programming IPv6 Applications CC++ API JAVA API

```
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netdb.h>
int open_conn(const char *host) {
    int sock = -1, ecode;
    struct addrinfo *res, *r, hints = {
        0, PF_UNSPEC, SOCK_STREAM, 0};
    if ((ecode = getaddrinfo(host, "daytime", &hints, &res)))
        errx(1, "getaddrinfo: %s", gai_strerror(ecode));
    for (r = res; r \&\& sock < 0; r = res->ai_next)
        if ((sock = socket(res->ai_family, res->ai_socktype, res->ai_protocol)) < 0 ||
            connect(sock, res->ai_addr, res->ai_addrlen))
            sock = -1:
    freeaddrinfo(res);
    return sock;
}
```


istic Example : Server socket

Integration

Programming IPv6 Applications CC++ API JAVA API

```
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netdb.h>
int open_serv(const char *serv) {
    int sock, ecode;
    struct addrinfo *res, hints = {
        AI_PASSIVE, PF_UNSPEC, SOCK_STREAM, 0};
    if ((ecode = getaddrinfo(NULL, serv, &hints, &res))
        errx(1, "getaddrinfo: %s", gai_strerror(ecode));
    if ((sock = socket(res->ai_family, res->ai_socktype,res->ai_protocol)) < 0) ||</pre>
         bind(sock, res->ai_addr, res->ai_addrlen) ||
        listen(sock, 1))
        err(1, "socket");
    freeaddrinfo(res);
    return sock;
}
```

(cc) BY-SA

©G6 Association

January 21, 2014

61 / 75

istic Example : Server connection

Integration

```
Programming
IPv6
Applications
CC++ API
JAVA API
```


Integration

Programming IPv6 Applications CC++ API JAVA API

Rules to anticipate integration of IPv6 protocol

© G6 Association January 21, 2014 63 / 75

istic Generic structure for sockets

Integration

Programming IPv6
Applications
CC++ API
JAVA API

- Programs should use struct sockaddr_storage to be AF-independent
- Cast depending of AF when needed

```
Socket containers

struct sockaddr_storage ss;
foo((struct sockaddr *)&ss);  // AF independent function

void foo(struct sockaddr *s) {
    // If we need IPv4 socket
    struct sockaddr_in *sin = (struct sockaddr_in *) s;
    // If we need IPv6 socket
    struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) s;
}
```

© G6 Association January 21, 2014 64 / 75

istic Address manipulation : getaddrinfo()

Integration

Programming IPv6 Applications CC++ API JAVA API

```
getaddrinfo() Prototype
```

- Generic function for name resolution, AF-independent
- Replace function gethostbyname
- servname: String for protocol name ("http") or port number ("80")
- hints: Refine request (IPv4 only, IPv6 only, IPv4/IPv6)
- May return more than one result!

(CO) BY-SA

©G6 Association

January 21, 2014

65 / 75

istic Address manipulation : getnameinfo()

Integration

Programming IPv6 Applications CC++ API JAVA API

```
getnameinfo() Prototype
```

- Generic function for reverse resolution, AF-independent
- Replace function gethostbyaddr

© G6 Association January 21, 2014 66 / 75

istic Macros

Integration

Programming IPv6
Applications
CC++ API
JAVA API

Macros to test nature of address:

- IN6_IS_ADDR_UNSPECIFIED (struct in6_addr *);
- IN6_IS_ADDR_LOOPBACK (struct in6_addr *);
- IN6_IS_ADDR_MULTICAST (struct in6_addr *);
- IN6_IS_ADDR_LINKLOCAL (struct in6_addr *);

Macros to test address equality:

• IN6_ARE_ADDR_EQUAL (struct in6_addr *, struct in6_addr *);

(cc) BY-SA

©G6 Association

January 21, 2014

67 / 75

istic

Integration

Programming IPv6
Applications
CC++ API
JAVA API

Migrate existing applications

©G6 Association

istic Porting applications to IPv6 (in a nutshell)

Integration

Programming IPv6 Applications CC++ API JAVA API

1: Replace IPv4-only structures and functions with AF-independent version

Generic Structure & Functions

```
\begin{array}{l} {\sf hostent} \to {\sf addrinfo} \\ {\sf sockaddr\_in} \to {\sf sockaddr\_storage} \\ {\sf gethostbyname} \to {\sf getaddrinfo} \\ {\sf gethostbyaddr} \to {\sf getnameinfo} \end{array}
```

- 2: Look for particular usage of IP address structure in_addr
 - Applications sometimes use IP addresses as host identifier
 - This should be made AF-independent

(cc) BY-SA

©G6 Association

January 21, 201<u>4</u>

69 / 75

istic Porting applications to IPv6 (in a nutshell)

Integration

Programming IPv6
Applications
CC++ API
JAVA API

- 3: Choose a strategy when opening socket (one or two sockets ?)
- 4: Consider one host may have more than one address!
 - With getaddrinfo you may have one IPv4 and several IPv6 addresses for one host
 - To be also considered when using address as host identifier
- 5: Beware of textual representation of IP addresses

Beware

http://[2001:660:7301:1::1]

scp foo.bar [2001:660:7301:1::1]:/tmp

© G6 Association January 21, 2014 70 / 75

Integration

Programming IPv6 Applications CC++ API JAVA API

IPv6 JAVA API

(CC) BY-SA

©G6 Association

January 21, 2014

71 / 75

istic IP

IPv6 Support in Java

Integration

Programming IPv6 Applications CC++ API JAVA API

- Java support IPv6 since JDK 1.2, extended with JDK 1.4
- Extension have been made for class InetAddress
- Inheritance and polymorphism ensures relative transparency for version of manipulated addresses

© G6 Association January 21, 2014 72 / 75

istic Inet6Address

Integration

Programming IPv6 Applications CC++ API JAVA API

New subclass of InetAddress (with Inet4Address)

- Class for instanciate IPv6 addresses
- Methods for checking address scope :
 - isIPv4CompatibleAddress (for IPv4-mapped addresses)
 - isLinkLocalAddress
 - isMulticastAddress

(CC) BY-SA

©G6 Association

January 21, 2014

73 / 75

istic InetAddress

Integration

Programming IPv6 Applications CC++ API JAVA API

InetAddress objects may be either IPv4 or IPv6 address
InetAddress class extended for DNS resolution

- Method getByName returns only IPv4 name resolution
- New method getAllByName returns all possible name resolutions (IPv4 and IPv6)
- Reverse resolution unchanged

Changes for IPv6 support

Name resolution using getByName should be changed to use getAllByName and uses the returned array of addresses

© G6 Association January 21, 2014 74 / 75

istic Socket API

Integration

Programming IPv6 Applications CC++ API JAVA API

- $\hbox{ \bullet Socket API is based on super-class InetAddress} \to \hbox{no} \\ \hbox{ major change}$
- By choosing binding address, change protocol enabled for socket
 - IPv4 binding address → Socket listening for IPv4
 - ullet IPv6 binding address o Socket listening for IPv4 and IPv6

Consequences

- Integration of IPv6 is harmless for IPv4 operations
- IPv6 will be used when correspondant address is IPv6

© G6 Association January 21, 2014 75 / 75