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ABSTRACT 

HTTP adaptive streaming (HAS) is a streaming video technique 

widely used over the Internet. However, it has many drawbacks that 

degrade its user quality of experience (QoE). Our investigation 

involves several HAS clients competing for bandwidth inside the 

same home network.  Studies have shown that managing the 

bandwidth between HAS clients using traffic shaping methods 

improves the QoE. Additionally, the TCP congestion control 

algorithm in the HAS server may also impact the QoE because 

every congestion control variant has its own method to control the 

congestion window size. Based on previous work, we describe two 

traffic shaping methods, the Hierarchical Token Bucket shaping 

Method (HTBM) and the Receive Window Tuning Method 

(RWTM), as well as four popular congestion control variants: 

NewReno, Vegas, Illinois, and Cubic. In this paper, our objective 

is to provide a detailed comparative evaluation of combining these 

four congestion control variants with these two shaping methods. 

The main result indicates that Illinois with RWTM offers the best 

QoE without causing congestion. Results were validated through 

experimentation and objective QoE analytical criteria. 
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1. INTRODUCTION 
HTTP adaptive streaming (HAS) is a streaming video 

technique based on downloading video segments of short 

duration. These segments are called chunks, and they are 

streamed from a HAS server to a HAS client through the 

network. Each chunk is encoded at multiple quality levels. 

After requesting a chunk by an HTTP GET request message, 

when the chunk is received, the player on the client side 

stores it in a playback buffer. The HAS player operates in 

one of two states: a buffering state and a steady state. During 

the first state, the player requests a new chunk as soon as a 

previous chunk has been downloaded, until the playback 

buffer is filled. However, during the steady state, the player 

requests chunks periodically in order to maintain a constant 

playback buffer size. The steady state includes periods of 

activity (ON periods) followed by periods of inactivity (OFF 

periods) [9], [11].  

The Quality of Experience (QoE) of an HTTP adaptive 

stream depends primarily on three criteria: 

1. Video quality level stability [1], [11]: A frequent change 

of video quality level bothers the user. Therefore, 

quality level fluctuation should be avoided to improve 

the QoE. 

2. Fidelity to optimal quality level selection:  The user 

prefers to watch the best video quality level, when 

possible. Therefore, the HAS player should select the 

optimal quality level, which is the highest feasible 

quality level allowed by the available bandwidth.  

3. Convergence speed: The user prefers to view the 

optimal quality level as soon as possible. Accordingly, 

the HAS player should rapidly select the optimal quality 

level. The delay that the player requires before the 

optimal quality level has been attained is called the 

convergence speed [1].  

We studied a general use case in which several HAS clients 

are located in the same home network. In this use case, QoE 

degradations can be grouped into two main causes: 

 Congestion events:  

Video packets sent from the server to the client pass through 

many network devices. Each device has one or many queues 

that use a queuing discipline to schedule network packets. 

The implemented algorithm decides whether to route or drop 

incoming packets in order to avoid network congestion. The 

main bottleneck occurs near the home gateway, and more 

precisely, in the link between DSLAM and home gateway 

[12]. In fact, the DSLAM may considerably reduce the 

bandwidth offered to the home network, and it is more likely 

to drop packets than any other network device. To minimize 

network effects on the delivery, the TCP protocol 

implements a “congestion control algorithm” on the sender 

side, which reduces the bitrate of packets sent to the receiver 

when a packet is lost. However, this bitrate reduction may 

degrade QoE. In addition, there are many congestion control 

variants with different methods of managing the congestion 

window size, cwnd, and detecting congestion events. These 

differences may change the QoE between variants. 

 Concurrence with other streams - OFF periods issue: 

 The HAS player estimates the available bandwidth by 

computing the download bitrate for each chunk when it has 
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finished downloading; this is done by dividing the chunk 

size by its download duration. As a consequence, the player 

cannot estimate the available bandwidth during OFF periods, 

because no data are being received. When a HAS stream 

concurs with other streams in the same home network, 

accurate bandwidth estimation becomes more difficult. For 

example, when two HAS streams are competing for 

bandwidth and the ON period of the first player coincides 

with the OFF period of the second player, the first player will 

overestimate its available bandwidth. This overestimation 

may lead the player to select a higher quality level for the 

next chunk. This selection may lead to a congestion event 

and a resulting fluctuation of quality levels between the two 

players. Research has demonstrated that traffic shaping can 

considerably limit this problem [1, 2, 11, 21, 25]. Traffic 

shaping consists of selecting a target bitrate for each HAS 

session in the home network based on bitrates of the 

available quality levels and the available bandwidth. It then 

shapes the outgoing traffic to each HAS client based on the 

selected target bitrate. 

The objective of our study is to combine two solution 

categories, TCP congestion control variants to reduce the 

negative effects of congestion events, and traffic shaping 

methods, to restrict the drawbacks of the concurrence 

between HAS streams in the home gateway. The optimal 

combination will have the highest grade of QoE, i.e. the best 

possible video quality level stability, best fidelity to optimal 

quality level selection, and best convergence speed.  

We note that there are many implementations of HAS that 

are currently deployed, such as Dynamic Adaptive 

Streaming over HTTP (MPEG-DASH), Microsoft Smooth 

Streaming (MSS), Apple HTTP Live Streaming (HLS), and 

Adobe HTTP Dynamic Streaming (HDS). For this reason, 

we wish to emphasize that in this paper we only choose HAS 

traffic shaping methods that do not change the HAS 

implementation either in the player or in the server. This 

choice provides adaptability to any HAS client or server 

implementations and thus offers a larger scope of application 

of our presented work. 

The remainder of this paper is organized as follows. In 

Section 2, we describe the background and related works. In 

Section 3, we detail our methodology and experimental 

implementation. Section 4 presents the results and 

discussion. In Section 5, we conclude the paper and suggest 

future directions for our work. 

2. BACKGROUND AND RELATED WORK 
In this section, we describe the TCP congestion control 

variants and the HAS traffic shaping methods used in this 

work, and explain the distinctions between them. 

2.1 TCP congestion control variants 
All TCP congestion control variants have two common 

phases: a slow start phase and a congestion avoidance phase. 

The slow start phase consists of increasing cwnd rapidly by 

one maximum segment size (MSS) for each received 

acknowledgment (ACK), i.e. the cwnd value is doubled for 

each round trip time (RTT). This rapidity has an objective of 

reaching a high bitrate within a short duration. When the 

cwnd size exceeds a threshold called ssthresh, the TCP 

congestion control algorithm switches to the second phase: 

the congestion avoidance phase. This phase slowly increases 

the cwnd until a congestion event is detected.   

TCP congestion control variants are classified according to 

two main criteria [13]: 

1- The first criterion is the increase of cwnd during the 

congestion avoidance phase and the decrease of cwnd 

immediately following congestion detection. Generally, 

the increase is additive, and the cwnd size increases by 

one MSS for each RTT. For decreasing cwnd, the 

standard variants employ multiplicative decreasing, i.e. 

the cwnd size is weighted by a multiplicative decrease 

factor (1-β), where 0 < β < 1. This category is called the 

Additive Increase Multiplicative Decrease (AIMD) 

approach. Other variants using different techniques are 

classified as non-AIMD approaches.  

2- The second criterion is the method by which the 

algorithm detects congestion. We distinguish three 

modes: loss-based, delay-based, and loss-delay-based 

modes. The loss-based mode considers any detection of 

packet loss as a congestion event. A majority of TCP 

congestion control variants that use the loss-based mode 

consider receiving three duplicated ACKs from the 

receiver as an indication of a packet loss and, as a 

consequence, as an indication of a congestion event. 

However, the delay-based mode considers a significant 

increase in the RTT value as the only indication of a 

congestion event. The third mode, the hybrid mode, 

combines the delay-based and loss-based modes to 

improve congestion detection. 

In order to facilitate our study, we chose four well-known 

congestion control variants, and we classify them according 

to the two criteria cited above:  

 - NewReno [3]: This variant is designed as the standard TCP 

congestion control approach. It uses the AIMD approach 

with the loss-based mode.  Two mechanisms are employed 

immediately following congestion detection: fast retransmit 

and fast recovery [14]. Fast retransmit consists of 

performing a retransmission of what appears to be the 

missing packet (i.e. when receiving 3 duplicate ACKs), 

without waiting for the retransmission timer to expire. After 

the fast retransmit algorithm sends this packet, the fast 

recovery algorithm governs the transmission of new data 

until a non-duplicate ACK arrives. The reason for using fast 

recovery is to allow the continual sending of packets when 

the receiver is still receiving packets, even if some packets 

are lost. 
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1: NewReno: ssthresh = max(cwnd/2, 2 MSS) 

2: Vegas:       ssthresh = min(ssthresh, cwnd - 1) 

3: Illinois:     ssthresh = max(cwnd.(1-β), 2 MSS) 

4: Cubic:       ssthresh = max(cwnd.(1-β), 2 MSS) 

 

    1: ssthresh = max(ssthresh, ¾ cwnd) 

    2: for i=1 to int(idle/RTO) do 

    3:   cwnd = max ( min ( cwnd , rwnd )/2, 1 MSS ) 

    4: end for 

 

 - Vegas [4]: This non-AIMD variant is an Additive Increase 

Additive Decrease (AIAD) variant. It is a delay-based 

variant that accurately estimates RTT for every sent packet 

and adjusts cwnd size based on actual throughput and 

expected throughput. If RTT increases, cwnd decreases by 

one MSS, and vice versa. Vegas is the smoothest TCP 

congestion control variant [15]; it is able to allocate a fair 

share of bandwidth with minimal packet loss events.  

- Illinois [5]: This is a TCP loss-delay-based congestion 

variant that employs a particular classification of the AIMD 

approach, C-AIMD, which involves a concave window size 

curve. Packet loss is used for primary congestion inference 

to determine the direction (increase or decrease) of cwnd, 

with a delay for secondary congestion inference to adjust the 

value of the window size change. More precisely, when the 

average queueing delay is small (small increase of RTT), the 

sender supposes that the congestion is not imminent and 

specifies a large additive increase α and small multiplicative 

decrease β. In the opposite case, when the average queuing 

delay is large (large increase of RTT), the sender supposes 

that the congestion is imminent and selects a small α and 

large β. Illinois measures RTT for each received ACK to 

update α and β. Moreover, it retains the same fast recovery 

and fast retransmit phases as NewReno. Illinois was 

designed for high-speed and high-latency networks, where 

the bandwidth-delay product is relatively high. 

Consequently, it enables higher throughput than NewReno. 

- Cubic [6]: This variant is loss-based, but it uses a non-

AIMD approach. A cubic function is used to increase the 

cwnd in the congestion avoidance phase immediately after 

the fast recovery phase, and a multiplicative decrease 

approach is used to update the cwnd after congestion event 

detection. The cubic function has a concave region followed 

by a convex region. The plateau between the two regions, or 

the inflexion point (denoted by Wmax), corresponds to the 

window size just before the last congestion event. The cubic 

function enables a slow growth around Wmax to enhance the 

stability of the bandwidth, and enables a fast growth away 

from Wmax to improve scalability of the protocol. Upon 

receiving an ACK during the congestion avoidance phase at 

time t, Cubic computes the new value of cwnd corresponding 

to the cubic function at time t. As a consequence, Cubic uses 

the time instead of the RTT to increase the cwnd. Cubic 

employs a new slow-start algorithm called HyStart [8] 

(hybrid slow start), which finds a safe exit point to the slow 

start, the ssthresh value, at which the slow start can finish 

and safely move to congestion avoidance before cwnd 

overshoot occurs. HyStart employs the RTT delay increase 

and the inter-arrival time between consecutive ACKs to 

identify the safe exit point, and to modify the ssthresh value 

[8]. This variant does not make any change to the fast 

recovery and fast retransmit of standard NewReno. Cubic is 

the smoothest loss-based congestion control variant [15]: it 

is characterized by a congestion window that falls less 

abruptly and that remains constant over a wide range of 

elapsed time. It is also designed for high-speed and high-

latency networks. Cubic is implemented and used by default 

in Linux kernels since version 2.6.19. 

For precise analysis, based on the descriptions of 

congestion control algorithm variants and their source code, 

we describe below the update of the congestion window size, 

cwnd, and the slow start threshold value, ssthresh, for 

different events: 

- Congestion events: there are two cases 

o When a congestion event is detected, the Fast 

Recovery / Fast Retransmit (FR/FR) phase reduces 

the ssthresh value and sets the cwnd value to 

ssthresh+3, for the purpose of remaining in the 

congestion avoidance phase. The ssthresh value after 

a congestion event is updated as follows: 
 

          Algorithm 1 ssthresh update after a congestion event 
  

  

 

 

where MSS is the maximum segment size, and β is 

the multiplicative decrease factor. 

o When the retransmission timeout expires before 

receiving any ACK of the retransmitted packet, 

ssthresh is reduced as indicated in Algorithm 1 , and 

cwnd is set to a small value and restarts from the slow 

start phase.  

- Idle period: When the server sends a packet after an idle 
period that exceeds the retransmission timeout (RTO), 
cwnd and ssthresh are computed for the four congestion 
control variants as in Algorithm 2: 

  Algorithm 2 cwnd and ssthresh updates after idle period  

 

 

 

In the HAS context, an idle period coincides with an OFF 

period between two consecutive chunks. An OFF period 

whose duration exceeds RTO is denoted by OFF*. 

Furthermore, we additionally want to emphasize that the rate 

of a TCP connection can be approximated, if we assume that 

transients due to slow start and fast recovery can be 

neglected, by min⁡(𝑐𝑤𝑛𝑑, 𝑟𝑤𝑛𝑑) 𝑅𝑇𝑇⁄  [26], where rwnd is 

the TCP receive window indicated by the receiver and RTT 

is the round trip time between the sender and the receiver. 

Obviously, this approximation is valid for the four TCP 

congestion control variants described above. As we have 

shown, these variants employ different algorithms to modify 

the congestion window, cwnd, during the congestion 

avoidance phase and after congestion detection. 
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Accordingly, the generated rate as well as its variation over 

time are different from one variant to another. 

2.2 Traffic shaping methods 
Many studies have been conducted to improve HAS 

performance for cases in which several HAS clients are 

located in the same home network. The ON-OFF periods 

characterizing the HAS player in its steady state involve 

three substantial problems when HAS players are 

competing: player instability, unfairness between players, 

and bandwidth underutilization [9]. The cause of these 

problems is the inability to estimate the available bandwidth 

during the OFF period, because no data are being received.  

Three types of solutions are proposed to improve HAS user 

experience: client-based, server-based, and gateway-based 

solutions. They differ with respect to the device in which the 

shaping solution is implemented. Below, we cite relevant 

methods for each type of solution: 

- The client-based solution involves only the HAS client 

in order to reduce its OFF period durations. One of the 

recent client-based methods is proposed in the 

FESTIVE method [7]. It randomizes the events of chunk 

requests inside the player in order to reduce the 

periodicity of ON periods. Consequently, most of the 

incorrect estimations of bandwidth could be avoided 

when several HAS clients compete for bandwidth. 

However, this method is not efficient enough to prevent 

all incorrect estimations. In addition, it modifies the 

HAS player implementation, which is contradictory to 

our specifications described in the Introduction. 

Moreover, the client-based solution does not provide the 

coordination between HAS clients that is required to 

further improve bandwidth estimations and QoE. 

- The server-based solution involves only the HAS 

server. It proceeds according to two steps: First, finding 

the optimal quality level for each provided HAS flow, 

and second, shaping the sending rate of the HAS server 

according to the encoding rate of this level. In [25], the 

authors propose a server-based method: it consists in 

detecting the oscillations between quality levels on the 

server side and deciding which optimal quality level 

must be selected. Although this method improves the 

QoE, it cannot conveniently respond to the typical use 

cases of several concurrent HAS clients that do not 

share the same HAS server: the shared link is on the 

HAS client side. Moreover, this server-based solution 

requires an additional processing task, which becomes 

burdensome and costly when many HAS clients are 

demanding video contents from the same HAS server. 

In addition, the server-based solution is unable to 

acquire information about the other competing flows 

with their corresponding HAS clients. Hence, the 

selection of the optimal quality level at the server is a 

vague estimation. This estimation is less accurate than a 

quality level selection based on a sufficient knowledge 

about the access network of the corresponding HAS 

client(s).  

- The gateway-based solution that consists of applying 

the HAS traffic shaping in the gateway is more 

convenient than client-based and server-based 

solutions; in fact, the gateway can acquire information 

about the HAS traffic of all clients of the same home 

network, which is not possible either at the server or at 

the client. In addition, the gateway-based solution is 

able to perform traffic shaping without inducing any 

modification of HAS implementation code either in the 

server or the client. Hence, in this paper, our evaluations 

only consider the gateway-based shaping solution. For 

the gateway-based solution, the authors assumed that 

the home gateway can intercept the manifest file during 

the HAS session initialization and can obtain the 

characteristics of the available video quality levels of 

every session. This solution introduces a bandwidth 

manager in the gateway that defines a shaping rate for 

each connected active HAS client in the home network. 

The bandwidth manager should be able to update the 

number of active connected HAS clients in the home 

gateway by sniffing the SYN and FIN flags in TCP 

packets. Therefore, the difference between the gateway-

based methods is the manner in which they shape the 

bandwidth for each HAS session. The two main 

gateway-based methods found in the literature and used 

in our comparative study are HTBM [1] and RWTM [2]. 

They are briefly described in the following: 

2.2.1 HTBM 
HTBM uses the Hierarchical Token Bucket (HTB) queuing 

discipline to shape the HTTP adaptive streams. HTB is 

integrated in Linux with the traffic controller tool of the 

iproutes2 utility package.  It uses one link, designated as the 

parent class, to emulate several slower links, designated as 

the children classes. Different types of traffic may be served 

by the emulated links. HTB is exploited by the bandwidth 

manager of HTBM in order to define a child class for each 

HAS session. HTB also employs the tokens and buckets 

concept, combined with the class-based system for better 

control over traffic and for shaping in particular [16]. A 

fundamental component of the HTB queuing discipline is the 

borrowing mechanism: children classes borrow tokens from 

their parent once they have exceeded the shaping rate. A 

child class will continue to try to borrow until it reaches a 

defined threshold of shaping, at which point it will begin to 

queue packets that will be transmitted when more tokens 

become available. 

Accordingly, using HTBM enables the shaping of the HTTP 

adaptive streams for each HAS session in the gateway, as 

indicated by the bandwidth manager, by merely delaying 

packets that are received from the HAS server. The authors 

of [1] indicate that HTBM improves the user’s QoE; it 
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improves the stability of video quality level, the fidelity to 

optimal quality level, and the convergence speed. 

2.2.2 RWTM 
The second shaping method, Receive Window Tuning 

Method (RWTM), is a gateway-based shaping method that 

was proposed in [2]. It is implemented in the TCP layer and 

is based on TCP flow control at the receiver side. Indeed, 

during a TCP session, each receiver specifies the maximum 

number of bytes that it is able to buffer. This value is called 

the receiver’s advertised window, denoted by rwnd, and its 

size is specified in the rwnd field in the header of each TCP 

packet sent from the receiver to the sender. The sender 

receives the rwnd size from the receiver and limits its 

sending window, W, so that the number of packets sent in 

each RTT does not exceed rwnd; W=min(rwnd, cwnd). 

The RWTM method consists of modifying, in the gateway, 

the rwnd field of each TCP ACK packet sent from a HAS 

client C to its HAS server S in order to limit the sending rate 

of the HAS server to rwnd/RTTC-S. RWTM uses the defined 

shaping rate of the bandwidth manager for each connected 

active HAS client, and estimates the RTTC-S value to compute 

the next value of rwnd. We note that the estimation of RTTC-

S is accomplished using only TCP ACK packets sent from 

HAS clients to the HAS server by using passive estimation. 

The rwnd is computed once for each ON period. RWTM was 

tested in [2] and [21], and results indicated that RWTM 

enhances the user’s QoE: it improves the stability, the 

fidelity, and the convergence speed.  

In [21], we showed that RWTM outperforms HTBM when 

using the Cubic variant as congestion control on the server 

side. However, due to the dissimilarity of TCP variants, an 

extended evaluation using other variants and additional 

scenarios will give us a better understanding of the 

interaction between shaping methods and TCP variants.  

3. METHODOLOGY AND 

EXPERIMENTAL IMPLEMENTATION 
In this section, we provide a description of the metrics used 

to measure performance, the scenarios that cover many 

operating conditions, and the framework that has been 

developed to emulate our use case. 

3.1 Performance metrics 
We define three metrics in this section that we use to 

evaluate the QoE and to understand how each combination 

behaves. To do so, we present in Table 1 the main parameters 

that are used to define the metrics. 

We note that the optimal quality level value, LC,opt(i), 

corresponds to the quality level that the client C should select 

at time i under the shaping rate defined  by the  bandwidth 

manager. This shaping rate is chosen in a manner that 

ensures the fairest share of the available home bandwidth 

between clients with prioritization to achieve the maximum 

use of the available home bandwidth. This entails that some 

clients could have a higher  quality level  than  others  when 

  

Table 1. Description of parameters 

Parameter Description 

I Discrete time index 

LC(i) Video quality level index of client C at time i. 

LC,opt(i) Theoretical optimal value of LC(i) 

QC(i) Video encoding bitrate of client C at time i 

their fair share of available home bandwidth is not sufficient 

to maximize the use of the available home bandwidth. 

Below, we define analytically three performance metrics that 

describe the three criteria of QoE mentioned in the 

Introduction: 

3.1.1 Video quality level stability 
Many research studies indicate that HAS users are likely to 

be sensitive to frequent and significant quality level switches 

[22, 23]. We use the instability metric, 𝐼𝑆𝐶(𝐾), which 

measures the instability for client C for a K-second test 

duration in conformity with its description in [7] as the 

following equation: 

𝐼𝑆𝐶(𝐾) =
∑ |𝑄𝐶(𝐾 − 𝑖) − 𝑄𝐶(𝐾 − 𝑖 − 1)| × 𝑤(𝑖)𝐾−1
𝑖=0

∑ 𝑄𝐶(𝐾 − 𝑖) × 𝑤(𝑖)𝐾
𝑖=1

⁡⁡(1) 

𝐼𝑆𝐶(𝐾) is the weighted sum of all encoding bitrate switching 

steps observed within the last K seconds divided by the 

weighted sum of the encoding bitrates selected in the last K 

seconds. The lower the 𝐼𝑆𝐶(𝐾) value is, the higher the 

stability of the video quality level is. 

More precisely, this formula uses the encoding bitrates of the 

selected quality levels over time, 𝑄𝐶(𝑖), instead of the quality 

level index over time, 𝐿𝐶(𝑖). In fact, the absolute difference 

between two encoding bitrates that are displayed on the 

client side during two successive seconds, 𝐾 − 𝑖 − 1 and 

𝐾 − 𝑖, and denoted by |𝑄𝐶(𝐾 − 𝑖) ⁡− ⁡𝑄𝐶(𝐾 − 𝑖 − 1)|, gives 

more significant indication of the observed video quality 

change than when using the absolute difference between the 

quality level indexes. Hence, we can offer an adequate 

representation of the user expectation. 

Moreover, in this formula, the authors of [7] use the weight 

function 𝑤(𝑖) = 𝐾 − 𝑖⁡in order to add a linear penalty to 

more recent quality level switches. In fact, their justification 

is that the switching of quality level is becoming more 

disturbing for users’ experience when the video playback 

position is far from the beginning of the video stream.  

3.1.2 Fidelity to optimal quality level 
In [7], the authors define two additional goals to achieve 

within our use case: 1) fairness between players: players 

should be able to converge to an equitable allocation of 

network resources; 2) efficiency among players: players 

should choose the highest feasible quality levels to maximize 

the user’s experience. Furthermore, in [9], the authors 

address the bandwidth underutilization issue that may 

prevent the possible improvement of QoE. So, maximizing 

the use of bandwidth can be considered as a QoE criterion. 

Accordingly, in order to provide one formula that satisfies 
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these three criteria, we define our metric called infidelity to 

optimal quality level. 

The infidelity metric, 𝐼𝐹𝐶(𝐾), of client C for a K-second test 

duration, measures the duration of time over which the HAS 

client C requests optimal quality: 

 

The lower the 𝐼𝐹𝐶(𝐾) value is, the higher the fidelity to 

optimal quality is. 

Here, we note that the theoretical optimal quality level 

𝐿𝐶,𝑜𝑝𝑡(𝑖) aims to resolve the dilemma between the two 

criteria of maximum use and fair share of bandwidth 

between HAS players. In fact, considering that only the fair 

share of bandwidth may cause bandwidth underutilization, 

in some cases it may leave some residual bandwidth 

allocated to nobody. Hence, based on the optimal quality 

level, the value of the infidelity metric is representative of 

user expectation. 

3.1.3 Convergence speed 
The convergence speed metric was previously defined in [1]. 

We provide an analytical definition as follows: 

 

This metric is the time that the player of HAS client C takes 

to reach and remain at the optimal quality level for at least T 

seconds during a K-second test duration. The reason of 

selecting this criterion for evaluating the QoE in our use case 

is observations made in [1], [2], [9], and [21]: they show that 

when HAS players compete for bandwidth, the convergence 

to optimal quality level may take several seconds or may be 

very difficult to be achieved. Accordingly, the speed of this 

convergence is a valuable QoE criterion for our evaluations. 

The lower the 𝑉𝐶,𝑇(𝐾) value is, the faster the convergence to 

the optimal quality level is.  

 

Additionally, we define two other metrics (CNG and frOFF*, 

described below) that enable us to measure the reaction of 

home gateway and HAS players. 

3.1.4 Congestion rate 
The congestion detection events influence to an extreme 

degree both the QoS and QoE of HAS because the server 

decreases its sending rate after each congestion detection. 

Hence, by analyzing the code description of the four TCP 

congestion control algorithms (NewReno, Vegas, Illinois, 

and Cubic), we found that the congestion event appears 

when the value of parameter slow start threshold (ssthresh) 

decreases (see Algorithm 1). Hence, we define a metric 

called congestion rate, denoted by 𝐶𝑁𝐺𝐶−𝑆⁡(𝐾), that 

computes the rate of congestion events that are detected on 

the server side, corresponding to the HAS flow between 

client C and server S during a K-second test duration as 

shown in equation (4): 

𝐶𝑁𝐺𝐶−𝑆(𝐾) =
𝐷𝐶−𝑆
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ(𝐾)

𝐾
× 100⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

where 𝐷𝐶−𝑆
𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ(𝐾) is the number of times the ssthresh has 

been decreased for the C-S HAS session during the K-

second test duration. 

3.1.5 Frequency of OFF* periods per chunk 
This metric is important to measure the frequency of OFF* 

periods. An OFF period whose duration exceeds RTO is 

denoted by OFF* (as indicated in Subsect. 2.1). This 

frequency is equal to the total number of OFF* periods 

divided by the total number of downloaded chunks. This 

metric is denoted by frOFF*. 

For result analysis, we use the QoE metrics to quantitatively 

discuss the user’s experience, and use CNG and frOFF* 

metrics to explain the performance of each combination of 

traffic method and congestion variant. 

3.2 Scenarios 
We define five scenarios that are typical of concurrence 

between HAS clients in a same home network (scenarios 1, 

2, and 3), and how the HAS client reacts when some changes 

occur (scenarios 4 and 5): 

1. Both clients start to play simultaneously and continue 

for 3 minutes. This scenario illustrates how clients 

compete. 

2. Client 1 starts to play, the second client starts after 30 

seconds, and both continue together for 150 seconds. 

This scenario shows how the transition from one client 

to two clients occurs.  

3. Both clients start to play simultaneously, client 2 stops 

after 30 seconds, and client 1 continues alone for 150 

seconds. This scenario shows how a transition from two 

clients to one takes place.  

4. Only one client starts to play and continues for 3 

minutes. At 30 seconds, we simulate a heavy congestion 

event with a provoked packet loss of 50% of the 

received packets at the server over a 1-second period. 

This scenario shows the robustness of each combination 

against the congestions that are induced by external 

factors, such as by other concurrent flows in the home 

network. 

5. Only one client is playing alone for 3 minutes. We vary 

the standard deviation value of RTTC-S (round trip time 

between the client and the server) for each set of tests. 

This scenario investigates the robustness against RTTC-S 

instability.  

The test duration was selected to be 3 minutes to offer 

sufficient delay for players to stabilize. 
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3.3 General framework 
We propose a testbed architecture presented in Figure 1 that 

emulates our use case described in the Introduction. The 

choice of only two clients is sufficient to show the behavior 

of concurrence between many HAS flows in the same home 

network.  

 
Figure 1. Architecture of the testbed 

In this section, we describe the configurations of each 

component presented in Figure 1: 

- HAS clients 

We used two Linux machines as HAS clients. We developed 

an emulated player in each client that reproduces the 

behavior of the HAS player without decoding and displaying 

a video stream. The playback buffer size is specified to be 

15 chunks, and the chunk duration is 2 seconds. In [18], the 

authors indicate that the bitrate adaptation algorithm 

depends on bandwidth estimation and playback buffer 

occupancy. Furthermore, players also define an 

aggressiveness level, as described in a previous study [19]. 

For example, the Netflix player is more aggressive than the 

Smooth Streaming player [19]. An aggressive player enables 

the user to ask for a video quality level that is slightly higher 

than the estimated available bandwidth. Moreover, 

aggressiveness is important for minimizing the “downward 

spiral effect” phenomenon [20]. This phenomenon consists 

of underestimating the available bandwidth, which leads to 

a lower video quality level selection. Accordingly, taking 

into consideration [18], [19], and [20], we used a bitrate 

adaptation algorithm based on bandwidth estimation in 

which we define an aggressiveness ρC(t) at time t that 

depends on playback buffer occupancy as follows: 

  ρC(t) = σ×RC(t)/BC  (5) 

where RC(t) is the filling level of the playback buffer at time 

t, BC is the size of the playback buffer of client C, and σ is 

the aggressiveness constant. The fuller the playback buffer 

is, the closer to σ the aggressiveness is.  

All tests use a HAS player with an aggressiveness constant 

of σ=0.2. This enables the HAS player to add a maximum of 

20% to its available BW estimation.  

- Home network 

In the modeled home network, the clients are connected 

directly to the gateway. The total download bitrate, or home 

available bandwidth, is limited to 8 Mbps. We choose this 

value because it is lower than twice the video encoding 

bitrate of the highest quality level. Accordingly, two clients 

in the home network cannot select the highest quality level 

at the same time. In this case, one client should select quality 

level n° 4 and the other should select the quality level n° 3 as 

optimal qualities. We do not test a use case in which two 

clients have the same optimal quality level, because this is a 

very specific case, and dissimilarity between optimal quality 

levels is more general. 

- Home gateway 

The emulated home gateway consists of a Linux machine 

configured as a network bridge to forward packets between 

the home network and the best effort network.  

We emulate the queuing discipline of the home gateway by 

using the Stochastic Fairness Queueing discipline (SFQ) 

[24]. SFQ is a classless queuing discipline that we 

configured using the Traffic Controller emulation tool (tc). 

SFQ schedules packets based on flow identification (the 

source and destination IP addresses and the source port) and 

injects them into hash buckets during the enqueuing process. 

Each bucket represents a unique flow. Additionally, SFQ 

employs Round Robin fashion for dequeuing packets by 

taking into consideration the bucket classification. The goal 

of using buckets for enqueuing and Round Robin for 

dequeuing is to ensure fairness between flows so that the 

queue is able to forward data in turn and prevents any single 

flow from drowning out the remaining flows. We also 

configured SFQ in order to support the Drop Tail queue 

management algorithm when the queue becomes full. 

Hence, this configuration of the queuing discipline is 

classified as a Drop Tail class. The queue length of SFQ, 

which is indicated by parameter limit within the tc tool, is set 

to the bandwidth-delay product. 

 In the gateway, we implemented a bandwidth manager that 

selects a shaping rate for each connected active HAS client 

in a manner such that each client should attain its optimal 

quality level described in Subsect. 3.1. The shaping rate for 

each client was chosen as indicated in [1] and [2]; it is 10% 

higher than the encoding bitrate of the optimal quality level 

for each client. The two shaping methods HTBM and 

RWTM are implemented in the gateway, and they shape 

bandwidth in accordance with the decisions of the bandwidth 

manager. 

- Best effort network 

The best effort network is characterized by the presence of 

network devices to route packets. The round trip time RTTC-

S(t) in a best effort network is modeled as follows [10]: 

  RTTC-S (t) =  aC-S + q(t)/ς  (6) 

where aC-S  is a fixed propagation delay between client C and 

server S, q(t) is the queue length of a single congested router 

(the home gateway in our use case), and ς is the transmission 

capacity of the router. q(t)/ς models the queuing processing 

delay. To comply with equation (6), we used the normal 

distribution with a mean value aC-S and a standard deviation 

equal to 0.07.aC-S. The standard deviation emulates the 

queuing processing delay q(t)/ς. This emulation is 
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accomplished by using the “netem delay” parameter of the 

traffic controller tool in the gateway machine interface. 

- HAS server 

The HAS server is modeled by an HTTP Apache Server 

installed on a Linux machine operating on Debian version 

3.2. We can change the congestion control variant of the 

server by varying the parameter 

net.ipv4.tcp_congestion_control. All tests use five video 

quality levels denoted by 0, 1, 2, 3, and 4. Their encoding 

bitrates are constant and equal to 248 kbps, 456 kbps, 928 

kbps, 1,632 kbps, and 4,256 kbps, respectively. HTTP 

version 1.1 is used to enable a persistent connection. 

4. RESULTS 
In this section, we compare the different combinations of 

TCP congestion control variants in the server and shaping 

methods in the gateway in the five scenarios. Altogether, we 

evaluate eight combinations: four TCP congestion control 

variants combined with two shaping methods. We evaluate 

QoE by discussing the QoE metrics IS, IF, and V. We also 

use the CNG and frOFF* metrics to observe how each 

combination reacts. For each scenario, we repeated each test 

60 times and we computed an average value of each metric. 

The number of 60 runs is justified by the fact that the 

difference of the average results obtained after 40 runs and 

60 runs are lower than 6%. This observation was verified for 

all scenarios. Accordingly, 60 runs are sufficient to achieve 

statistically significant results.  

This section is organized as follows. First, we begin by 

evaluating performance in scenario 1, and we analyze the 

variation of cwnd for each combination. Second, we evaluate 

the performance of scenarios 2 and 3 to study the effect of 

transition from one to two clients (and vice versa) on the 

performance of each studied combination. Third, we present 

the performance of scenario 4 to measure the robustness of 

the combinations against induced congestions. Fourth, we 

study scenario 5 to measure the robustness against the 

instability of RTTC-S for each combination. Finally, we 

discuss all results by presenting a summary of observations 

and defining the combination that is suitable for each 

particular case.  

4.1 Scenario 1 
In this scenario, two clients are competing for BW and are 

playing simultaneously. The available home bandwidth 

permits only one client to have the highest quality level, n° 

4. We make the assumption that the client who gets the 

highest quality level n° 4 is identified as client 1. Optimally, 

the first player in our use case should obtain quality level n° 

4 with an encoding bitrate of 4,256 kbps, and the second 

player should have quality level n°3 with an encoding bitrate 

of 1,632 kbps. 

In this section, we present our evaluation results and discuss 

them. Then, we analyze the cwnd variation for each 

combination in order to understand the reason for the 

observed results. 

4.1.1 Measurements of performance metrics 
The average values of QoE metric measurements for client 

1 and client 2 are listed in Tables 2 and 3, respectively.  

Table 2. QoE for client 1 in scenario 1 

Performance 

metric 

Shaping 

method 

TCP congestion control variant 

NewReno Vegas Illinois Cubic 

Instability 

(%) IS1(180) 

W/o*   4.95 2.15 8.35 7.47 

HTBM   1.89 1.08 1.56 1.86 

RWTM   1.69 4.10 1.88 1.63 

Infidelity 

(%) 

IF1(180) 

W/o      41.33  52.31 74.14 50.46 

HTBM      49.57 47.81 7.75 20.45 

RWTM      45.87 32.24 6.17 5.02 

Convergence 

speed (s) 

V1,60(180) 

W/o    100.93 102.11 174.13 145.03 

HTBM    101.83 87.11 21.10 52.06 

RWTM      94.51 104.00 24.22 19.55 

Table 3. QoE for client 2 in scenario 1 

Performance 

metrics 

Shaping 

methods 

TCP congestion control variants 

NewReno Vegas Illinois Cubic 

Instability 

(%) 

IS2(180) 

W/o 5.82 3.06 7.85 5.82 

HTBM 1.17 0.95 1.05 1.15 

RWTM 1.09 0.95 1.03 1.13 

Infidelity 

(%) 

IF2(180) 

W/o 26.64 70.77 39.27 36.33 

HTBM 4.72 3.62 4.21 4.47 

RWTM 2.49 2.30 2.47 2.61 

Convergence 

speed (s) 

V2,60(180) 

W/o 96.25 137.01 126.33 92.81 

HTBM 12.41 6.95 9.73 13.26 

RWTM 6.73 5.03 6.54 8.95 

Our first overall observation is the large dissimilarity 

between QoE measurements of the different combinations. 

This observation is a valuable result that confirms that each 

combination induces a change of HAS player behavior. 

Consequently, using HAS traffic shaping without taking into 

consideration the TCP congestion control employed in the 

HAS server cannot guarantee a good user experience; hence, 

the prominence of our proposed work. 

The results show that traffic shaping considerably improves 

the QoE metric measurements for a majority of cases, 

especially for instability, which is largely reduced (e.g. a 

reduction of instability rate by a factor of 2.6 from 4.95% to 

1.89% when employing HTBM with NewReno, and a 

reduction by a factor of 4.5 from 7.47% to 1.63% when 

employing RWTM with Cubic, as shown in Table 2). 

Furthermore, RWTM shows better performance than HTBM 

in the majority of cases. Moreover, client 2 always has better 

performance than client 1 with both shaping methods: the 

reason is that the optimal quality level of client 2 (i.e. quality 

level n° 3) is lower than that of client 1 (i.e. quality level n° 

4): obviously, the quality level n° 3 is easier to achieve. In 

addition, the gap between the QoE metric measurements of 

the two shaping methods is higher for client 1 than client 2: 

For example, when considering the Cubic variant, the gap of 

infidelity rate of client 1 between RWTM and HTBM is 

15.43% (5.02% vs. 20.45%); this is higher than that of client 

2, which is equal to 1.86% (2.61% vs. 4.47%). 

Consequently, the dissimilarity of performance between 

different combinations is more visible for client 1. For this 
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reason, we limit our observation to client 1 in the remaining 

text of this subsection. 

Concerning the QoE measurements, based on Table 2, we 

present the most important observations related to client 1: 

 Combining NewReno or Vegas variants with 

HTBM or RWTM does not improve the QoE. 

Additionally, these four combinations have high 

infidelity value (near 50%) and very high 

congestion speed value (around 90 ~100 ms), but a 

low value of instability. These values indicate that 

the player was stable at a low quality level during 

the first half of the test duration and has difficulties 

converging to its optimal quality level. 

 HTBM has better QoE with Illinois than with 

Cubic: it is slightly more stable, 16% more faithful 

to optimal quality, and converges 2.4 times faster. 

 RWTM has better QoE with Cubic than with 

Illinois: it is slightly more stable, slightly more 

faithful to optimal quality level, and converges 1.24 

times faster.  

In order to be more accurate in our analysis, we use the two 

defined metrics: the frequency of OFF* periods per chunk, 

frOFF*, and the congestion rate, CNG. In Table 4, we present 

the average value over 60 runs for each metric and for each 

combination, related to client 1 and scenario 1. 

Table 4. frOFF* and CNG for client 1 in scenario 1 

Metric Shaping 

method 

TCP congestion control variant 

NewReno Vegas Illinois Cubic 

CNG W/o 46.13 43.00 66.11   85.65 

HTBM     44.06  40.50 58.68 191.72 

RWTM 0.10   8.26  0.76     1.11  

frOFF* W/o 0.42   0.35  0.27     0.40 

HTBM 0.31   0.32  0.06     0.16 

RWTM 0.32   0.41  0.24     0.24 

RWTM presents a negligible congestion rate, while HTBM 

has a very high rate of congestion, especially when the Cubic 

variant is used. Moreover, HTBM reduces the frequency 

frOFF* better than RWTM, mainly with Illinois and Cubic. 

These results have a direct relationship to the shaping 

methods described in Subsect. 2.2: 

 HTBM was designed to delay incoming packets, 

which causes an additional queuing delay. In all of 

the tests, we verified that HTBM induces a 

queueing delay of around 100 ms in scenario 1 for 

client 1. On one hand, this delay causes an increase 

of congestion rate because it increases the risks of 

queue overflow in the gateway, even when the QoE 

is good, such as with Cubic or Illinois variants. The 

dissimilarity of congestion rate between congestion 

controls variants is investigated in the next Subsect. 

4.1.2. On the other hand, the RTTC-S value also 

jumps from 100 ms to 200 ms, which increases the 

retransmission timeout value, RTO, to 

approximately 400 ms, hence reducing OFF* 

periods. The frOFF* of HTBM is noticeably lower 

than RWTM and the case without shaping (W/o). 

In addition, the assertion “the higher the QoE 

metric measurement, the lower the frOFF* value” 

seems to be valid; for example, HTBM presents 

better QoE with Illinois than with Cubic, and frOFF* 

is lower with Illinois than with Cubic.   

 Nevertheless, RWTM was designed to limit the 

value of the receiver’s advertised window, rwnd, of 

each client. Therefore, no additional queuing delay 

is induced by RWTM. Hence, the congestion rate is 

very low. Additionally, the RTTC-S estimation is 

performed only once per chunk. So, the cwnd value 

is constant during the ON period, even if RTTC-S 

varies. In our configuration, the standard deviation 

of RTTC-S is equal to 7 ms, i.e. 0.07.aC-S, as 

described in Subsect. 3.3. Consequently, 

eliminating OFF* periods will not be possible. 

Instead, the frOFF* value will be bounded to a 

minimum value that characterizes RWTM when the 

QoE measurements are the most favorable. When 

testing with the four congestion control variants, 

this frOFF* value is equal to 0.24 for the selected 

standard deviation. This means that RWTM can 

guarantee, in the best case, one OFF* period every 

4.17 chunks. This frequency is useful, and will be 

discussed in the next subsection and in further 

detail in scenario 5. 

4.1.2 Analysis of cwnd variation 
To explain the results of scenario 1, we used the tcp_probe 

module in the HAS server. This module shows the evolution 

of the congestion window, cwnd, and the slow start 

threshold, ssthresh, during each run. For each combination, 

we selected a run the performance values of which are the 

nearest to its average values of Tables 2 and 4, i.e. instability 

IS, infidelity IF, convergence speed V, frequency of OFF* 

periods per chunk frOFF*, and congestion rate CNG. Then, we 

present their cwnd and ssthresh evolution in Figures 2 

through 9. We also indicate the moment of convergence by 

a vertical bold dotted line. We observed that this moment 

corresponds to the second from which the TCP congestion 

control is often processing under the congestion avoidance 

phase; i.e. when cwnd > ssthresh. In addition, from the 

moment of convergence, we observe that ssthresh becomes 

more stable and is practically close to a constant value. 

Figure 2 shows that the combination NewReno with HTBM 

cannot guarantee convergence to the optimal quality level. 

The congestion rate is not very high compared with other 

TCP congestion variants. After 50 seconds, cwnd was able 

to reach the congestion avoidance phase for short durations, 

but the continuous increase of cwnd with the additive 

increase approach caused the detection of congestion. 

Moreover, the multiplicative decrease approach after 

congestions employed by NewReno was very aggressive; in 
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effect, as described in Subsect. 2.2, the new cwnd value will 

be reduced by half (more precisely, to cwnd/2 + 3 MSS 

following the FR/FR phase) and ssthresh will also be 

reduced to cwnd/2. This aggressive decrease prevents the 

server from rapidly reaching a desirable cwnd value and, as 

a consequence, prevents the player from correctly estimating 

the available bandwidth and causes a lower quality level 

selection. Furthermore, the frOFF* value was relatively high 

(around 0.3 OFF* period per chunk), which is more than 

twice that of the Illinois and Cubic variants. This value is 

also caused by the multiplicative decrease approach that 

generates a lower quality level selection. Due to the shaping 

rate that adapts the download bitrate of the client to its 

optimal quality level, the chunk with a lower quality level 

will be downloaded more rapidly, which results in causing 

more frequent OFF* periods. For this reason, the player was 

not able to stabilize on the optimal quality level, resulting in 

a poor QoE. 

 
Figure 2. Cwnd variation of {NewReno HTBM}        IS=5.48%, 

IF=35.68%, V=180s, frOFF*=0.2, CNG=43.33 

When combining NewReno with RWTM, we observed that 

test results diverged and could be classified into two 

categories: those with an infidelity value of 100% and that 

do not converge (Figure 3(a)), and those with a low value of 

infidelity and that converge rapidly (Figure 3(b)). In both 

figures, ssthresh is always invariable. Both figures have no 

congestion events, which is due to the use of RWTM. 

 

           (a) IS=0.95%, IF=100%,            (b) IS=2.62%, IF=4.92%, 

         V=180 frOFF*=0.68, CNG= 0       V=4 s frOFF*=0.23, CNG=0 

Figure 3. Cwnd variation of {NewReno RWTM} 

The OFF* periods are more frequent in Figure 3(a) (frOFF* = 

0.68) than in Figure 3(b) (frOFF* = 0.23). Although both 

figures present a constant value of ssthresh, we observe that 

the only difference between them is the initial value of 

ssthresh. Figure 3(a) has a lower value of ssthresh than 

Figure 3(b): 27 MSS vs. 69 MSS. The additive increase 

approach of NewReno during the congestion avoidance 

phase prevents the server from rapidly increasing the cwnd 

value during ON periods. Therefore, the player was not able 

to reach the optimal quality level n° 4 at any time. The cause 

of the dissimilarity between the initial values of ssthresh in 

the two figures is explained in [17]. Some implementations 

of NewReno use the size of the receiver’s advertised 

window, rwnd, to define the initial value of ssthresh, but in 

fact, this value may be arbitrarily chosen. Accordingly, the 

combination of NewReno with RWTM could have high QoE 

if the initial value of ssthresh is well-chosen.  

When combining Vegas with HTBM, we obtain a cwnd 

variation, as shown in Figure 4. The convergence moment 

(at 87 s in Figure 4) occurs when cwnd becomes often set 

higher than ssthresh (i.e. TCP congestion control is often 

processing under the congestion avoidance phase) and 

ssthresh is often set at the same value. We can observe the 

additive increase and additive decrease aspect of cwnd in the 

congestion avoidance phase after convergence. The additive 

decrease of cwnd involved in Vegas is caused by the queuing 

delay increases resulting from HTBM. This additive 

decrease has the advantage of maintaining a high throughput 

and reducing the dropping of packets in the gateway. 

Therefore, the congestion rate, CNG, is relatively low 

because it is reduced in Figure 4 from around 75 congestion 

events per 100 seconds to only 15. The additive decrease also 

has the advantage of promoting convergence to the optimal 

quality level, unlike multiplicative decrease. As a result, the 

delay-based aspect with the additive decrease approach 

improves the stability of the HAS player after convergence. 

In contrast, Vegas uses a slightly low value of ssthresh (60 

MSS) and employs the additive increase approach for cwnd 

updates during the congestion avoidance phase. As a 

consequence, the server cannot rapidly increase the cwnd 

value during the ON period, which  results  in  slow  

convergence.  Therefore, the player  

 
Figure 4. Cwnd variation of {Vegas HTBM}                 

IS=1.31%, IF=46.74%, V=87 s, frOFF*=0.4, CNG=46.11 

was not able to reach the optimal quality level n° 4 at any 

time before the moment of convergence. Consequently, the 

frequency of the OFF* period increases before the 

convergence moment; hence, the high value of frOFF*. 

The performance worsens when Vegas is combined with 

RWTM. As presented in Figure 5, the player was not able to 

converge. Instead, we observed many timeout 

retransmissions characterized by ssthresh reduction and 

convergence 
convergence 
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cwnd restarting from slow start. The timeout retransmissions 

are generated by Vegas when only a duplicate ACK is 

received and the timeout period of the oldest 

unacknowledged packet has expired [4]. Because of that, 

Vegas generates more timeout retransmissions than 

NewReno. Hence, the CNG value is worse than in the other 

combinations of RWTM. Moreover, OFF* periods are 

frequent during the first 45 seconds, because the player 

requests quality level n° 3. Subsequently, OFF* periods 

become less frequent (they occur only at 79, 125, 138, 150, 

165, and 175 s) because the player was able to switch to an 

optimal quality level (n° 4). Hence frOFF* related to the whole 

test duration is equal to an acceptable value (0.29 OFF* 

period per chunk). The player becomes able to request the 

optimal quality level n° 4 predominantly in the second 

period (after 45 seconds), but it is incapable of being stable 

for more than 60 seconds because of the retransmission 

timeout events. 

 
Figure 5. Cwnd variation of {Vegas, RWTM}             

IS=5.32%, IF=31.15%, V= 180s, frOFF*=0.29, CNG=6.11 

When we use the loss-delay-based variant Illinois, 

significant improvement of performance is observed with 

the two shaping methods: 

In Figure 6, despite the rapid convergence, a high rate of 

congestions (that reduces the ssthresh and cwnd values but 

maintains the cwnd higher than ssthresh, as described in 

Algorithm 1) and timeout retransmissions (that reduces 

ssthresh, drops cwnd, and begins from the slow start phase) 

was recorded. Consequently, the frequent reduction of 

ssthresh was the cause of the high rate of CNG: in this 

example, CNG is equal to 51.11. CNG is higher than that 

recorded for NewReno. The cause is the high value of 

ssthresh of approximately 115 MSS. The variable ssthresh 

was able to rapidly return to a fixed value after 

retransmissions, due to the update of α and β using accurate 

RTTC-S estimation (see Subsect. 2.1). As a consequence, 

cwnd restarts from the slow start phase after timeout 

detection and rapidly reaches the high value of ssthresh. 

Hence, the HAS player converges despite high congestion. 

In addition, OFF* periods were negligible, with only two 

periods after congestion. This is why frOFF* was very low 

(0.03). In the congestion avoidance phase, cwnd was able to 

increase and reach high values, even during short timeslots. 

This was due to the concave curve of cwnd generated by 

Illinois, which is more aggressive than NewReno. As a 

consequence, the player could be stabilized with optimal 

quality level n° 4. 

 
Figure 6. Cwnd variation of {Illinois, HTBM}            

IS=2.00%, IF=7.66%, V=5s, frOFF*=0.03, CNG=51.11 

When using RWTM with Illinois, the player converges, as 

presented in Figure 7. The congestion rate is very low 

(CNG=0.55), but congestions are caused by the 

aggressiveness of Illinois (the concave curve of cwnd in the 

C-AIMD approach) and its high ssthresh value (120 MSS). 

Congestions slow down the convergence speed and slightly 

reduce the QoE due to the multiplicative decrease approach 

of Illinois. As shown in Figure 7, one congestion event 

delayed the convergence time to 27 seconds. In addition, 

Illinois has the ability to select the suitable ssthresh value 

(110 MSS in Figure 7) that minimizes congestion events in 

the future, in spite of the sensitivity of RWTM to 

congestions. OFF* periods still exist, but with low 

frequency (frOFF* = 0.22). 

 
Figure 7. Cwnd variation of {Illinois RWTM},  

IS=2.40%, IF=5.47%, V=27s, frOFF*=0.22, CNG=0.55 

The Cubic variant yielded good performances with both 

shaping methods. The variations of cwnd when Cubic is 

combined with HTBM and RWTM are presented in Figures 

8 and 9, respectively. 

In Figure 8, the player converges tardily after a delay of 33 

seconds. The cause is mainly the low value of ssthresh that 

is selected by the Cubic algorithm. As explained in Subsect. 

2.1, the HyStart algorithm, implemented in Cubic, defines 

this ssthresh in order to have a less aggressive increase of 

cwnd. The ssthresh becomes lower when the RTTC-S 

increases. Knowing that HTBM increases RTTC-S by 

introducing an additional queuing delay, HyStart decreases 

ssthresh to be approximately 57 MSS. This is why the player 

cannot upgrade to its optimal quality level n° 4 before 

convergence. The second cause is the multiplicative 

decrease approach of Cubic and the high rate of congestions 

convergence 

  convergence 
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caused by HTBM. This second cause makes the convergence 

to optimal quality level more difficult because the server is 

not able to increase its reduced congestion window cwnd 

during the ON period, as it should be increased. 

After convergence, many congestions were recorded, and 

OFF* periods were negligible. The ssthresh becomes more 

stable around 75 MSS: this is well-set by the HyStart 

algorithm. This enhances stability in the congestion 

avoidance phase with a more uniform increase of cwnd, as 

shown between 60 and 80 seconds in Figure 8. Furthermore, 

there is a set of large cubic curves with inflection points close 

to the ssthresh value. The variable cwnd is more present in 

the convex region, which is more aggressive when moving 

away from the inflection point. 

 

Figure 8. Cwnd variation of {Cubic HTBM},  

IS=1.98%, IF=19.03%, V=33s, frOFF*=0.16, CNG=186.11 

In Figure 9, the player converges rapidly in only 8 seconds. 

The ssthresh begins with a low value (60 MSS) for a few 

seconds during the buffering state, and then the HyStart 

algorithm implemented in Cubic rapidly adjusts the ssthresh 

value and enables the server to be more aggressive. 

Comparing with Figure 7, selecting a lower initial value of 

ssthresh is better for accelerating convergence, because 

otherwise there are more risks of congestion that slow down 

the convergence speed.  

Congestions are infrequent: only two congestions are visible 

in Figure 9 at seconds 70 and 130, and they are resolved by 

fast retransmission in accordance with Algorithm 1 and by 

using Hystart. As a consequence, separated congestion 

events do not dramatically affect the performance, as when 

Illinois is used with RWTM (Figure 9). The Cubic algorithm 

chooses the inflection point to be around 140 MSS, which is 

much higher than the ssthresh value, so that the concave 

region becomes more aggressive than the convex region. 

The OFF* periods persist, even with Cubic, but with a low 

frequency: frOFF* = 0.22. 

Accordingly, the Cubic variant is able to adjust its 

congestion window curve in different situations. When many 

congestions occur, the cubic curve becomes rather convex to 

carefully increase cwnd. When many OFF* periods occur, 

the cubic curve becomes rather concave, and is thus more 

aggressive than the concave curve of Illinois in order to 

rapidly achieve the desired send bitrate and compensate for 

the reduction of the cwnd value. However, Cubic begins by  

 

Figure 9. Cwnd variation of {Cubic RWTM}, IS=1.78%, 

IF=5.5%, V=8s, frOFF*=0.22, CNG=1.66 

estimating a low value of ssthresh that is adjusted over time 

by the HyStart algorithm, which is beneficial only when 

using RWTM as a shaping method. Using HTBM slows 

down convergence considerably and affects the infidelity 

metric. 

4.2 Scenarios 2 and 3 
In this section, we present the five performance 

measurements of client 1 for the first three scenarios 

described in Subsect. 3.2. We make the assumption that the 

optimal quality level of client 1 is n° 4. We do not present 

NewReno and Vegas variants because they demonstrated 

low performance. The average values of QoE metrics for 

client 1 in the first three scenarios are listed in Table 5, and 

the average values of CNG and frOFF* in the first three 

scenarios are listed in Table 6. Both tables show the total 

mean values (denoted by MV) over the three scenarios. MVs 

are the global performance values proposed for 

consideration to compare between different combinations.  

Table 5. QoE for client 1 in scenarios 1, 2, and 3 

T
C

P
 v

a
ri

a
n

t 

S
ce

n
a
ri

o
 Performance metric 

Instability (%) Infidelity (%) 
Convergence 

speed (seconds) 
HTBM RWTM HTBM RWTM HTBM RWTM 

C
u

b
ic

 

1 1.86 1.63 20.45 5.02 52.06 19.55 
2 3.44 1.43 32.90 3.42 64.13 10.98 
3 2.19 1.63 18.49 4.81 34.65 14.34 

MV* 2.49 1.56 23.95 4.42 50.28 14.96 

Il
li

n
o
is

 1 1.56 1.88  7.75 6.17 21.10 24.22 
2 3.20 1.56 29.75   4.42 59.58 13.28 
3 1.85 1.76  7.92 5.66 21.03 18.80 

MV 2.20  1.73 15.14 5.42 33.90 18.56 

Table 6. frOFF* and for client 1 in scenario 1, 2 and 3 

Metric Scenario Cubic Illinois 
HTBM RWTM HTBM RWTM 

 
 

CNG 

1 191.72 1.11 58.68 0.76 

2 375.62 0.82 33.11 0.68 

3 173.48 0.66 56.27 0.76 

MV 246.92  0.86 49.35 0.73 

 

frOFF* 

1 0.16 0.24 0.06 0.24 

2 0.23 0.24 0.21 0.24 

3 0.13 0.26 0.05 0.26 

MV 0.17 0.25 0.10 0.25 

Both tables indicate two valuable points: 

convergence 

convergence 
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On one hand, RWTM has better QoE metric measurements 

than HTBM with both Cubic and Illinois variants. Moreover, 

RWTM not only has a lower congestion rate, CNG, than 

HTBM, but it also has a negligible CNG with the two TCP 

variants for all three scenarios. RWTM also preserves a 

constant value of frOFF*. Consequently, even the transition 

from one to two clients and vice versa (i.e., scenarios 2 and 

3, respectively) does not disturb RWTM, which preserves its 

inherit characteristics of negligible congestion rate and its 

frOFF* rate around 0.25. This preservation has positive 

consequences for the user’s QoE. Although the gap between 

the QoE metrics measurements of {Cubic RWTM} and 

{Illinois RWTM} is not very significant, {Cubic RWTM} 

yields better values. Accordingly, we can say that the use of 

Cubic or even Illinois is beneficial for improving the user’s 

experience, with a slight preference for Illinois. 

On the other hand, HTBM presents better QoE with Illinois 

than with the Cubic variant. In conjunction, it has a fivefold 

lower congestion rate (49.35 vs. 246.92) and lower OFF* 

period frequency frOFF*. This observation is valid not only 

for total mean values, MV, but also with every scenario (1, 

2, and 3). Therefore, Illinois is distinctly better than Cubic 

for the HTBM shaping method, even when the number of 

active HAS clients in the home gateway changes between 

one and two clients. Accordingly, the loss-delay-based 

variant with the C-AIMD approach used by Illinois has more 

favorable impacts on QoE, CNG, and frOFF* than the loss-

based variant with the AIAD approach using the HyStart 

algorithm employed by Cubic. 

4.3 Scenario 4 
The objective of this section is to evaluate the robustness of 

each combination against the congestions that are induced 

by other flows. Therefore, we employed scenario 4, as 

described in Subsect. 3.2, in which a heavy congestion is 

induced. To be able to compare performances correctly, a 

reference scenario, denoted by WL, consisting of a HAS 

client working alone in the home network, is used. No loss 

is observed in the reference scenario. We do not present the 

NewReno and Vegas variants because they showed poor 

performance. Altogether, we have four combinations to 

evaluate: Cubic and Illinois combined with two shaping 

methods, HTBM and RWTM. The average values of the 

QoE metrics of the client in scenario 4 are provided in Table 

7, and the average values of CNG and frOFF* are listed in 

Table 8. 

Table 7. QoE for client 1 in scenario 4 

T
C

P
 

v
a
ri

a
n

t 

S
ce

n
a
ri

o
 Performance metric 

Instability (%) 

 

Infidelity (%) 

 

Convergence 

speed (s) 

HTBM RWTM HTBM RWTM HTBM RWTM 

Cubic WL1 1.08 1.07 3.71 1.79 7.61 4.10 
4 4.86 6.40 48.2 46.14 120.3 129.3 

Illinois WL 1.08 1.07 2.23 1.66 5.37 4.01 
4 2.7 2.92 15.6 17.81 35.48 42.75 

1Without loss 2Degradation percentage 

Table 8. frOFF* and CNG for client 1 in scenarios 1, 2, and 3 

Metric Scenario 
Cubic Illinois 

HTBM RWTM HTBM RWTM 

 
CNG 

WL 34.2 0.98 38.51 0.79 

4 216.19 120.36 146.68 143.54 

 
frOFF* 

WL 0.03 0.36 0.03 0.43 

4 0.40 0.41 0.09 0.31 

The measurements in the two tables indicate three major 

observations: 

 The lowest QoE metric measurements are recorded for 

the Cubic variant for both shaping methods: their 

instability is around 5~6%, their infidelity is near 50%, 

and their convergence speed is approximately 125 ms. 

We also notice that the congestion rate, CNG, is very 

high, between 120 and 220, and the frequency frOFF* is 

important around 0.4 (i.e., one OFF* period occurs for 

every 2.5 chunks, on average). We observe not only 

lower measurements, but also a higher degradation rate 

in performance: the gap of QoE metric measurements, 

CNG and frOFF*, is clearly large between scenario WL 

and scenario 4. Accordingly, Cubic is not suitable as a 

TCP congestion control variant of the HAS server for 

both shaping methods when heavy congestion occurs. 

This result can be verified by examining Figures 8 and 

9 in Subsect. 4.1.2, where Cubic has difficulties with 

rapidly defining the suitable ssthresh value before 

convergence and after congestion, respectively. 

 The RWTM shaping method presents higher 

degradation in QoE metric measurements than HTBM 

when we compare scenario WL to scenario 4 for both 

TCP congestion variants, Cubic and Illinois. The cause 

is mainly related to the fact that HTBM is used to 

generate congestion events and maintain high QoE 

under normal circumstances, which is not the case with 

RWTM. Accordingly, we can say that RWTM is more 

sensitive to induced congestions than HTBM. This 

result can be verified when examining Figures 7 and 9 

in Subsect. 4.1.2, in which a single congestion event 

instantaneously degrades performance. 

From the first and the second observations, we can deduce 

that the best combination that maintains optimal QoE metric 

measurements with low degradation and has the lowest 

frequency of OFF* periods, frOFF*, is ensured by the 

combination {Illinois HTBM}.  

 The second-best combination is {Illinois RWTM}. 

Here, the QoE metric measurements are acceptable, but 

the degradation rate is higher than the best combination 

{Illinois HTBM}. This degradation indicates that 

{Illinois RWTM} cannot adequately resist against 

induced congestions, especially when we have a highly 

congested link between client and server. However, this 

combination could successfully be used with a link 

under less frequent congestions. 
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4.4 Scenario 5 
In this section, we present the performance metric 

measurements when the standard variation of RTTC-S varies. 

The behavior of the resulting curves will indicate how 

performance degrades when the standard deviation of  RTTC-

S increases. The variation of QoE (instability, infidelity, and 

convergence speed) is presented in Figure 10, and the 

variation of CNG and frOFF* is listed in Figure 11. We have 

two major observations: 

 
Figure 10. QoE variation 

      

 

 

Figure 11. Variation of CNG and frOFF* 

On the one hand, the {Illinois RWTM} (purple cross) and 

the {Cubic RWTM} (red square) curves are convex and 

close to each other and are predominantly below the other 

curves. The three QoE metric values are good until an RTTC-

S standard deviation of around 40 ms, where performance 

degradation begins to be visible. Moreover, the combination 

{Illinois RWTM} preserves its performance better and has a 

less aggressive degradation rate for higher RTTC-S standard 

deviation, especially from 35 ms. Accordingly, we can say 

that using RWTM with Illinois is safer when RTTC-S is very 

unstable. Otherwise, {RWTM Cubic} can also be used, most 

usefully when the standard deviation of RTTC-S is lower than 

35 ms. We also observe in Figure 11 that both combinations 

have a similarly low congestion rate, CNG, and similar 

frequency of OFF* periods, frOFF*. Based on this 

observation, we can deduce that RWTM preserves its 

inherent characteristics with Cubic and Illinois variants, and 

that the degradation of QoE metric measurements for highly 

unstable RTTC-S is mainly caused by the congestion control 

algorithms used by Cubic and Illinois variants. Since 

RWTM seems to be more adequate with Illinois, we can say 

that the loss-delay-based and C-AIMD approach of Illinois 

helps more than the loss-based and cubic RTT-independent 

approach of Cubic to preserve good performance for highly 

unstable RTTC-S values. 

On the other hand, HTBM is less robust against RTTC-S 

instability. The green and the blue curves that present the 

combination of HTBM with Illinois and Cubic, respectively, 

show a significant degradation of QoE metric measurements 

when the standard deviation of RTTC-S is above 14 ms. 

However, {HTBM Illinois} is more sensitive to RTTC-S 

instability than {HTBM Cubic}. This means that combining 

the loss-delay-based congestion control variant Illinois with 

the HTBM shaping method that increases the queuing delay, 

entails harmful drawbacks for QoE when the RTTC-S is 

unstable. We can also validate this observation in Figure 11: 

the congestion rate CNG of {HTBM Illinois} and {HTBM 

Cubic} are predominantly close to each other, but the 

frequency of OFF* periods explodes with {HTBM Illinois} 

for RTTC-S standard deviation higher than 20 ms. This 

implies that the additional delay caused by HTBM is 

practically the same for both congestion control variants 

Cubic and Illinois, but the effects on frOFF* and QoE are quite 

different and involve more drawbacks for the Illinois variant. 

In contrast, HTBM with Cubic has fewer drawbacks and 

presents QoE metrics measurements that are relatively 

constant for instability and infidelity from RTTC-S standard 

deviations around 20 ms. This results can be explained by 

the fact that the Cubic variant does not use RTTC-S to 

compute its congestion window cwnd during the congestion 

avoidance phase, as explained in Subsect. 2.1.  

4.5 Discussion 
After comparing the results of five scenarios, we have made 

numerous observations, but in this subsection, we want to 

summarize the most important observations. First, NewReno 

and Vegas variants do not provide good performance in the 

HAS context, excepting the combination {NewReno 

RWTM} that could perform well if the initial value of 

ssthresh is well-chosen. Second, we summarize the 

observations of the five scenarios for the four combinations 

in Table 9. Thus, we assign a score for each combination that 

ranges between "--" and "++": -- (bad), - (insufficient), +/- 

(average), + (good), and ++ (excellent). This score is based 

on the analysis of results for each scenario. 

Table 9. The final score for each combination 

 

Scenario 

Combination 

RWTM HTBM 

Cubic Illinois Cubic Illinois 

{1,2, 3} ++ ++ +/- + 
4 -- + -- ++ 
5 + ++ +/- -- 

The best combination is {Illinois RWTM}: it yields good 

performance when two clients compete for bandwidth and is 

robust against high RTTC-S variation, but it is somewhat 

 

 

  (a)  CNG variation  (b) frOFF* variation 
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vulnerable to heavy congestions that could be caused by 

external factors. In the second position, we have two 

combinations: 

- {Cubic RWTM}: Unfortunately, it is very vulnerable to 

congestions and slightly sensitive to high RTTC-S 

variation. 

- {Illinois HTBM}: It has the advantage of being robust 

against heavy congestions. However, it is very sensitive 

to RTTC-S variation. Furthermore, it causes a high rate of 

congestion in the gateway that could disturb other 

sessions in concurrence with HAS sessions. 

5. CONCLUSION AND FUTURE WORK 
A comparative evaluation has been developed in order to 

study the effect of combining two well-known traffic 

shaping methods (HTBM and RWTM) in the gateway with 

four very common TCP congestion algorithms (NewReno, 

Vegas, Illinois, and Cubic) in the server in the context of 

HTTP adaptive streaming technique. We examined the 

user’s QoE by applying objective metrics. Furthermore, we 

observed the evolution of the congestion window on the 

server side in order to explain the behavior of each 

combination and its relationship with QoE metrics. We also 

used the congestion rate and the frequency of OFF periods 

that exceeds retransmission timeout as indicators. We have 

addressed many scenarios: two HAS clients competing for 

the home bandwidth simultaneously, adding or removing a 

HAS client, inducing a heavy congestion in the gateway, and 

increasing the instability of the round trip time, RTT, 

between the HAS server and the HAS client. The results 

show that there is a significant discordance in performance 

between combinations. The best combination that improves 

the QoE, reduces the congestion rate, and reduces the OFF 

periods in the majority of scenarios is when combining the 

loss-delay-based congestion control variant, Illinois, which 

uses the C-AIMD approach, with the TCP flow control-

based method, RWTM. The characteristics of Illinois and 

RWTM seem to be similarly robust against high RTT 

instability. This combination does not disturb other real-time 

streams in the home network because it does not induce 

additional queueing delay and it considerably reduces the 

congestion rate. However, this combination is slightly 

vulnerable to heavy congestions that could be caused by 

external factors such as other concurrent streams. 

Having extended our knowledge about the combination of 

TCP congestion control variants with shaping methods in 

this work, we intend as future work to design a new TCP 

congestion control variant that is compatible with all 

specifications of HAS and shaping methods. 
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