
1

Combining Traffic Shaping Methods with Congestion

Control Variants for HTTP Adaptive Streaming

Chiheb Ben Ameur
Orange Labs

Rennes, France
chiheb.benameur@yahoo.fr

Emmanuel Mory
Orange Labs

Rennes, France
emmanuel.mory@orange.com

Bernard Cousin
IRISA, University of Rennes 1

Rennes, France
Bernard.Cousin@irisa.fr

ABSTRACT

HTTP adaptive streaming (HAS) is a streaming video technique

widely used over the Internet. However, it has many drawbacks that

degrade its user quality of experience (QoE). Our investigation

involves several HAS clients competing for bandwidth inside the

same home network. Studies have shown that managing the

bandwidth between HAS clients using traffic shaping methods

improves the QoE. Additionally, the TCP congestion control

algorithm in the HAS server may also impact the QoE because

every congestion control variant has its own method to control the

congestion window size. Based on previous work, we describe two

traffic shaping methods, the Hierarchical Token Bucket shaping

Method (HTBM) and the Receive Window Tuning Method

(RWTM), as well as four popular congestion control variants:

NewReno, Vegas, Illinois, and Cubic. In this paper, our objective

is to provide a detailed comparative evaluation of combining these

four congestion control variants with these two shaping methods.

The main result indicates that Illinois with RWTM offers the best

QoE without causing congestion. Results were validated through

experimentation and objective QoE analytical criteria.

Keywords

Traffic shaping; Congestion control; Quality of Experience;

HTTP Adaptive Streaming; Bandwidth management.

1. INTRODUCTION
HTTP adaptive streaming (HAS) is a streaming video

technique based on downloading video segments of short

duration. These segments are called chunks, and they are

streamed from a HAS server to a HAS client through the

network. Each chunk is encoded at multiple quality levels.

After requesting a chunk by an HTTP GET request message,

when the chunk is received, the player on the client side

stores it in a playback buffer. The HAS player operates in

one of two states: a buffering state and a steady state. During

the first state, the player requests a new chunk as soon as a

previous chunk has been downloaded, until the playback

buffer is filled. However, during the steady state, the player

requests chunks periodically in order to maintain a constant

playback buffer size. The steady state includes periods of

activity (ON periods) followed by periods of inactivity (OFF

periods) [9], [11].

The Quality of Experience (QoE) of an HTTP adaptive

stream depends primarily on three criteria:

1. Video quality level stability [1], [11]: A frequent change

of video quality level bothers the user. Therefore,

quality level fluctuation should be avoided to improve

the QoE.

2. Fidelity to optimal quality level selection: The user

prefers to watch the best video quality level, when

possible. Therefore, the HAS player should select the

optimal quality level, which is the highest feasible

quality level allowed by the available bandwidth.

3. Convergence speed: The user prefers to view the

optimal quality level as soon as possible. Accordingly,

the HAS player should rapidly select the optimal quality

level. The delay that the player requires before the

optimal quality level has been attained is called the

convergence speed [1].

We studied a general use case in which several HAS clients

are located in the same home network. In this use case, QoE

degradations can be grouped into two main causes:

 Congestion events:

Video packets sent from the server to the client pass through

many network devices. Each device has one or many queues

that use a queuing discipline to schedule network packets.

The implemented algorithm decides whether to route or drop

incoming packets in order to avoid network congestion. The

main bottleneck occurs near the home gateway, and more

precisely, in the link between DSLAM and home gateway

[12]. In fact, the DSLAM may considerably reduce the

bandwidth offered to the home network, and it is more likely

to drop packets than any other network device. To minimize

network effects on the delivery, the TCP protocol

implements a “congestion control algorithm” on the sender

side, which reduces the bitrate of packets sent to the receiver

when a packet is lost. However, this bitrate reduction may

degrade QoE. In addition, there are many congestion control

variants with different methods of managing the congestion

window size, cwnd, and detecting congestion events. These

differences may change the QoE between variants.

 Concurrence with other streams - OFF periods issue:

 The HAS player estimates the available bandwidth by

computing the download bitrate for each chunk when it has

2

finished downloading; this is done by dividing the chunk

size by its download duration. As a consequence, the player

cannot estimate the available bandwidth during OFF periods,

because no data are being received. When a HAS stream

concurs with other streams in the same home network,

accurate bandwidth estimation becomes more difficult. For

example, when two HAS streams are competing for

bandwidth and the ON period of the first player coincides

with the OFF period of the second player, the first player will

overestimate its available bandwidth. This overestimation

may lead the player to select a higher quality level for the

next chunk. This selection may lead to a congestion event

and a resulting fluctuation of quality levels between the two

players. Research has demonstrated that traffic shaping can

considerably limit this problem [1, 2, 11, 21, 25]. Traffic

shaping consists of selecting a target bitrate for each HAS

session in the home network based on bitrates of the

available quality levels and the available bandwidth. It then

shapes the outgoing traffic to each HAS client based on the

selected target bitrate.

The objective of our study is to combine two solution

categories, TCP congestion control variants to reduce the

negative effects of congestion events, and traffic shaping

methods, to restrict the drawbacks of the concurrence

between HAS streams in the home gateway. The optimal

combination will have the highest grade of QoE, i.e. the best

possible video quality level stability, best fidelity to optimal

quality level selection, and best convergence speed.

We note that there are many implementations of HAS that

are currently deployed, such as Dynamic Adaptive

Streaming over HTTP (MPEG-DASH), Microsoft Smooth

Streaming (MSS), Apple HTTP Live Streaming (HLS), and

Adobe HTTP Dynamic Streaming (HDS). For this reason,

we wish to emphasize that in this paper we only choose HAS

traffic shaping methods that do not change the HAS

implementation either in the player or in the server. This

choice provides adaptability to any HAS client or server

implementations and thus offers a larger scope of application

of our presented work.

The remainder of this paper is organized as follows. In

Section 2, we describe the background and related works. In

Section 3, we detail our methodology and experimental

implementation. Section 4 presents the results and

discussion. In Section 5, we conclude the paper and suggest

future directions for our work.

2. BACKGROUND AND RELATED WORK
In this section, we describe the TCP congestion control

variants and the HAS traffic shaping methods used in this

work, and explain the distinctions between them.

2.1 TCP congestion control variants
All TCP congestion control variants have two common

phases: a slow start phase and a congestion avoidance phase.

The slow start phase consists of increasing cwnd rapidly by

one maximum segment size (MSS) for each received

acknowledgment (ACK), i.e. the cwnd value is doubled for

each round trip time (RTT). This rapidity has an objective of

reaching a high bitrate within a short duration. When the

cwnd size exceeds a threshold called ssthresh, the TCP

congestion control algorithm switches to the second phase:

the congestion avoidance phase. This phase slowly increases

the cwnd until a congestion event is detected.

TCP congestion control variants are classified according to

two main criteria [13]:

1- The first criterion is the increase of cwnd during the

congestion avoidance phase and the decrease of cwnd

immediately following congestion detection. Generally,

the increase is additive, and the cwnd size increases by

one MSS for each RTT. For decreasing cwnd, the

standard variants employ multiplicative decreasing, i.e.

the cwnd size is weighted by a multiplicative decrease

factor (1-β), where 0 < β < 1. This category is called the

Additive Increase Multiplicative Decrease (AIMD)

approach. Other variants using different techniques are

classified as non-AIMD approaches.

2- The second criterion is the method by which the

algorithm detects congestion. We distinguish three

modes: loss-based, delay-based, and loss-delay-based

modes. The loss-based mode considers any detection of

packet loss as a congestion event. A majority of TCP

congestion control variants that use the loss-based mode

consider receiving three duplicated ACKs from the

receiver as an indication of a packet loss and, as a

consequence, as an indication of a congestion event.

However, the delay-based mode considers a significant

increase in the RTT value as the only indication of a

congestion event. The third mode, the hybrid mode,

combines the delay-based and loss-based modes to

improve congestion detection.

In order to facilitate our study, we chose four well-known

congestion control variants, and we classify them according

to the two criteria cited above:

 - NewReno [3]: This variant is designed as the standard TCP

congestion control approach. It uses the AIMD approach

with the loss-based mode. Two mechanisms are employed

immediately following congestion detection: fast retransmit

and fast recovery [14]. Fast retransmit consists of

performing a retransmission of what appears to be the

missing packet (i.e. when receiving 3 duplicate ACKs),

without waiting for the retransmission timer to expire. After

the fast retransmit algorithm sends this packet, the fast

recovery algorithm governs the transmission of new data

until a non-duplicate ACK arrives. The reason for using fast

recovery is to allow the continual sending of packets when

the receiver is still receiving packets, even if some packets

are lost.

3

1: NewReno: ssthresh = max(cwnd/2, 2 MSS)

2: Vegas: ssthresh = min(ssthresh, cwnd - 1)

3: Illinois: ssthresh = max(cwnd.(1-β), 2 MSS)

4: Cubic: ssthresh = max(cwnd.(1-β), 2 MSS)

 1: ssthresh = max(ssthresh, ¾ cwnd)

 2: for i=1 to int(idle/RTO) do

 3: cwnd = max (min (cwnd , rwnd)/2, 1 MSS)

 4: end for

 - Vegas [4]: This non-AIMD variant is an Additive Increase

Additive Decrease (AIAD) variant. It is a delay-based

variant that accurately estimates RTT for every sent packet

and adjusts cwnd size based on actual throughput and

expected throughput. If RTT increases, cwnd decreases by

one MSS, and vice versa. Vegas is the smoothest TCP

congestion control variant [15]; it is able to allocate a fair

share of bandwidth with minimal packet loss events.

- Illinois [5]: This is a TCP loss-delay-based congestion

variant that employs a particular classification of the AIMD

approach, C-AIMD, which involves a concave window size

curve. Packet loss is used for primary congestion inference

to determine the direction (increase or decrease) of cwnd,

with a delay for secondary congestion inference to adjust the

value of the window size change. More precisely, when the

average queueing delay is small (small increase of RTT), the

sender supposes that the congestion is not imminent and

specifies a large additive increase α and small multiplicative

decrease β. In the opposite case, when the average queuing

delay is large (large increase of RTT), the sender supposes

that the congestion is imminent and selects a small α and

large β. Illinois measures RTT for each received ACK to

update α and β. Moreover, it retains the same fast recovery

and fast retransmit phases as NewReno. Illinois was

designed for high-speed and high-latency networks, where

the bandwidth-delay product is relatively high.

Consequently, it enables higher throughput than NewReno.

- Cubic [6]: This variant is loss-based, but it uses a non-

AIMD approach. A cubic function is used to increase the

cwnd in the congestion avoidance phase immediately after

the fast recovery phase, and a multiplicative decrease

approach is used to update the cwnd after congestion event

detection. The cubic function has a concave region followed

by a convex region. The plateau between the two regions, or

the inflexion point (denoted by Wmax), corresponds to the

window size just before the last congestion event. The cubic

function enables a slow growth around Wmax to enhance the

stability of the bandwidth, and enables a fast growth away

from Wmax to improve scalability of the protocol. Upon

receiving an ACK during the congestion avoidance phase at

time t, Cubic computes the new value of cwnd corresponding

to the cubic function at time t. As a consequence, Cubic uses

the time instead of the RTT to increase the cwnd. Cubic

employs a new slow-start algorithm called HyStart [8]

(hybrid slow start), which finds a safe exit point to the slow

start, the ssthresh value, at which the slow start can finish

and safely move to congestion avoidance before cwnd

overshoot occurs. HyStart employs the RTT delay increase

and the inter-arrival time between consecutive ACKs to

identify the safe exit point, and to modify the ssthresh value

[8]. This variant does not make any change to the fast

recovery and fast retransmit of standard NewReno. Cubic is

the smoothest loss-based congestion control variant [15]: it

is characterized by a congestion window that falls less

abruptly and that remains constant over a wide range of

elapsed time. It is also designed for high-speed and high-

latency networks. Cubic is implemented and used by default

in Linux kernels since version 2.6.19.

For precise analysis, based on the descriptions of

congestion control algorithm variants and their source code,

we describe below the update of the congestion window size,

cwnd, and the slow start threshold value, ssthresh, for

different events:

- Congestion events: there are two cases

o When a congestion event is detected, the Fast

Recovery / Fast Retransmit (FR/FR) phase reduces

the ssthresh value and sets the cwnd value to

ssthresh+3, for the purpose of remaining in the

congestion avoidance phase. The ssthresh value after

a congestion event is updated as follows:

 Algorithm 1 ssthresh update after a congestion event

where MSS is the maximum segment size, and β is

the multiplicative decrease factor.

o When the retransmission timeout expires before

receiving any ACK of the retransmitted packet,

ssthresh is reduced as indicated in Algorithm 1 , and

cwnd is set to a small value and restarts from the slow

start phase.

- Idle period: When the server sends a packet after an idle
period that exceeds the retransmission timeout (RTO),
cwnd and ssthresh are computed for the four congestion
control variants as in Algorithm 2:

 Algorithm 2 cwnd and ssthresh updates after idle period

In the HAS context, an idle period coincides with an OFF

period between two consecutive chunks. An OFF period

whose duration exceeds RTO is denoted by OFF*.

Furthermore, we additionally want to emphasize that the rate

of a TCP connection can be approximated, if we assume that

transients due to slow start and fast recovery can be

neglected, by min⁡(𝑐𝑤𝑛𝑑, 𝑟𝑤𝑛𝑑) 𝑅𝑇𝑇⁄ [26], where rwnd is

the TCP receive window indicated by the receiver and RTT

is the round trip time between the sender and the receiver.

Obviously, this approximation is valid for the four TCP

congestion control variants described above. As we have

shown, these variants employ different algorithms to modify

the congestion window, cwnd, during the congestion

avoidance phase and after congestion detection.

4

Accordingly, the generated rate as well as its variation over

time are different from one variant to another.

2.2 Traffic shaping methods
Many studies have been conducted to improve HAS

performance for cases in which several HAS clients are

located in the same home network. The ON-OFF periods

characterizing the HAS player in its steady state involve

three substantial problems when HAS players are

competing: player instability, unfairness between players,

and bandwidth underutilization [9]. The cause of these

problems is the inability to estimate the available bandwidth

during the OFF period, because no data are being received.

Three types of solutions are proposed to improve HAS user

experience: client-based, server-based, and gateway-based

solutions. They differ with respect to the device in which the

shaping solution is implemented. Below, we cite relevant

methods for each type of solution:

- The client-based solution involves only the HAS client

in order to reduce its OFF period durations. One of the

recent client-based methods is proposed in the

FESTIVE method [7]. It randomizes the events of chunk

requests inside the player in order to reduce the

periodicity of ON periods. Consequently, most of the

incorrect estimations of bandwidth could be avoided

when several HAS clients compete for bandwidth.

However, this method is not efficient enough to prevent

all incorrect estimations. In addition, it modifies the

HAS player implementation, which is contradictory to

our specifications described in the Introduction.

Moreover, the client-based solution does not provide the

coordination between HAS clients that is required to

further improve bandwidth estimations and QoE.

- The server-based solution involves only the HAS

server. It proceeds according to two steps: First, finding

the optimal quality level for each provided HAS flow,

and second, shaping the sending rate of the HAS server

according to the encoding rate of this level. In [25], the

authors propose a server-based method: it consists in

detecting the oscillations between quality levels on the

server side and deciding which optimal quality level

must be selected. Although this method improves the

QoE, it cannot conveniently respond to the typical use

cases of several concurrent HAS clients that do not

share the same HAS server: the shared link is on the

HAS client side. Moreover, this server-based solution

requires an additional processing task, which becomes

burdensome and costly when many HAS clients are

demanding video contents from the same HAS server.

In addition, the server-based solution is unable to

acquire information about the other competing flows

with their corresponding HAS clients. Hence, the

selection of the optimal quality level at the server is a

vague estimation. This estimation is less accurate than a

quality level selection based on a sufficient knowledge

about the access network of the corresponding HAS

client(s).

- The gateway-based solution that consists of applying

the HAS traffic shaping in the gateway is more

convenient than client-based and server-based

solutions; in fact, the gateway can acquire information

about the HAS traffic of all clients of the same home

network, which is not possible either at the server or at

the client. In addition, the gateway-based solution is

able to perform traffic shaping without inducing any

modification of HAS implementation code either in the

server or the client. Hence, in this paper, our evaluations

only consider the gateway-based shaping solution. For

the gateway-based solution, the authors assumed that

the home gateway can intercept the manifest file during

the HAS session initialization and can obtain the

characteristics of the available video quality levels of

every session. This solution introduces a bandwidth

manager in the gateway that defines a shaping rate for

each connected active HAS client in the home network.

The bandwidth manager should be able to update the

number of active connected HAS clients in the home

gateway by sniffing the SYN and FIN flags in TCP

packets. Therefore, the difference between the gateway-

based methods is the manner in which they shape the

bandwidth for each HAS session. The two main

gateway-based methods found in the literature and used

in our comparative study are HTBM [1] and RWTM [2].

They are briefly described in the following:

2.2.1 HTBM
HTBM uses the Hierarchical Token Bucket (HTB) queuing

discipline to shape the HTTP adaptive streams. HTB is

integrated in Linux with the traffic controller tool of the

iproutes2 utility package. It uses one link, designated as the

parent class, to emulate several slower links, designated as

the children classes. Different types of traffic may be served

by the emulated links. HTB is exploited by the bandwidth

manager of HTBM in order to define a child class for each

HAS session. HTB also employs the tokens and buckets

concept, combined with the class-based system for better

control over traffic and for shaping in particular [16]. A

fundamental component of the HTB queuing discipline is the

borrowing mechanism: children classes borrow tokens from

their parent once they have exceeded the shaping rate. A

child class will continue to try to borrow until it reaches a

defined threshold of shaping, at which point it will begin to

queue packets that will be transmitted when more tokens

become available.

Accordingly, using HTBM enables the shaping of the HTTP

adaptive streams for each HAS session in the gateway, as

indicated by the bandwidth manager, by merely delaying

packets that are received from the HAS server. The authors

of [1] indicate that HTBM improves the user’s QoE; it

5

improves the stability of video quality level, the fidelity to

optimal quality level, and the convergence speed.

2.2.2 RWTM
The second shaping method, Receive Window Tuning

Method (RWTM), is a gateway-based shaping method that

was proposed in [2]. It is implemented in the TCP layer and

is based on TCP flow control at the receiver side. Indeed,

during a TCP session, each receiver specifies the maximum

number of bytes that it is able to buffer. This value is called

the receiver’s advertised window, denoted by rwnd, and its

size is specified in the rwnd field in the header of each TCP

packet sent from the receiver to the sender. The sender

receives the rwnd size from the receiver and limits its

sending window, W, so that the number of packets sent in

each RTT does not exceed rwnd; W=min(rwnd, cwnd).

The RWTM method consists of modifying, in the gateway,

the rwnd field of each TCP ACK packet sent from a HAS

client C to its HAS server S in order to limit the sending rate

of the HAS server to rwnd/RTTC-S. RWTM uses the defined

shaping rate of the bandwidth manager for each connected

active HAS client, and estimates the RTTC-S value to compute

the next value of rwnd. We note that the estimation of RTTC-

S is accomplished using only TCP ACK packets sent from

HAS clients to the HAS server by using passive estimation.

The rwnd is computed once for each ON period. RWTM was

tested in [2] and [21], and results indicated that RWTM

enhances the user’s QoE: it improves the stability, the

fidelity, and the convergence speed.

In [21], we showed that RWTM outperforms HTBM when

using the Cubic variant as congestion control on the server

side. However, due to the dissimilarity of TCP variants, an

extended evaluation using other variants and additional

scenarios will give us a better understanding of the

interaction between shaping methods and TCP variants.

3. METHODOLOGY AND

EXPERIMENTAL IMPLEMENTATION
In this section, we provide a description of the metrics used

to measure performance, the scenarios that cover many

operating conditions, and the framework that has been

developed to emulate our use case.

3.1 Performance metrics
We define three metrics in this section that we use to

evaluate the QoE and to understand how each combination

behaves. To do so, we present in Table 1 the main parameters

that are used to define the metrics.

We note that the optimal quality level value, LC,opt(i),

corresponds to the quality level that the client C should select

at time i under the shaping rate defined by the bandwidth

manager. This shaping rate is chosen in a manner that

ensures the fairest share of the available home bandwidth

between clients with prioritization to achieve the maximum

use of the available home bandwidth. This entails that some

clients could have a higher quality level than others when

Table 1. Description of parameters

Parameter Description

I Discrete time index

LC(i) Video quality level index of client C at time i.

LC,opt(i) Theoretical optimal value of LC(i)

QC(i) Video encoding bitrate of client C at time i

their fair share of available home bandwidth is not sufficient

to maximize the use of the available home bandwidth.

Below, we define analytically three performance metrics that

describe the three criteria of QoE mentioned in the

Introduction:

3.1.1 Video quality level stability
Many research studies indicate that HAS users are likely to

be sensitive to frequent and significant quality level switches

[22, 23]. We use the instability metric, 𝐼𝑆𝐶(𝐾), which

measures the instability for client C for a K-second test

duration in conformity with its description in [7] as the

following equation:

𝐼𝑆𝐶(𝐾) =
∑ |𝑄𝐶(𝐾 − 𝑖) − 𝑄𝐶(𝐾 − 𝑖 − 1)| × 𝑤(𝑖)𝐾−1
𝑖=0

∑ 𝑄𝐶(𝐾 − 𝑖) × 𝑤(𝑖)𝐾
𝑖=1

⁡⁡(1)

𝐼𝑆𝐶(𝐾) is the weighted sum of all encoding bitrate switching

steps observed within the last K seconds divided by the

weighted sum of the encoding bitrates selected in the last K

seconds. The lower the 𝐼𝑆𝐶(𝐾) value is, the higher the

stability of the video quality level is.

More precisely, this formula uses the encoding bitrates of the

selected quality levels over time, 𝑄𝐶(𝑖), instead of the quality

level index over time, 𝐿𝐶(𝑖). In fact, the absolute difference

between two encoding bitrates that are displayed on the

client side during two successive seconds, 𝐾 − 𝑖 − 1 and

𝐾 − 𝑖, and denoted by |𝑄𝐶(𝐾 − 𝑖) ⁡− ⁡𝑄𝐶(𝐾 − 𝑖 − 1)|, gives

more significant indication of the observed video quality

change than when using the absolute difference between the

quality level indexes. Hence, we can offer an adequate

representation of the user expectation.

Moreover, in this formula, the authors of [7] use the weight

function 𝑤(𝑖) = 𝐾 − 𝑖⁡in order to add a linear penalty to

more recent quality level switches. In fact, their justification

is that the switching of quality level is becoming more

disturbing for users’ experience when the video playback

position is far from the beginning of the video stream.

3.1.2 Fidelity to optimal quality level
In [7], the authors define two additional goals to achieve

within our use case: 1) fairness between players: players

should be able to converge to an equitable allocation of

network resources; 2) efficiency among players: players

should choose the highest feasible quality levels to maximize

the user’s experience. Furthermore, in [9], the authors

address the bandwidth underutilization issue that may

prevent the possible improvement of QoE. So, maximizing

the use of bandwidth can be considered as a QoE criterion.

Accordingly, in order to provide one formula that satisfies

6

these three criteria, we define our metric called infidelity to

optimal quality level.

The infidelity metric, 𝐼𝐹𝐶(𝐾), of client C for a K-second test

duration, measures the duration of time over which the HAS

client C requests optimal quality:

The lower the 𝐼𝐹𝐶(𝐾) value is, the higher the fidelity to

optimal quality is.

Here, we note that the theoretical optimal quality level

𝐿𝐶,𝑜𝑝𝑡(𝑖) aims to resolve the dilemma between the two

criteria of maximum use and fair share of bandwidth

between HAS players. In fact, considering that only the fair

share of bandwidth may cause bandwidth underutilization,

in some cases it may leave some residual bandwidth

allocated to nobody. Hence, based on the optimal quality

level, the value of the infidelity metric is representative of

user expectation.

3.1.3 Convergence speed
The convergence speed metric was previously defined in [1].

We provide an analytical definition as follows:

This metric is the time that the player of HAS client C takes

to reach and remain at the optimal quality level for at least T

seconds during a K-second test duration. The reason of

selecting this criterion for evaluating the QoE in our use case

is observations made in [1], [2], [9], and [21]: they show that

when HAS players compete for bandwidth, the convergence

to optimal quality level may take several seconds or may be

very difficult to be achieved. Accordingly, the speed of this

convergence is a valuable QoE criterion for our evaluations.

The lower the 𝑉𝐶,𝑇(𝐾) value is, the faster the convergence to

the optimal quality level is.

Additionally, we define two other metrics (CNG and frOFF*,

described below) that enable us to measure the reaction of

home gateway and HAS players.

3.1.4 Congestion rate
The congestion detection events influence to an extreme

degree both the QoS and QoE of HAS because the server

decreases its sending rate after each congestion detection.

Hence, by analyzing the code description of the four TCP

congestion control algorithms (NewReno, Vegas, Illinois,

and Cubic), we found that the congestion event appears

when the value of parameter slow start threshold (ssthresh)

decreases (see Algorithm 1). Hence, we define a metric

called congestion rate, denoted by 𝐶𝑁𝐺𝐶−𝑆⁡(𝐾), that

computes the rate of congestion events that are detected on

the server side, corresponding to the HAS flow between

client C and server S during a K-second test duration as

shown in equation (4):

𝐶𝑁𝐺𝐶−𝑆(𝐾) =
𝐷𝐶−𝑆
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ(𝐾)

𝐾
× 100⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)

where 𝐷𝐶−𝑆
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ(𝐾) is the number of times the ssthresh has

been decreased for the C-S HAS session during the K-

second test duration.

3.1.5 Frequency of OFF* periods per chunk
This metric is important to measure the frequency of OFF*

periods. An OFF period whose duration exceeds RTO is

denoted by OFF* (as indicated in Subsect. 2.1). This

frequency is equal to the total number of OFF* periods

divided by the total number of downloaded chunks. This

metric is denoted by frOFF*.

For result analysis, we use the QoE metrics to quantitatively

discuss the user’s experience, and use CNG and frOFF*

metrics to explain the performance of each combination of

traffic method and congestion variant.

3.2 Scenarios
We define five scenarios that are typical of concurrence

between HAS clients in a same home network (scenarios 1,

2, and 3), and how the HAS client reacts when some changes

occur (scenarios 4 and 5):

1. Both clients start to play simultaneously and continue

for 3 minutes. This scenario illustrates how clients

compete.

2. Client 1 starts to play, the second client starts after 30

seconds, and both continue together for 150 seconds.

This scenario shows how the transition from one client

to two clients occurs.

3. Both clients start to play simultaneously, client 2 stops

after 30 seconds, and client 1 continues alone for 150

seconds. This scenario shows how a transition from two

clients to one takes place.

4. Only one client starts to play and continues for 3

minutes. At 30 seconds, we simulate a heavy congestion

event with a provoked packet loss of 50% of the

received packets at the server over a 1-second period.

This scenario shows the robustness of each combination

against the congestions that are induced by external

factors, such as by other concurrent flows in the home

network.

5. Only one client is playing alone for 3 minutes. We vary

the standard deviation value of RTTC-S (round trip time

between the client and the server) for each set of tests.

This scenario investigates the robustness against RTTC-S

instability.

The test duration was selected to be 3 minutes to offer

sufficient delay for players to stabilize.

7

3.3 General framework
We propose a testbed architecture presented in Figure 1 that

emulates our use case described in the Introduction. The

choice of only two clients is sufficient to show the behavior

of concurrence between many HAS flows in the same home

network.

Figure 1. Architecture of the testbed

In this section, we describe the configurations of each

component presented in Figure 1:

- HAS clients

We used two Linux machines as HAS clients. We developed

an emulated player in each client that reproduces the

behavior of the HAS player without decoding and displaying

a video stream. The playback buffer size is specified to be

15 chunks, and the chunk duration is 2 seconds. In [18], the

authors indicate that the bitrate adaptation algorithm

depends on bandwidth estimation and playback buffer

occupancy. Furthermore, players also define an

aggressiveness level, as described in a previous study [19].

For example, the Netflix player is more aggressive than the

Smooth Streaming player [19]. An aggressive player enables

the user to ask for a video quality level that is slightly higher

than the estimated available bandwidth. Moreover,

aggressiveness is important for minimizing the “downward

spiral effect” phenomenon [20]. This phenomenon consists

of underestimating the available bandwidth, which leads to

a lower video quality level selection. Accordingly, taking

into consideration [18], [19], and [20], we used a bitrate

adaptation algorithm based on bandwidth estimation in

which we define an aggressiveness ρC(t) at time t that

depends on playback buffer occupancy as follows:

 ρC(t) = σ×RC(t)/BC (5)

where RC(t) is the filling level of the playback buffer at time

t, BC is the size of the playback buffer of client C, and σ is

the aggressiveness constant. The fuller the playback buffer

is, the closer to σ the aggressiveness is.

All tests use a HAS player with an aggressiveness constant

of σ=0.2. This enables the HAS player to add a maximum of

20% to its available BW estimation.

- Home network

In the modeled home network, the clients are connected

directly to the gateway. The total download bitrate, or home

available bandwidth, is limited to 8 Mbps. We choose this

value because it is lower than twice the video encoding

bitrate of the highest quality level. Accordingly, two clients

in the home network cannot select the highest quality level

at the same time. In this case, one client should select quality

level n° 4 and the other should select the quality level n° 3 as

optimal qualities. We do not test a use case in which two

clients have the same optimal quality level, because this is a

very specific case, and dissimilarity between optimal quality

levels is more general.

- Home gateway

The emulated home gateway consists of a Linux machine

configured as a network bridge to forward packets between

the home network and the best effort network.

We emulate the queuing discipline of the home gateway by

using the Stochastic Fairness Queueing discipline (SFQ)

[24]. SFQ is a classless queuing discipline that we

configured using the Traffic Controller emulation tool (tc).

SFQ schedules packets based on flow identification (the

source and destination IP addresses and the source port) and

injects them into hash buckets during the enqueuing process.

Each bucket represents a unique flow. Additionally, SFQ

employs Round Robin fashion for dequeuing packets by

taking into consideration the bucket classification. The goal

of using buckets for enqueuing and Round Robin for

dequeuing is to ensure fairness between flows so that the

queue is able to forward data in turn and prevents any single

flow from drowning out the remaining flows. We also

configured SFQ in order to support the Drop Tail queue

management algorithm when the queue becomes full.

Hence, this configuration of the queuing discipline is

classified as a Drop Tail class. The queue length of SFQ,

which is indicated by parameter limit within the tc tool, is set

to the bandwidth-delay product.

 In the gateway, we implemented a bandwidth manager that

selects a shaping rate for each connected active HAS client

in a manner such that each client should attain its optimal

quality level described in Subsect. 3.1. The shaping rate for

each client was chosen as indicated in [1] and [2]; it is 10%

higher than the encoding bitrate of the optimal quality level

for each client. The two shaping methods HTBM and

RWTM are implemented in the gateway, and they shape

bandwidth in accordance with the decisions of the bandwidth

manager.

- Best effort network

The best effort network is characterized by the presence of

network devices to route packets. The round trip time RTTC-

S(t) in a best effort network is modeled as follows [10]:

 RTTC-S (t) = aC-S + q(t)/ς (6)

where aC-S is a fixed propagation delay between client C and

server S, q(t) is the queue length of a single congested router

(the home gateway in our use case), and ς is the transmission

capacity of the router. q(t)/ς models the queuing processing

delay. To comply with equation (6), we used the normal

distribution with a mean value aC-S and a standard deviation

equal to 0.07.aC-S. The standard deviation emulates the

queuing processing delay q(t)/ς. This emulation is

8

accomplished by using the “netem delay” parameter of the

traffic controller tool in the gateway machine interface.

- HAS server

The HAS server is modeled by an HTTP Apache Server

installed on a Linux machine operating on Debian version

3.2. We can change the congestion control variant of the

server by varying the parameter

net.ipv4.tcp_congestion_control. All tests use five video

quality levels denoted by 0, 1, 2, 3, and 4. Their encoding

bitrates are constant and equal to 248 kbps, 456 kbps, 928

kbps, 1,632 kbps, and 4,256 kbps, respectively. HTTP

version 1.1 is used to enable a persistent connection.

4. RESULTS
In this section, we compare the different combinations of

TCP congestion control variants in the server and shaping

methods in the gateway in the five scenarios. Altogether, we

evaluate eight combinations: four TCP congestion control

variants combined with two shaping methods. We evaluate

QoE by discussing the QoE metrics IS, IF, and V. We also

use the CNG and frOFF* metrics to observe how each

combination reacts. For each scenario, we repeated each test

60 times and we computed an average value of each metric.

The number of 60 runs is justified by the fact that the

difference of the average results obtained after 40 runs and

60 runs are lower than 6%. This observation was verified for

all scenarios. Accordingly, 60 runs are sufficient to achieve

statistically significant results.

This section is organized as follows. First, we begin by

evaluating performance in scenario 1, and we analyze the

variation of cwnd for each combination. Second, we evaluate

the performance of scenarios 2 and 3 to study the effect of

transition from one to two clients (and vice versa) on the

performance of each studied combination. Third, we present

the performance of scenario 4 to measure the robustness of

the combinations against induced congestions. Fourth, we

study scenario 5 to measure the robustness against the

instability of RTTC-S for each combination. Finally, we

discuss all results by presenting a summary of observations

and defining the combination that is suitable for each

particular case.

4.1 Scenario 1
In this scenario, two clients are competing for BW and are

playing simultaneously. The available home bandwidth

permits only one client to have the highest quality level, n°

4. We make the assumption that the client who gets the

highest quality level n° 4 is identified as client 1. Optimally,

the first player in our use case should obtain quality level n°

4 with an encoding bitrate of 4,256 kbps, and the second

player should have quality level n°3 with an encoding bitrate

of 1,632 kbps.

In this section, we present our evaluation results and discuss

them. Then, we analyze the cwnd variation for each

combination in order to understand the reason for the

observed results.

4.1.1 Measurements of performance metrics
The average values of QoE metric measurements for client

1 and client 2 are listed in Tables 2 and 3, respectively.

Table 2. QoE for client 1 in scenario 1

Performance

metric

Shaping

method

TCP congestion control variant

NewReno Vegas Illinois Cubic

Instability

(%) IS1(180)

W/o* 4.95 2.15 8.35 7.47

HTBM 1.89 1.08 1.56 1.86

RWTM 1.69 4.10 1.88 1.63

Infidelity

(%)

IF1(180)

W/o 41.33 52.31 74.14 50.46

HTBM 49.57 47.81 7.75 20.45

RWTM 45.87 32.24 6.17 5.02

Convergence

speed (s)

V1,60(180)

W/o 100.93 102.11 174.13 145.03

HTBM 101.83 87.11 21.10 52.06

RWTM 94.51 104.00 24.22 19.55

Table 3. QoE for client 2 in scenario 1

Performance

metrics

Shaping

methods

TCP congestion control variants

NewReno Vegas Illinois Cubic

Instability

(%)

IS2(180)

W/o 5.82 3.06 7.85 5.82

HTBM 1.17 0.95 1.05 1.15

RWTM 1.09 0.95 1.03 1.13

Infidelity

(%)

IF2(180)

W/o 26.64 70.77 39.27 36.33

HTBM 4.72 3.62 4.21 4.47

RWTM 2.49 2.30 2.47 2.61

Convergence

speed (s)

V2,60(180)

W/o 96.25 137.01 126.33 92.81

HTBM 12.41 6.95 9.73 13.26

RWTM 6.73 5.03 6.54 8.95

Our first overall observation is the large dissimilarity

between QoE measurements of the different combinations.

This observation is a valuable result that confirms that each

combination induces a change of HAS player behavior.

Consequently, using HAS traffic shaping without taking into

consideration the TCP congestion control employed in the

HAS server cannot guarantee a good user experience; hence,

the prominence of our proposed work.

The results show that traffic shaping considerably improves

the QoE metric measurements for a majority of cases,

especially for instability, which is largely reduced (e.g. a

reduction of instability rate by a factor of 2.6 from 4.95% to

1.89% when employing HTBM with NewReno, and a

reduction by a factor of 4.5 from 7.47% to 1.63% when

employing RWTM with Cubic, as shown in Table 2).

Furthermore, RWTM shows better performance than HTBM

in the majority of cases. Moreover, client 2 always has better

performance than client 1 with both shaping methods: the

reason is that the optimal quality level of client 2 (i.e. quality

level n° 3) is lower than that of client 1 (i.e. quality level n°

4): obviously, the quality level n° 3 is easier to achieve. In

addition, the gap between the QoE metric measurements of

the two shaping methods is higher for client 1 than client 2:

For example, when considering the Cubic variant, the gap of

infidelity rate of client 1 between RWTM and HTBM is

15.43% (5.02% vs. 20.45%); this is higher than that of client

2, which is equal to 1.86% (2.61% vs. 4.47%).

Consequently, the dissimilarity of performance between

different combinations is more visible for client 1. For this

9

reason, we limit our observation to client 1 in the remaining

text of this subsection.

Concerning the QoE measurements, based on Table 2, we

present the most important observations related to client 1:

 Combining NewReno or Vegas variants with

HTBM or RWTM does not improve the QoE.

Additionally, these four combinations have high

infidelity value (near 50%) and very high

congestion speed value (around 90 ~100 ms), but a

low value of instability. These values indicate that

the player was stable at a low quality level during

the first half of the test duration and has difficulties

converging to its optimal quality level.

 HTBM has better QoE with Illinois than with

Cubic: it is slightly more stable, 16% more faithful

to optimal quality, and converges 2.4 times faster.

 RWTM has better QoE with Cubic than with

Illinois: it is slightly more stable, slightly more

faithful to optimal quality level, and converges 1.24

times faster.

In order to be more accurate in our analysis, we use the two

defined metrics: the frequency of OFF* periods per chunk,

frOFF*, and the congestion rate, CNG. In Table 4, we present

the average value over 60 runs for each metric and for each

combination, related to client 1 and scenario 1.

Table 4. frOFF* and CNG for client 1 in scenario 1

Metric Shaping

method

TCP congestion control variant

NewReno Vegas Illinois Cubic

CNG W/o 46.13 43.00 66.11 85.65

HTBM 44.06 40.50 58.68 191.72

RWTM 0.10 8.26 0.76 1.11

frOFF* W/o 0.42 0.35 0.27 0.40

HTBM 0.31 0.32 0.06 0.16

RWTM 0.32 0.41 0.24 0.24

RWTM presents a negligible congestion rate, while HTBM

has a very high rate of congestion, especially when the Cubic

variant is used. Moreover, HTBM reduces the frequency

frOFF* better than RWTM, mainly with Illinois and Cubic.

These results have a direct relationship to the shaping

methods described in Subsect. 2.2:

 HTBM was designed to delay incoming packets,

which causes an additional queuing delay. In all of

the tests, we verified that HTBM induces a

queueing delay of around 100 ms in scenario 1 for

client 1. On one hand, this delay causes an increase

of congestion rate because it increases the risks of

queue overflow in the gateway, even when the QoE

is good, such as with Cubic or Illinois variants. The

dissimilarity of congestion rate between congestion

controls variants is investigated in the next Subsect.

4.1.2. On the other hand, the RTTC-S value also

jumps from 100 ms to 200 ms, which increases the

retransmission timeout value, RTO, to

approximately 400 ms, hence reducing OFF*

periods. The frOFF* of HTBM is noticeably lower

than RWTM and the case without shaping (W/o).

In addition, the assertion “the higher the QoE

metric measurement, the lower the frOFF* value”

seems to be valid; for example, HTBM presents

better QoE with Illinois than with Cubic, and frOFF*

is lower with Illinois than with Cubic.

 Nevertheless, RWTM was designed to limit the

value of the receiver’s advertised window, rwnd, of

each client. Therefore, no additional queuing delay

is induced by RWTM. Hence, the congestion rate is

very low. Additionally, the RTTC-S estimation is

performed only once per chunk. So, the cwnd value

is constant during the ON period, even if RTTC-S

varies. In our configuration, the standard deviation

of RTTC-S is equal to 7 ms, i.e. 0.07.aC-S, as

described in Subsect. 3.3. Consequently,

eliminating OFF* periods will not be possible.

Instead, the frOFF* value will be bounded to a

minimum value that characterizes RWTM when the

QoE measurements are the most favorable. When

testing with the four congestion control variants,

this frOFF* value is equal to 0.24 for the selected

standard deviation. This means that RWTM can

guarantee, in the best case, one OFF* period every

4.17 chunks. This frequency is useful, and will be

discussed in the next subsection and in further

detail in scenario 5.

4.1.2 Analysis of cwnd variation
To explain the results of scenario 1, we used the tcp_probe

module in the HAS server. This module shows the evolution

of the congestion window, cwnd, and the slow start

threshold, ssthresh, during each run. For each combination,

we selected a run the performance values of which are the

nearest to its average values of Tables 2 and 4, i.e. instability

IS, infidelity IF, convergence speed V, frequency of OFF*

periods per chunk frOFF*, and congestion rate CNG. Then, we

present their cwnd and ssthresh evolution in Figures 2

through 9. We also indicate the moment of convergence by

a vertical bold dotted line. We observed that this moment

corresponds to the second from which the TCP congestion

control is often processing under the congestion avoidance

phase; i.e. when cwnd > ssthresh. In addition, from the

moment of convergence, we observe that ssthresh becomes

more stable and is practically close to a constant value.

Figure 2 shows that the combination NewReno with HTBM

cannot guarantee convergence to the optimal quality level.

The congestion rate is not very high compared with other

TCP congestion variants. After 50 seconds, cwnd was able

to reach the congestion avoidance phase for short durations,

but the continuous increase of cwnd with the additive

increase approach caused the detection of congestion.

Moreover, the multiplicative decrease approach after

congestions employed by NewReno was very aggressive; in

10

effect, as described in Subsect. 2.2, the new cwnd value will

be reduced by half (more precisely, to cwnd/2 + 3 MSS

following the FR/FR phase) and ssthresh will also be

reduced to cwnd/2. This aggressive decrease prevents the

server from rapidly reaching a desirable cwnd value and, as

a consequence, prevents the player from correctly estimating

the available bandwidth and causes a lower quality level

selection. Furthermore, the frOFF* value was relatively high

(around 0.3 OFF* period per chunk), which is more than

twice that of the Illinois and Cubic variants. This value is

also caused by the multiplicative decrease approach that

generates a lower quality level selection. Due to the shaping

rate that adapts the download bitrate of the client to its

optimal quality level, the chunk with a lower quality level

will be downloaded more rapidly, which results in causing

more frequent OFF* periods. For this reason, the player was

not able to stabilize on the optimal quality level, resulting in

a poor QoE.

Figure 2. Cwnd variation of {NewReno HTBM} IS=5.48%,

IF=35.68%, V=180s, frOFF*=0.2, CNG=43.33

When combining NewReno with RWTM, we observed that

test results diverged and could be classified into two

categories: those with an infidelity value of 100% and that

do not converge (Figure 3(a)), and those with a low value of

infidelity and that converge rapidly (Figure 3(b)). In both

figures, ssthresh is always invariable. Both figures have no

congestion events, which is due to the use of RWTM.

 (a) IS=0.95%, IF=100%, (b) IS=2.62%, IF=4.92%,

 V=180 frOFF*=0.68, CNG= 0 V=4 s frOFF*=0.23, CNG=0

Figure 3. Cwnd variation of {NewReno RWTM}

The OFF* periods are more frequent in Figure 3(a) (frOFF* =

0.68) than in Figure 3(b) (frOFF* = 0.23). Although both

figures present a constant value of ssthresh, we observe that

the only difference between them is the initial value of

ssthresh. Figure 3(a) has a lower value of ssthresh than

Figure 3(b): 27 MSS vs. 69 MSS. The additive increase

approach of NewReno during the congestion avoidance

phase prevents the server from rapidly increasing the cwnd

value during ON periods. Therefore, the player was not able

to reach the optimal quality level n° 4 at any time. The cause

of the dissimilarity between the initial values of ssthresh in

the two figures is explained in [17]. Some implementations

of NewReno use the size of the receiver’s advertised

window, rwnd, to define the initial value of ssthresh, but in

fact, this value may be arbitrarily chosen. Accordingly, the

combination of NewReno with RWTM could have high QoE

if the initial value of ssthresh is well-chosen.

When combining Vegas with HTBM, we obtain a cwnd

variation, as shown in Figure 4. The convergence moment

(at 87 s in Figure 4) occurs when cwnd becomes often set

higher than ssthresh (i.e. TCP congestion control is often

processing under the congestion avoidance phase) and

ssthresh is often set at the same value. We can observe the

additive increase and additive decrease aspect of cwnd in the

congestion avoidance phase after convergence. The additive

decrease of cwnd involved in Vegas is caused by the queuing

delay increases resulting from HTBM. This additive

decrease has the advantage of maintaining a high throughput

and reducing the dropping of packets in the gateway.

Therefore, the congestion rate, CNG, is relatively low

because it is reduced in Figure 4 from around 75 congestion

events per 100 seconds to only 15. The additive decrease also

has the advantage of promoting convergence to the optimal

quality level, unlike multiplicative decrease. As a result, the

delay-based aspect with the additive decrease approach

improves the stability of the HAS player after convergence.

In contrast, Vegas uses a slightly low value of ssthresh (60

MSS) and employs the additive increase approach for cwnd

updates during the congestion avoidance phase. As a

consequence, the server cannot rapidly increase the cwnd

value during the ON period, which results in slow

convergence. Therefore, the player

Figure 4. Cwnd variation of {Vegas HTBM}

IS=1.31%, IF=46.74%, V=87 s, frOFF*=0.4, CNG=46.11

was not able to reach the optimal quality level n° 4 at any

time before the moment of convergence. Consequently, the

frequency of the OFF* period increases before the

convergence moment; hence, the high value of frOFF*.

The performance worsens when Vegas is combined with

RWTM. As presented in Figure 5, the player was not able to

converge. Instead, we observed many timeout

retransmissions characterized by ssthresh reduction and

convergence
convergence

11

cwnd restarting from slow start. The timeout retransmissions

are generated by Vegas when only a duplicate ACK is

received and the timeout period of the oldest

unacknowledged packet has expired [4]. Because of that,

Vegas generates more timeout retransmissions than

NewReno. Hence, the CNG value is worse than in the other

combinations of RWTM. Moreover, OFF* periods are

frequent during the first 45 seconds, because the player

requests quality level n° 3. Subsequently, OFF* periods

become less frequent (they occur only at 79, 125, 138, 150,

165, and 175 s) because the player was able to switch to an

optimal quality level (n° 4). Hence frOFF* related to the whole

test duration is equal to an acceptable value (0.29 OFF*

period per chunk). The player becomes able to request the

optimal quality level n° 4 predominantly in the second

period (after 45 seconds), but it is incapable of being stable

for more than 60 seconds because of the retransmission

timeout events.

Figure 5. Cwnd variation of {Vegas, RWTM}

IS=5.32%, IF=31.15%, V= 180s, frOFF*=0.29, CNG=6.11

When we use the loss-delay-based variant Illinois,

significant improvement of performance is observed with

the two shaping methods:

In Figure 6, despite the rapid convergence, a high rate of

congestions (that reduces the ssthresh and cwnd values but

maintains the cwnd higher than ssthresh, as described in

Algorithm 1) and timeout retransmissions (that reduces

ssthresh, drops cwnd, and begins from the slow start phase)

was recorded. Consequently, the frequent reduction of

ssthresh was the cause of the high rate of CNG: in this

example, CNG is equal to 51.11. CNG is higher than that

recorded for NewReno. The cause is the high value of

ssthresh of approximately 115 MSS. The variable ssthresh

was able to rapidly return to a fixed value after

retransmissions, due to the update of α and β using accurate

RTTC-S estimation (see Subsect. 2.1). As a consequence,

cwnd restarts from the slow start phase after timeout

detection and rapidly reaches the high value of ssthresh.

Hence, the HAS player converges despite high congestion.

In addition, OFF* periods were negligible, with only two

periods after congestion. This is why frOFF* was very low

(0.03). In the congestion avoidance phase, cwnd was able to

increase and reach high values, even during short timeslots.

This was due to the concave curve of cwnd generated by

Illinois, which is more aggressive than NewReno. As a

consequence, the player could be stabilized with optimal

quality level n° 4.

Figure 6. Cwnd variation of {Illinois, HTBM}

IS=2.00%, IF=7.66%, V=5s, frOFF*=0.03, CNG=51.11

When using RWTM with Illinois, the player converges, as

presented in Figure 7. The congestion rate is very low

(CNG=0.55), but congestions are caused by the

aggressiveness of Illinois (the concave curve of cwnd in the

C-AIMD approach) and its high ssthresh value (120 MSS).

Congestions slow down the convergence speed and slightly

reduce the QoE due to the multiplicative decrease approach

of Illinois. As shown in Figure 7, one congestion event

delayed the convergence time to 27 seconds. In addition,

Illinois has the ability to select the suitable ssthresh value

(110 MSS in Figure 7) that minimizes congestion events in

the future, in spite of the sensitivity of RWTM to

congestions. OFF* periods still exist, but with low

frequency (frOFF* = 0.22).

Figure 7. Cwnd variation of {Illinois RWTM},

IS=2.40%, IF=5.47%, V=27s, frOFF*=0.22, CNG=0.55

The Cubic variant yielded good performances with both

shaping methods. The variations of cwnd when Cubic is

combined with HTBM and RWTM are presented in Figures

8 and 9, respectively.

In Figure 8, the player converges tardily after a delay of 33

seconds. The cause is mainly the low value of ssthresh that

is selected by the Cubic algorithm. As explained in Subsect.

2.1, the HyStart algorithm, implemented in Cubic, defines

this ssthresh in order to have a less aggressive increase of

cwnd. The ssthresh becomes lower when the RTTC-S

increases. Knowing that HTBM increases RTTC-S by

introducing an additional queuing delay, HyStart decreases

ssthresh to be approximately 57 MSS. This is why the player

cannot upgrade to its optimal quality level n° 4 before

convergence. The second cause is the multiplicative

decrease approach of Cubic and the high rate of congestions

convergence

 convergence

12

caused by HTBM. This second cause makes the convergence

to optimal quality level more difficult because the server is

not able to increase its reduced congestion window cwnd

during the ON period, as it should be increased.

After convergence, many congestions were recorded, and

OFF* periods were negligible. The ssthresh becomes more

stable around 75 MSS: this is well-set by the HyStart

algorithm. This enhances stability in the congestion

avoidance phase with a more uniform increase of cwnd, as

shown between 60 and 80 seconds in Figure 8. Furthermore,

there is a set of large cubic curves with inflection points close

to the ssthresh value. The variable cwnd is more present in

the convex region, which is more aggressive when moving

away from the inflection point.

Figure 8. Cwnd variation of {Cubic HTBM},

IS=1.98%, IF=19.03%, V=33s, frOFF*=0.16, CNG=186.11

In Figure 9, the player converges rapidly in only 8 seconds.

The ssthresh begins with a low value (60 MSS) for a few

seconds during the buffering state, and then the HyStart

algorithm implemented in Cubic rapidly adjusts the ssthresh

value and enables the server to be more aggressive.

Comparing with Figure 7, selecting a lower initial value of

ssthresh is better for accelerating convergence, because

otherwise there are more risks of congestion that slow down

the convergence speed.

Congestions are infrequent: only two congestions are visible

in Figure 9 at seconds 70 and 130, and they are resolved by

fast retransmission in accordance with Algorithm 1 and by

using Hystart. As a consequence, separated congestion

events do not dramatically affect the performance, as when

Illinois is used with RWTM (Figure 9). The Cubic algorithm

chooses the inflection point to be around 140 MSS, which is

much higher than the ssthresh value, so that the concave

region becomes more aggressive than the convex region.

The OFF* periods persist, even with Cubic, but with a low

frequency: frOFF* = 0.22.

Accordingly, the Cubic variant is able to adjust its

congestion window curve in different situations. When many

congestions occur, the cubic curve becomes rather convex to

carefully increase cwnd. When many OFF* periods occur,

the cubic curve becomes rather concave, and is thus more

aggressive than the concave curve of Illinois in order to

rapidly achieve the desired send bitrate and compensate for

the reduction of the cwnd value. However, Cubic begins by

Figure 9. Cwnd variation of {Cubic RWTM}, IS=1.78%,

IF=5.5%, V=8s, frOFF*=0.22, CNG=1.66

estimating a low value of ssthresh that is adjusted over time

by the HyStart algorithm, which is beneficial only when

using RWTM as a shaping method. Using HTBM slows

down convergence considerably and affects the infidelity

metric.

4.2 Scenarios 2 and 3
In this section, we present the five performance

measurements of client 1 for the first three scenarios

described in Subsect. 3.2. We make the assumption that the

optimal quality level of client 1 is n° 4. We do not present

NewReno and Vegas variants because they demonstrated

low performance. The average values of QoE metrics for

client 1 in the first three scenarios are listed in Table 5, and

the average values of CNG and frOFF* in the first three

scenarios are listed in Table 6. Both tables show the total

mean values (denoted by MV) over the three scenarios. MVs

are the global performance values proposed for

consideration to compare between different combinations.

Table 5. QoE for client 1 in scenarios 1, 2, and 3

T
C

P
 v

a
ri

a
n

t

S
ce

n
a
ri

o
 Performance metric

Instability (%) Infidelity (%)
Convergence

speed (seconds)
HTBM RWTM HTBM RWTM HTBM RWTM

C
u

b
ic

1 1.86 1.63 20.45 5.02 52.06 19.55
2 3.44 1.43 32.90 3.42 64.13 10.98
3 2.19 1.63 18.49 4.81 34.65 14.34

MV* 2.49 1.56 23.95 4.42 50.28 14.96

Il
li

n
o
is

 1 1.56 1.88 7.75 6.17 21.10 24.22
2 3.20 1.56 29.75 4.42 59.58 13.28
3 1.85 1.76 7.92 5.66 21.03 18.80

MV 2.20 1.73 15.14 5.42 33.90 18.56

Table 6. frOFF* and for client 1 in scenario 1, 2 and 3

Metric Scenario Cubic Illinois
HTBM RWTM HTBM RWTM

CNG

1 191.72 1.11 58.68 0.76

2 375.62 0.82 33.11 0.68

3 173.48 0.66 56.27 0.76

MV 246.92 0.86 49.35 0.73

frOFF*

1 0.16 0.24 0.06 0.24

2 0.23 0.24 0.21 0.24

3 0.13 0.26 0.05 0.26

MV 0.17 0.25 0.10 0.25

Both tables indicate two valuable points:

convergence

convergence

13

On one hand, RWTM has better QoE metric measurements

than HTBM with both Cubic and Illinois variants. Moreover,

RWTM not only has a lower congestion rate, CNG, than

HTBM, but it also has a negligible CNG with the two TCP

variants for all three scenarios. RWTM also preserves a

constant value of frOFF*. Consequently, even the transition

from one to two clients and vice versa (i.e., scenarios 2 and

3, respectively) does not disturb RWTM, which preserves its

inherit characteristics of negligible congestion rate and its

frOFF* rate around 0.25. This preservation has positive

consequences for the user’s QoE. Although the gap between

the QoE metrics measurements of {Cubic RWTM} and

{Illinois RWTM} is not very significant, {Cubic RWTM}

yields better values. Accordingly, we can say that the use of

Cubic or even Illinois is beneficial for improving the user’s

experience, with a slight preference for Illinois.

On the other hand, HTBM presents better QoE with Illinois

than with the Cubic variant. In conjunction, it has a fivefold

lower congestion rate (49.35 vs. 246.92) and lower OFF*

period frequency frOFF*. This observation is valid not only

for total mean values, MV, but also with every scenario (1,

2, and 3). Therefore, Illinois is distinctly better than Cubic

for the HTBM shaping method, even when the number of

active HAS clients in the home gateway changes between

one and two clients. Accordingly, the loss-delay-based

variant with the C-AIMD approach used by Illinois has more

favorable impacts on QoE, CNG, and frOFF* than the loss-

based variant with the AIAD approach using the HyStart

algorithm employed by Cubic.

4.3 Scenario 4
The objective of this section is to evaluate the robustness of

each combination against the congestions that are induced

by other flows. Therefore, we employed scenario 4, as

described in Subsect. 3.2, in which a heavy congestion is

induced. To be able to compare performances correctly, a

reference scenario, denoted by WL, consisting of a HAS

client working alone in the home network, is used. No loss

is observed in the reference scenario. We do not present the

NewReno and Vegas variants because they showed poor

performance. Altogether, we have four combinations to

evaluate: Cubic and Illinois combined with two shaping

methods, HTBM and RWTM. The average values of the

QoE metrics of the client in scenario 4 are provided in Table

7, and the average values of CNG and frOFF* are listed in

Table 8.

Table 7. QoE for client 1 in scenario 4

T
C

P

v
a
ri

a
n

t

S
ce

n
a
ri

o
 Performance metric

Instability (%)

Infidelity (%)

Convergence

speed (s)

HTBM RWTM HTBM RWTM HTBM RWTM

Cubic WL1 1.08 1.07 3.71 1.79 7.61 4.10
4 4.86 6.40 48.2 46.14 120.3 129.3

Illinois WL 1.08 1.07 2.23 1.66 5.37 4.01
4 2.7 2.92 15.6 17.81 35.48 42.75

1Without loss 2Degradation percentage

Table 8. frOFF* and CNG for client 1 in scenarios 1, 2, and 3

Metric Scenario
Cubic Illinois

HTBM RWTM HTBM RWTM

CNG

WL 34.2 0.98 38.51 0.79

4 216.19 120.36 146.68 143.54

frOFF*

WL 0.03 0.36 0.03 0.43

4 0.40 0.41 0.09 0.31

The measurements in the two tables indicate three major

observations:

 The lowest QoE metric measurements are recorded for

the Cubic variant for both shaping methods: their

instability is around 5~6%, their infidelity is near 50%,

and their convergence speed is approximately 125 ms.

We also notice that the congestion rate, CNG, is very

high, between 120 and 220, and the frequency frOFF* is

important around 0.4 (i.e., one OFF* period occurs for

every 2.5 chunks, on average). We observe not only

lower measurements, but also a higher degradation rate

in performance: the gap of QoE metric measurements,

CNG and frOFF*, is clearly large between scenario WL

and scenario 4. Accordingly, Cubic is not suitable as a

TCP congestion control variant of the HAS server for

both shaping methods when heavy congestion occurs.

This result can be verified by examining Figures 8 and

9 in Subsect. 4.1.2, where Cubic has difficulties with

rapidly defining the suitable ssthresh value before

convergence and after congestion, respectively.

 The RWTM shaping method presents higher

degradation in QoE metric measurements than HTBM

when we compare scenario WL to scenario 4 for both

TCP congestion variants, Cubic and Illinois. The cause

is mainly related to the fact that HTBM is used to

generate congestion events and maintain high QoE

under normal circumstances, which is not the case with

RWTM. Accordingly, we can say that RWTM is more

sensitive to induced congestions than HTBM. This

result can be verified when examining Figures 7 and 9

in Subsect. 4.1.2, in which a single congestion event

instantaneously degrades performance.

From the first and the second observations, we can deduce

that the best combination that maintains optimal QoE metric

measurements with low degradation and has the lowest

frequency of OFF* periods, frOFF*, is ensured by the

combination {Illinois HTBM}.

 The second-best combination is {Illinois RWTM}.

Here, the QoE metric measurements are acceptable, but

the degradation rate is higher than the best combination

{Illinois HTBM}. This degradation indicates that

{Illinois RWTM} cannot adequately resist against

induced congestions, especially when we have a highly

congested link between client and server. However, this

combination could successfully be used with a link

under less frequent congestions.

14

4.4 Scenario 5
In this section, we present the performance metric

measurements when the standard variation of RTTC-S varies.

The behavior of the resulting curves will indicate how

performance degrades when the standard deviation of RTTC-

S increases. The variation of QoE (instability, infidelity, and

convergence speed) is presented in Figure 10, and the

variation of CNG and frOFF* is listed in Figure 11. We have

two major observations:

Figure 10. QoE variation

Figure 11. Variation of CNG and frOFF*

On the one hand, the {Illinois RWTM} (purple cross) and

the {Cubic RWTM} (red square) curves are convex and

close to each other and are predominantly below the other

curves. The three QoE metric values are good until an RTTC-

S standard deviation of around 40 ms, where performance

degradation begins to be visible. Moreover, the combination

{Illinois RWTM} preserves its performance better and has a

less aggressive degradation rate for higher RTTC-S standard

deviation, especially from 35 ms. Accordingly, we can say

that using RWTM with Illinois is safer when RTTC-S is very

unstable. Otherwise, {RWTM Cubic} can also be used, most

usefully when the standard deviation of RTTC-S is lower than

35 ms. We also observe in Figure 11 that both combinations

have a similarly low congestion rate, CNG, and similar

frequency of OFF* periods, frOFF*. Based on this

observation, we can deduce that RWTM preserves its

inherent characteristics with Cubic and Illinois variants, and

that the degradation of QoE metric measurements for highly

unstable RTTC-S is mainly caused by the congestion control

algorithms used by Cubic and Illinois variants. Since

RWTM seems to be more adequate with Illinois, we can say

that the loss-delay-based and C-AIMD approach of Illinois

helps more than the loss-based and cubic RTT-independent

approach of Cubic to preserve good performance for highly

unstable RTTC-S values.

On the other hand, HTBM is less robust against RTTC-S

instability. The green and the blue curves that present the

combination of HTBM with Illinois and Cubic, respectively,

show a significant degradation of QoE metric measurements

when the standard deviation of RTTC-S is above 14 ms.

However, {HTBM Illinois} is more sensitive to RTTC-S

instability than {HTBM Cubic}. This means that combining

the loss-delay-based congestion control variant Illinois with

the HTBM shaping method that increases the queuing delay,

entails harmful drawbacks for QoE when the RTTC-S is

unstable. We can also validate this observation in Figure 11:

the congestion rate CNG of {HTBM Illinois} and {HTBM

Cubic} are predominantly close to each other, but the

frequency of OFF* periods explodes with {HTBM Illinois}

for RTTC-S standard deviation higher than 20 ms. This

implies that the additional delay caused by HTBM is

practically the same for both congestion control variants

Cubic and Illinois, but the effects on frOFF* and QoE are quite

different and involve more drawbacks for the Illinois variant.

In contrast, HTBM with Cubic has fewer drawbacks and

presents QoE metrics measurements that are relatively

constant for instability and infidelity from RTTC-S standard

deviations around 20 ms. This results can be explained by

the fact that the Cubic variant does not use RTTC-S to

compute its congestion window cwnd during the congestion

avoidance phase, as explained in Subsect. 2.1.

4.5 Discussion
After comparing the results of five scenarios, we have made

numerous observations, but in this subsection, we want to

summarize the most important observations. First, NewReno

and Vegas variants do not provide good performance in the

HAS context, excepting the combination {NewReno

RWTM} that could perform well if the initial value of

ssthresh is well-chosen. Second, we summarize the

observations of the five scenarios for the four combinations

in Table 9. Thus, we assign a score for each combination that

ranges between "--" and "++": -- (bad), - (insufficient), +/-

(average), + (good), and ++ (excellent). This score is based

on the analysis of results for each scenario.

Table 9. The final score for each combination

Scenario

Combination

RWTM HTBM

Cubic Illinois Cubic Illinois

{1,2, 3} ++ ++ +/- +
4 -- + -- ++
5 + ++ +/- --

The best combination is {Illinois RWTM}: it yields good

performance when two clients compete for bandwidth and is

robust against high RTTC-S variation, but it is somewhat

 (a) CNG variation (b) frOFF* variation

15

vulnerable to heavy congestions that could be caused by

external factors. In the second position, we have two

combinations:

- {Cubic RWTM}: Unfortunately, it is very vulnerable to

congestions and slightly sensitive to high RTTC-S

variation.

- {Illinois HTBM}: It has the advantage of being robust

against heavy congestions. However, it is very sensitive

to RTTC-S variation. Furthermore, it causes a high rate of

congestion in the gateway that could disturb other

sessions in concurrence with HAS sessions.

5. CONCLUSION AND FUTURE WORK
A comparative evaluation has been developed in order to

study the effect of combining two well-known traffic

shaping methods (HTBM and RWTM) in the gateway with

four very common TCP congestion algorithms (NewReno,

Vegas, Illinois, and Cubic) in the server in the context of

HTTP adaptive streaming technique. We examined the

user’s QoE by applying objective metrics. Furthermore, we

observed the evolution of the congestion window on the

server side in order to explain the behavior of each

combination and its relationship with QoE metrics. We also

used the congestion rate and the frequency of OFF periods

that exceeds retransmission timeout as indicators. We have

addressed many scenarios: two HAS clients competing for

the home bandwidth simultaneously, adding or removing a

HAS client, inducing a heavy congestion in the gateway, and

increasing the instability of the round trip time, RTT,

between the HAS server and the HAS client. The results

show that there is a significant discordance in performance

between combinations. The best combination that improves

the QoE, reduces the congestion rate, and reduces the OFF

periods in the majority of scenarios is when combining the

loss-delay-based congestion control variant, Illinois, which

uses the C-AIMD approach, with the TCP flow control-

based method, RWTM. The characteristics of Illinois and

RWTM seem to be similarly robust against high RTT

instability. This combination does not disturb other real-time

streams in the home network because it does not induce

additional queueing delay and it considerably reduces the

congestion rate. However, this combination is slightly

vulnerable to heavy congestions that could be caused by

external factors such as other concurrent streams.

Having extended our knowledge about the combination of

TCP congestion control variants with shaping methods in

this work, we intend as future work to design a new TCP

congestion control variant that is compatible with all

specifications of HAS and shaping methods.

6. REFERENCES
[1] Rémi Houdaille, and Stéphane Gouache. Shaping HTTP

adaptive streams for a better user experience. In 3rd

Multimedia Systems Conference, pages 1-9. ACM,

2012.

[2] Chiheb Ben Ameur, Emmanuel Mory, and Bernard

Cousin. Shaping HTTP adaptive streams using receive

window tuning method in home gateway. In 33rd

Performance Computing and Communications

Conference, pages 1-2. IEEE, 2014.

[3] Floyd Sally, Thomas Henderson, et al. The NewReno

modification to TCP fast recovery algorithm. RFC

3782, 2012.

[4] Lawrence S. Brakmo, Sean W. O'Malley, and Larry L.

Peterson. TCP Vegas: New techniques for congestion

detection and avoidance. ACM SIGCOMM Computer

Communication Review 24(4): pages 24-35, 1994.

[5] Liu Shao, Tamer Başar, and Ravi Srikant. TCP-Illinois:

A loss-and delay-based congestion control algorithm for

high-speed networks. In Performance Evaluation

Journal, 65(6-7): pages 417-440. ScienceDirect, 2008.

[6] Liu Shao, Tamer Başar, and Ravi Srikant. CUBIC: a

new TCP-friendly high-speed TCP variant. In ACM

SIGOPS Operating Systems Review 42(5): pages 64-

74. ACM, 2008.

[7] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving

fairness, efficiency, and stability in HTTP-based

adaptive video streaming with festive. In 8th

International Conference on Emerging Networking

Experiments and Technologies, pages 97-108. ACM,

2012.

[8] Ha Sangtae and Injong Rhee. Taming the elephants:

New TCP slow start. Computer Networks Journal 55(9):

pages 2092-2110. ScienceDirect, 2011.

[9] Saamer Akhshabi, Lakshmi Anantakrishnan, et al. What

happens when HTTP adaptive streaming players

compete for bandwidth? In 22nd International Workshop

on Network and Operating System Support for Digital

Audio and Video, pages 9-14. ACM, 2012.

[10] Misra Vishal, Wei-Bo Gong, and Don Towsley. Fluid-

based analysis of a network of AQM routers supporting

TCP flows with an application to RED. In ACM

SIGCOMM Computer Communication Review, 30(4):

pages 151-160. ACM, 2000.

[11] Bjørn J. Villa and Poul E. Heegaard. Group based traffic

shaping for adaptive HTTP video streaming by segment

duration control. In 27th International Conference on

Advanced Information Networking and Applications,

pages 830-837. IEEE, 2013.

[12] Stewart Lawrence, Hayes David, et al. Multimedia-

unfriendly TCP congestion control and home gateway

queue management. In 2nd ACM Conference on

Multimedia Systems, pages 35-44. ACM, 2011.

[13] Hayes David and Grenville Armitage. Improved

coexistence and loss tolerance for delay based TCP

16

congestion control. In 35th Conference on Local

Computer Networks, pages 24–31. IEEE, 2010.

[14] Cheng-Yuan Ho, Yaw-Chung Chen et al. Fast

retransmit and fast recovery schemes of transport

protocols: A survey and taxonomy. In Computer

Networks Journal 52(6): pages 1308-1327.

ScienceDirect, 2008.

[15] Jamal Habibullah, and Kiran Sultan. Performance

analysis of TCP congestion control algorithms. In

International Journal of Computers and

Communications 2(1): pages 18-24, 2008.

[16] Brown Martin A. Traffic Control HOWTO. Guide to IP

Layer Network, 2006.

[17] Mark Allam,Vern Paxson, and William Richard

Stevens. TCP congestion control. RFC 2581, 1999.

[18] Yin Xiaoqi, Vyas Sekar, and Bruno Sinopoli. Toward a

principled framework to design dynamic adaptive

streaming algorithms over HTTP. In 13th ACM

Workshop on Hot Topics in Networks, pages 1-9. ACM,

2014.

[19] Saamer Akhshabi, Sethumadhavan Narayanaswamy, et

al. An experimental evaluation of rate-adaptive video

players over HTTP. In Signal Processing: Image

Communication 27(4): pages 271-287, 2012.

[20] Huang Te-Yuan, Handigol Nikhil, et al. Confused,

timid, and unstable: picking a video streaming rate is

hard. In the Internet Measurement Conference, pages

225-238. ACM, 2012.

[21] Chiheb Ben Ameur, Emmanuel Mory and Bernard

Cousin, Evaluation of gateway-based shaping methods

for HTTP adaptive streaming. In Quality of Experience-

based Management for Future Internet Applications and

Services Workshop (QoE-FI), pages 1777-1782. IEEE

International Conference on Communications, 2015.

[22] Cranley Nicola, Philip Perry, and Liam Murphy. User

perception of adapting video quality. In International

Journal of Human-Computer Studies, pages 637-647,

2006.

[23] Mok Ricky KP, Chan Edmond, et al. Inferring the QoE

of HTTP video streaming from user-viewing activities.

In 1st ACM SIGCOMM Workshop on Measurements

Up the Stack, pages 31-36. ACM, 2011.

[24] Eric Dumazet. Stochastic fairness queuing discipline,

http://manpages.ubuntu.com/manpages/trusty/man8/tc-

sfq.8.html. Ubuntu Manuals, 2010.

[25] Saamer Akhshabi, Lakshmi Anantakrishnan, et al.

Server-based traffic shaping for stabilizing oscillating

adaptive streaming players. In 23rd ACM Workshop on

Network and Operating Systems Support for Digital

Audio and Video, pages 19-24. ACM, 2013.

[26] Jean Yves Le Boudec, Rate Adaptation, Congestion

Control and Fairness: A Tutorial, pages 1-44. Ecole

Polytechnique Federale de Lausanne (EPFL), 2014.

